ISSN 1070-3632, Russian Journal of General Chemistry, 2017, Vol. 87, No. 6, pp. 1148–1160. © Pleiades Publishing, Ltd., 2017. Original Russian Text © L.M. Pevzner, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 6, pp. 927–939.
Addition of Butanethiol to Alkyl 3-Furyl-3-(diethoxyphosphoryl)acrylates L. M. Pevzner* St. Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg, 190013 Russia *e-mail:
[email protected] Received February 27, 2017
Abstract—By an example of butanethiol the addition of mercaptanes in the presence of bases to alkyl 3-furyl3-(diethoxyphosphoryl)acrylic acids having methyl, methoxymethyl, or diethoxyphosphorylmethyl substituent in the furan ring was studied. It was shown that in the majority of cases alkyl 2-(butylthio)propionate was the main product, and 3-(butylthio)propionate was the minor one. Ethyl 3-(4-methylfur-3-yl)-3-(diethoxyphosphoryl)acrylate affords these two substances in equal quantities. In the case of ethyl 3-(4-methoxymethyl-5methylfur-2-yl)-3-(diethoxyphosphoryl)acrylate only 3-(butylthio)propionate is formed. Keywords: phosphonates, furylacrylic acids, thiols, nucleophilic addition, basic catalysis
DOI: 10.1134/S1070363217060081 Theoretical prediction of the addition direction of nucleophiles to the double bond conjugated with several electron-acceptor groups is a certain problem up till now. It specially concerns the cases when electron-acceptor substituents are located at different ends of C=C bond and interact with one another. It is just the case of alkyl 3-(furyl)-3-(diethoxyphosphoryl)acrylates which can be easily prepared via the Wittig reaction from available furoyl phosphonates [1]. One end of the double bond in these compounds carries the ester group, and the other one, the phosphoryl group and the furan ring. The carbonyl and phosphoryl groups are acceptors, while the furan ring depending on the type of substitution and the nature of substituents may be the electron-donorg as well as the electron-acceptor fragment with respect to the double bond. For the effective proceeding of the nucleophilic addition reactions firstly the general decrease of electron density on the double bond, and, secondly, its polarization under the action of substituents is required. The orientation of dipole moment of the double bond just determines regioselectivity of addition. Hence, the investigation of the addition direction of nucleophiles to the double bond carrying several substituents in various combinations gives primary material for the evaluation of interaction of these substituents with the double bond and with one another in the conjugates systems, what is important from the theoretical point of view.
We have shown previously that alkyl 3-(furyl)-3(diethoxyphosphoryl)acrylates in the presence of potassium fluoride add nitromethane to the double bond to form 2-substituted derivatives of 3-nitropropanoic acid [2]. It occurred that this reaction proceeds rather difficultly, and evaluation of direction of the nuclephilic addition is laborious. That is why we decided to study model reaction of nucleophilic addition of thiols to the same substances by an example of sufficiently stable and high-boiling butanethiol, and basing on the results of this work to evaluate relative contribution of the carbonyl, of the phosphoryl, and of the differently substituted furan ring in the electronic density distribution on the carbon atoms of the C=C bond. Series of compounds 1–6 comprising all options of mutual location of substituents in the furan ring was chosen as a set of starting substances. In all cases the phosphoryl and the ester groups were trans-located with respect to the double bond (Scheme 1). The addition of butanethiol was carried out at room temperature in the presence of bases. Phosphonate : butanethiol molar ratio was 1 : 5. The reaction progress was monitred by 31P NMR spectroscopy. Ethanol solution of potassium hydroxide was primarly used as a base. It occurred that methyl and methoxymethyl derivatives of furan do not react
1148
ADDITION OF BUTANETHIOL TO ALKYL 3-FURYL-3-(DIETHOXYPHOSPHORYL)ACRYLATES
1149
Scheme 1. Х
Х COOEt Х
COOEt O
O
O
PO(OEt)2
PO(OEt)2
1a−1c
PO(OEt)2
2b, 2c
3a−3c
(EtO)2OP Х
(EtO)2OP
(EtO)2OP COOEt
COOEt O
COOEt
COOEt Х
O
Х 4a−4c
O
5a−5c
6a−6c
X = CH3 (a), CH3OCH2 (b), CH2PO(OEt)2 (c). Scheme 2.
1a−1c
COOEt
BuSH base
Х
O
S PO(OEt)2
COOEt Bu
+
7a−7c
Х
O
S
PO(OEt)2
Bu 8a−8c
X = CH3 (1a, 7а, 8а), CH2OCH3 (1b, 7b, 8b), PO(OEt)2 (1c, 7c, 8c).
under these conditions, but bis(phosphonates) 1c–6c add butanethiol within 3–4 h just in the presence of traces of base. The addition of thiol to all other compounds of the series under study took place only when considerable amount of potassium fluoride on alumina was used. Reaction pathway by an example of compounds 1a–1c is shown in Scheme 2. In the 31P NMR spectra of reaction mixtures signals of phosphorus nuclei at 13-15 ppm disappeared and the signals at 22 ppm for compounds 1a–3c or at 24 ppm for compounds 4a–6c appeared. The obtained substances are colored syrups. In the majority of cases their 31P NMR spectra contained two signals of phosphorus belonging to 3-phosphonopropanoic acid fragment. In the 1H NMR spectra two sets of signals of the furan ring, of the methyl, methoxymethyl groups or CH2P fragments depending on the nature of starting substrate were present. On the whole the ratio of intensities of signals in the 1H and 31P NMR spectra was in good agreement. In the 13C NMR spectra two sets of signals of the above-mentioned structural fragments were observed. Hence, in the course of the reaction two isomeric adducts with different location of buthylthio group in the side chain were formed.
In the 13C NMR spectra doublets of PCβ fragment of the side chain were located in the range 38–40 ppm (1JPC = 136.0–136.9 Hz) for 2-furyl compounds and at 34–36 ppm (1JPC = 137.5–138.4 Hz) for 3-furyl ones. Signals of this fragment of the minor product were as a rule insignificantly shifted downfield. 1JPC coupling constant for 2-furyl derivatives was in the range 143.1– 146.8 Hz, and for 3-furyl analogs its value was 142.0– 147.0 Hz. The signal of the carbonyl carbon atom of the main product was located at 170–171 ppm. In the minor product it was somewhat shifted upfield and as a rule was revealed as a doublet with the 1JPC coupling constant 18–21 Hz. In one case this constant decreased to 13.9 Hz, and in the addition products of butanethiol to phosphonate 5a the signal of the carbon atom was not split. Analysis of the signal of the side chain protons in the compounds synthesized we shall begin from the minor isomer. In all cases the multiplet at 2.4–2.5 ppm belongs to it. This signal is formed by overlapping of signals of two ABX-systems belonging to different conformers. In the majority of cases JAB coupling constant is as large as 12.0–12.4 Hz, while 3JPH one varies in the range 0–20 Hz. Three groups of signals
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
1150
PEVZNER
may be clearly distinguished. In the first of them the coupling constant of protons with phosphorus is 0– 2 Hz, in the second one it is 12.0–12.4 Hz, and in the third one it is about 14 Hz. From the values of coupling constants it follows that these signals belong to nonequivalent protons of (OP)(S)C–CHAHB–C(O) fragment formed by addition of proton to Cα carbon (EtO)2OP
atom, and of thiol residue to Cβ one of the double bond as in compounds 8a–8c. As location of proton signals in all the compounds under study varies in the narrow range, coupling constants JPH = 18.8 and 20.0 observed in compounds 9 and 10 respectively are third ones and belong to the protons of CHAHB–C=O fragment despite their abnormally high couplingvalues.
COOEt SBu
(EtO)2OP CH3O
COOEt SBu
CH3O O 9
O 10
Signals of protons of (OP)CH–CH(S) fragment of main isomer are located in the range 3.6–3.9 ppm. In some cases they overlap with the intense broad multiplet of protons of CH2OP fragment. Due to that in the considerable part of cases we managed to evaluate spectral parameters only of PCβH proton whose signals are located upfield as compared to that of SCαH one. Signals of these protons form ABX-system. Its specific feature is the presence of 2JPH constant varying in the range 19.2–21.6 Hz. 3JPH coupling constant in this case varies from 0 to 18.2 Hz, but most often its value is 6– 9 Hz. The value of JAB constant is 10.8–13.8 Hz. Hence, analysis of spectral data shows that addition of butanethiol to the derivatives of 3-(furyl)-3(diethoxyphosphoryl)acrylates leads to the formation of two isomers. Main product carries butylthio group on Cα atom of the propanoic acid fragment. The only exclusion is the reaction of compound 2b when a single product 11 is formed (Scheme 3). 13
C NMR spectra of (OP)CβH–Cα(S)H–COOEt fragment of the compounds synthesized are characterized by a doublet belonging to Cβ carbon atom nucleus with the coupling constant 1JPC = 136.0– 138.4 Hz and the singlet of the carbonyl carbon atom. For the (OP) (S)Cβ–CαH2–COOEt fragment the doublet of Cβ carbon atom nuclei with the coupling constant 1 JPC = 143.1–146.8 Hz and the doublet of the carbonyl carbon atom with 3JPC = 18–21 Hz are characteristic. Scheme 3. 2b
BuSH KF/Al2O3
CH3O
SBu O 11
COOEt
PO(OEt)2
Having established the structure and characteristic spectral parameters of the addition products of butanethiol to compounds 1a–6c we turn to the peculiarities of spectral characteristics of the compounds synthesized. In the spectra of 2,5-disubstituted furans 7a–7c and 8a–8c most interesting are far constants of spin-spin coupling values between the phosphorus nuclei and carbon nuclei of the furan ring, and between two phosphorus nuclei in the case of diphosphonates 7c, 8c. In all six compounds 4JP2C5 constant was as large as 2.1–2.8 Hz. No definite connection between the nature of substituent in the position 5 of the furan ring, the structure of phosphorus-containing fragment in the position 2, and the value of constant can be traced. When one more phosphonate group appears in the molecule (compounds 7c, 8c) in the 13C NMR spectra analogous 4JP5C2 constant appears equal to 2.6 Hz. Second 2JP2C2, 2JP5C5 and third 3JP2C3 constants in the series of compounds 7a–7c and 8a–8c have their usual values. Hence, the interaction of each phosphorus and carbon nuclei in the first approximation does not depend on the presence of second magnetic nucleus in the molecule. In diphosphonates 7c, 8c phosphorus nuclei interact with one another with the constants 6 JP2P5 6.3 and 7.1 Hz respectively. At the same time, 6 JP2P5 constant observed recently in 2,3,5-tris(diethoxyphosphorylmethyl)furan was 9.0 Hz [4]. Hence, the value of the coupling constant evidently decreases with the increase in branching of the side chain. Spectral properties of phosphonate 11 noticeably differ from those of all other compounds. The substance exists as a mixture of two stable conformers having different characteristics in the 1H and 31P NMR spectra. The ratio of intensities of independent signals in these spectra well agrees with one another giving
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
ADDITION OF BUTANETHIOL TO ALKYL 3-FURYL-3-(DIETHOXYPHOSPHORYL)ACRYLATES
the value 1 : 0.5. At the same time 13C NMR spectrum contains only one set of signals. Among the phosphorus-carbon coupling constants only one 1JPC has the characteristic value 143.1 Hz, while all the other ones are significantly smaller than usual. Signal of C2-furan carbon atom is split with 2JP2C2 constant 6.7 Hz instead of the characteristic value 8.5–11 Hz. The signal of the carbon atom is a doublet with 3JPC = 13.9 Hz while in all other cases it is 18–21 Hz. The other characteristic constants do not appear at all. Unlike that the characteristics of bis(phosphonates) 12 and 12a well agree with that of other compounds. Note that 4JP2C5 constant 1.9 and 2.6 Hz respectively was revealed for these compounds. In compounds 13a–3c and 14a-c obtained by addition of butanethiol to acrylates 3a–3c the coupling of P2 phosphorus nucleus with C2 and C3 atoms of furan agrees with usually observed values. At the same (EtO)2OPCH2
S
Bu
time no 4JP2C5 constant was observed for any of these compounds. In bis(phosphonates) 13c and 14c the phosphorus nuclei interact with one another. 5JP2P3 coupling constant in these substances is 9.6 and 7.7 Hz respectively, while in previously described bis(diethoxyphosphorylmethyl)furans it is 13–15 Hz [4]. Spectral characteristics of pairs of isomers 9a and 9, 15 and 15a, 16 and 16a of 2,4-disubstituted furans agree with one another. Subsituents in these compounds are distant and no interaction between them is revealed. When second phosphorus atom is introduced in the molecule (compounds 16, 16a) coupling constants of carbon atoms of the furan ring retain their values observed for 2-phosphonomethyl and 3-phosphonomethyl derivatives of furans. In the 13C NMR spectrum of phosphonate 16 far 4JP2C4 and 4JP2C5 constants 1.3 Hz and 1.5 Hz respectively are observed. (EtO)2OPCH2
Bu S
O
O (EtO)2OP
O (EtO)2OP
OEt
O (EtO)2OP
O OEt
12a
12 Х
1151
Х
Bu
S
Bu
S
O
O
O (EtO)2OP
OEt
13a−13c
OEt
14a−14c
X = CH3 (a), CH2OCH3 (b), CH2PO(OEt)2 (c). (EtO)2OP
(EtO)2OP
O OEt
Х
O
SBu 9a, 15, 16
SBu Х
O OEt
O 15a, 16a
X = CH3OCH2 (9a), CH3 (15, 15a), (OEt)2OPCH2 (16, 16a).
In the series of compounds 17a–17c and 18a–18c the location of substituents in the furan ring is reversed as compared to phosphonates 13a–13c and 14a–14c, but NMR spectra of monophosphorylated products are considerably alike. Unlike that spectral characteristics of bis(phosphonates) 13c, 14c and 17c, 18c demonstrate significant difference.
Spin-spin coupling constant between phosphorus nuclei 5JPP in the compound 17c is 11.3 Hz compared to 9.6 Hz in 13c. Analogously in the isomers 18c and 14c coupling constant values are 9.4 and 7.7 Hz respectively. Hence, if alkyl radical is located in the β-position of the furan ring, the coupling between phosphorus atoms is stronger than in the structure with the reversed
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
1152
PEVZNER
location of substituents. Effect of steric hindrances in the 1H NMR spectra also appears unusually. In the compounds 13c, 14c, and 17c signals of protons of PCH2 fragment are doublets of doublets with coupling constants (EtO)2OP
O
2
JPH = 20.8 and 5JPH 2.2 Hz, but in bis(phosphonate) 18a they form AB-system with the coupling constant JAB = 16.0 Hz. 2JPH and 5JPH coupling constants for both protons are equal, 20.8 and 1.6 Hz respectively.
OEt O
O
(EtO)2OP
SBu
Х 17a−17c
O
OEt
SBu Х 18a−18c
X = CH3 (17a, 18a), CH3OCH2 (17b, 18b), (OEt)2OPCH2 (17c, 18c). Х
(EtO)2OP
O OEt
O
SBu 19a−19c
Х
(EtO)2OP
O
SBu
OEt
O 20a−20c
X = CH3 (19a, 20a), CH3OCH2 (19b, 20b), (OEt)2OPCH2 (19c, 20c).
The effect of steric factors in the spectra of 3,4disubstituted furans 19a–19c and 20a–20c prepared from acrylates 5a–5c appears still more clearly. The signal of the methyl group protons in compounds 19a and 20a is a singlet. Moderate increase in size of substituent in the methoxymethyl derivatives 19b and 20b makes the protons of O–CH2–furan fragment nonequivalent. They form AB-system with the coupling constants 12.2 and 12.4 Hz respectively. In the case of still more sterically hindered molecules of bis(phosphonates) 19c and 20c protons of PCH2 fragment also form AB-systems with the coupling constants 16.6 Hz. In each substance 2JPH coupling constants for both protons are equal. In the compound 19c it is 20.4 Hz, and in phosphonate 20c its value is 24 Hz. Hence, in these substances despite the structure of the alkyl chain protons of PCH2 fragment are located equally with respect to one another and symmetrically with respect to phosphorus. Note also that in both cases far 5JPH and 5 JPP constants do not appear. Unlike that in 3,4-bis(diethoxyphosphorylmethyl)furans 5JPP constant is 3– 6 Hz depending on the nature of substituent in the α-position of the furan ring [5]. Summarizing the presented data, the addition of butanethiol to the double bond of 3-(furyl)-3-(diethoxyphosphoryl)acrylates is not regioselective. Hence, polarity of C=C bond is not the single factor determining the direction of addition. Because in the majority of cases the main reaction product is the compound with the thiol residue at Cα- and the proton
at Cβ-atom of the acrylic fragment, it can be suggested that the overall electron-acceptor effect of the furan ring and the phosphoryl group occurs to be stronger than that of the ester group. The ratio of isomers does not depend on the nature of catalyst. That permits to state that regardless of the use of heterogenic or homogenic catalyst the mechanism of addition is the same. At the same time, the introduction of diethoxyphosphorylmethyl group in the furan ring independent of its location facilitates the addition of butanethiol. Most probably, the reason of this effect is the activation of butanethiol, and not the increase in the polarity of the double bond. The latter factor might cause the variation in the isomer ratio. It is established that 1JPC coupling constant for (O)PCH(furan) and (O)PC(furan)(SBu)-CH2 fragments slightly differs, but in (O)PCH(furan)-CH(SBu) fragment it significantly decreases. It is shown also that the multiplicity of the signal of the carbonyl carbon atom in 3-(furyl)-3-(diethoxyphosphoryl)propionate depends on the location of thiobutyl residue in the side chain. It can be probably used as the criterion for establishing of the type of substitution also in some other phosphonocarboxylates. It is shown that far 5JPP coupling constant between phosphorus atoms of phosphonomethyl and phosphonoalkyl groups is always smaller than between two phosphonomethyl groups. Its value depends on mutual location of phosphonomethyl and phosphonoalkyl
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
ADDITION OF BUTANETHIOL TO ALKYL 3-FURYL-3-(DIETHOXYPHOSPHORYL)ACRYLATES
groups in the furan ring and on the structure of phosphonoalkyl group. When carbon atom is bound simultaneously with phosphorus and sulfur atom 5JPP coupling constant is by ~2 Hz smaller than in the case of location of sulfur atom on the adjacent atom of the side chain. EXPERIMENTAL 1
H, 13C, and 31P NMR spectra were taken on a Bruker DPX-400 spectrometer (400.13 MHz 1H, 161.97 MHz 31P, 100.16 MHz 13C respectively) in CDCl3. Acrylates 1a–6c were synthesized according to [1]. Potassium fluoride on alumina was prepared according to [3]. Addition of butanethiol to 3-(furyl)-3-(diethoxyphosphoryl)acrylates. a. To the solution of 10 mmol of phosphonate in 15 mL of ethanol 50 mmol of butanethiol and 0.7 g of potassium fluoride on alumina were added under intense stirring. The reaction mixture was stirred for 7–8 h. The catalyst was filtered off, and the reaction mixture was poured in 30 mL of water. The solution formed was saturated with sodium chloride and extracted with chloroform (3×15 mL). The extract was washed with NaCl solution, dried over sodium sulfate and filtered through a silica gel layer. Solvent was removed from the filtrate, and the residue was kept in a vacuum (1 mmHg) for 1 h at room temperature. Chromatographing of obtained mixtures of adducts on silica gel led to their decomposition. Therefore these mixtures were studied only spectroscopically. b. To the solution of 10 mmol of bis(phosphonate) in 15 mL of ethanol 50 mmol of butanethiol and 2 drops of 1 N solution of potassium hydroxide in ethanol were added. The reaction mixture was stirred for 3–4 h at room temperature. After that it was poured in 30 mL of water, and the reaction products were isolated as described above. The obtained bis(phosphonates) gradually decomposed while chromatographing on silica gel. Therefore these mixtures were studied only spectroscopically. Ethyl 2-(butylthio)-3-(5-methylfur-2-yl)-3-(diethoxyphosphoryl)propionate (7a) and ethyl 3-(butylthio)3-(5-methylfur-2-yl)-3-(diethoxyphosphoryl)propionate (8a). Yield of adducts 72%, light yellow oil, 7а : 8а ratio 1 : 0.5. 1Н NMR spectrum, δ, ppm: common signals: 0.842 t (СН3-butyl, JHH = 7.2 Hz), 1.093– 1.196 m (СН3-ester), 1.256–1.321 m (СН3-phos-
1153
phonate), 1.398 sextet (СН3–СН2–СН2-butyl, JHH = 7.2 Hz), 1.643 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.670 t (СН2S, JHH = 7.2 Hz), 3.985–4.093 m (СН2ОР), 4.213 br.q (СН2ОС, JHH = 7.2 Hz). 7а: 2.260 s (СН3-furan), 3.736 d.d (РСНА, 2JPH = 20.6 Hz, JАВ = 12.0 Hz), 3.384 d.d (SСНВ, 3JPH = 4.5 Hz, JАВ = 12.0 Hz), 5.931 br.d (Н4-furan, JHH = 3.2 Hz), 6.210 d.d (Н3-furan, JPH = 3.2 Hz, JHH = 3.2 Hz). 8а: 2.225 s (СН3-furan), 2.456 d.d (–СН2–С=О, НА, 3JPH = 7.2 Hz, JАВ = 12.1 Hz), 2.536 d.d (–СН2–С=О, НВ, 3JPH = 7.8 Hz, JАВ = 12.1 Hz), 5.855 br.d (Н4-furan, JHH = 3.2 Hz), 6.110 d.d (Н3-furan, JPH = 3.2 Hz, JHH = 3.2 Hz). 13С NMR spectrum, δС, ppm: common signals: 16.185 d (СН3-phosphonate, 3JPС = 6.3 Hz), 16.247 d (СН3-phosphonate, 3JPС = 6.0 Hz), 16.304 d (СН3-phosphonate, 3JPС = 5.5 Hz), 62.118 d (СН2Оphosphonate, 2JPС = 6.9 Hz), 62.489 d (СН2О-phosphonate, 2JPС = 6.9 Hz), 62.878 d (СН2О-phosphonate, 2 JPС = 7.1 Hz). 7а: 13.514 (СН3-furan), 13.636 (СН3butyl), 14.025 (СН3-ethyl), 21.756 (СН3–СН2-butyl), 30.934 d (SСН, 2JPС = 3.2 Hz), 31.271 (SСН2–СН2butyl), 39.965 d (РСН, 1JPС = 136.7 Hz), 46.582 (SСН2), 61.270 (СН2О-ester), 106.627 (С4-furan), 111.220 d (С3-furan, 3JPС = 7.0 Hz), 145.187 d (С2-furan, 2JPС = 9.3 Hz), 151.806 d (С5-furan, 4JPС = 2.2 Hz), 170.719 (С=О). 8а: 13.455 (СН3-furan), 13.598 (СН3-butyl), 13.925 (СН3-ethyl), 21.968 (СН3–СН2-butyl), 31.271 (SСН2–СН2-butyl), 31.426 (СН2-С=О), 40.331 d (РСS, 1JPС = 146.3 Hz), 46.353 (SСН2), 60.997 (СН2Оester), 106.627 (С4-furan), 109.457 d (С3-furan, 3JPС = 7.0 Hz), 146.538 d (С2-furan, 2JPС = 8.8 Hz), 151.596 d (С5-furan, 4JPС = 2.5 Hz), 170.288 d (С=О, 3JPC = 19.4 Hz). 31Р NMR spectrum, δР, ppm: 22.041 (7а), 22.193 (8а). Ethyl 2-(butylthio)-3-(5-methoxymethylfur-2-yl)3-(diethoxyphosphoryl)propionate (7b) and ethyl 3(butylthio)-3-(5-methoxymethylfur-2-yl)-3-(diethoxyphosphoryl)propionate (8b). Yield of adducts 83%, yellow oil, 7b : 8b ratio 1 : 0.4. 1Н NMR spectrum, δ, ppm: common signals: 0.840 t (СН3-butyl, JHH = 7.2 Hz), 1.148–1.326 m (СН3-ester, СН3-phosphonate), 1.401 sextet (СН3–СН2–СН2 -butyl, JHH = 7.2 Hz), 1.646 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.674 t (СН2S, JHH = 7.2 Hz), 3.999–4.073 m (СН2ОР, СН2ОС=О), 6.289–6.323 m (Н3-furan, Н4-furan). 7b: 3.309 s (СН3О), 3.831 d.d (РСНА, 2JPH = 20.6 Hz, JАВ = 13.8 Hz), 3.876–3.955 m (SСНВ), 4.356 s (ОСН2furan). 8b: 2.473 d.d (–СН2–С=О, НА, 3JPH = 7.6 Hz, JАВ = 12.0 Hz), 2.533 d.d (–СН2–С=О, НВ, 3JPH = 7.0 Hz, JАВ = 12.0 Hz), 3.295 s (СН3О), 4.322 s
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
1154
PEVZNER
(ОСН2-furan). 13С NMR spectrum, δС, ppm: common signals: 13.514 (СН3-butyl), 16.196 d (СН3-phosphonate, 3 JPС = 5.9 Hz), 16.253 d (СН3-phosphonate, 3JPС = 5.4 Hz), 62.289 d (СН2О-phosphonate, 2JPС = 7.2 Hz), 62.610 d (СН2О-phosphonate, 2JPС = 6.8 Hz), 62.833 d (СН2О-phosphonate, 2JPС = 6.7 Hz), 62.978 d (СН2Оphosphonate, 2JPС = 6.7 Hz). 7b: 14.018 (СН3-ethyl), 21.773 (СН3–СН2-butyl), 30.933 d (SСН, 2JPС = 2.8 Hz), 31.274 (SСН2–СН2-butyl), 40.040 d (РСН, 1 JPС = 136.3 Hz), 46.301 (SСН2), 57.380 (СН3О), 61.335 (СН2О-ester), 66.168 (ОСН2-furan), 110.533 (С4-furan), 111.105 d (С3-furan, 3JPС = 6.8 Hz), 147.622 d (С2-furan, 2JPС = 8.7 Hz), 151.532 d (С5-furan, 4JPС = 2.1 Hz), 170.593 (С=О). 8b: 13.911 (СН3-ethyl), 21.963 (СН3–СН2-butyl), 30.919 (СН2– С=О), 31.447 (SСН2–СН2-butyl), 40.417 d (РСS, 1JPС = 145.2 Hz), 46.481 (SСН2), 57.493 (СН3О), 61.114 (СН2О-ester), 66.085 (ОСН2-furan), 110.423 (С4-furan), 109.364 d (С3-furan, 3JPС = 6.8 Hz), 148.899 d (С2-furan, 2JPС = 8.3 Hz), 151.272 d (С5-furan, 4JPС = 2.3 Hz), 170.147 d (С=О, 3JPC = 19.1 Hz). 31Р NMR spectrum, δР, ppm: 21.656 (7b), 21.769 (8b). Ethyl 2-(butylthio)-3-[5-(diethoxyphosphorylmethyl)fur-2-yl]-3-(diethoxyphosphoryl)propionate (7c) and ethyl 3-(butylthio)-3-[5-(diethoxyphosphorylmethyl)fur-2-yl]--3-(diethoxyphosphoryl)propionate (8c). Yield of adducts 92%, light brown oil, 7c : 8c ratio 1 : 0.4. 1Н NMR spectrum, δ, ppm: common signals: 0.843 t (СН3-butyl, JHH = 7.2 Hz), 1.187–1.344 m (СН3-ester, СН3-phosphonate), 1.373– 1.461 m (СН3–СН2-butyl), 4.011–4.118 m (СН2ОР), 4.218 q (СН2ОС, JHH = 7.2 Hz). 7с: 1.647 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.675 t (СН2S, JHH = 7.2 Hz), 3.214 d (СН2Р, JPH = 20.8 Hz), 3.718– 3.977 m (Р–СН–CHS–); 6.248 d.d (Н3,4-furan, JHH = 3.7 Hz, JPH = 3.7 Hz), 6.305 d.d (Н3,4-furan, JHH = 3.7 Hz, JPH = 3.7 Hz). 8с: 1.584 quintet (СН2–СН2– СН2S-butyl, JHH = 7.2 Hz), 2.456 d.d (–СН2–С=О, НА, 3 JPH = 7.2 Hz, JАВ = 12.0 Hz), 2.526 d.d (–СН2–С=О, НВ, 3JPH = 7.2 Hz, JАВ = 12.0 Hz), 2.737 t (СН2S, JHH = 7.2 Hz), 3.177 d (СН2Р JPH = 20.8 Hz); 6.175 d.d (Н3,4-furan, JHH = 3.0 Hz, JPH = 3.0 Hz), 6.212 d.d (Н3,4-furan, JHH = 3.0 Hz, JPH = 3.0 Hz). 13С NMR spectrum, δС, ppm: common signals: 16.343 d (СН3phosphonate, 3JPС = 5.5 Hz), 16.398 d (СН3-phosphonate, 3JPС = 5.5 Hz), 62.190-62.391 br.s (СН2ОР), 62.534 d (СН2ОР, 2JPС = 7.0 Hz), 63.044 d (СН2ОР, 2 JPС = 6.7 Hz), 63.583 d (СН2ОР, 2JPС = 5.7 Hz); 109.403 br.d (JPH = 7.1 Hz), 111.642 br.s (С3, С4furan); 145.483 d.d (2JPС = 8.4 Hz, 4JPС = 2.6 Hz),
146.631 d.d (2JPС = 8.9 Hz, 4JPС = 2.4 Hz) (С2,5-furan). 7с: 13.655 (СН3-butyl), 14.147 (СН3-ethyl), 21.778 (СН3–СН2-butyl), 30.879 br.s (SCH), 31.276 (СН2– СН2–СН2S-butyl), 39.875 d (РСН-, 1JPС = 136.9 Hz), 61.361 (СН2О-ester), 170.845 (С=О). 8с: 13.611 (СН3butyl), 13.969 (СН3-ethyl), 21.971 (СН3–СН2-butyl), 30.879 br.s (–CH2–С=О), 31.453 (СН2–СН2–СН2Sbutyl), 40.335 d (РСS-, 1JPС = 146.3 Hz), 61.131 (СН2О-ester), 170.194 d (С=О, 3JPС = 19.1 Hz). 31Р NMR spectrum, δР, ppm: 22.715 d (Р5, 6JPР = 6.3 Hz), 21.715 d (Р2, 6JPР = 6.3 Hz) (7с), 22.665 d (Р5, 6JPР = 7.1 Hz), 21.815 d (Р2, 6JPР = 7.1 Hz) (8с). Ethyl 3-(butylthio)-3-[(4-methoxymethyl)-5-methylfur-2-yl]-3-(diethoxyphosphoryl)propionate (11). Yield 88%, dark yellow oil. 1Н NMR spectrum, δ, ppm: 0.938 t (СН3-butyl, JHH = 7.2 Hz), 1.216–1.352 m (СН3-ester, СН3-phosphonate), 1.428 sextet (СН3– СН2-butyl, JHH = 7.2 Hz), 1.674 quintet (СН2–СН2– СН2S-butyl, JHH = 7.2 Hz), 2.250 d (СН3-furan, 6JPH = 2.0 Hz, minor conformer) 2.283 d (СН3-furan, 6JPH = 2.0 Hz, main conformer), 2.486 d.d (–СН2–СО, НА, 3 JPH = 1.4 Hz, JАВ = 12.4 Hz, main conformer), 2.544 d.d (–СН2–СО, НВ, 3JPH = 8.0 Hz, JАВ = 12.4 Hz, main conformer), 2.539 d.d (–СН2–СО, НА, 3JPH = 2.8 Hz, JАВ = 8.0 Hz, minor conformer), 2.475–2.516 m (strongly overlaps with the signal of main conformer, –СН2–СО, НВ, minor conformer), 2.874 t (СН2Sbutyl, JHH = 7.2 Hz), 3.253 s (СН3О, minor conformer), 3.298 s (СН3О, man conformer), 4.023–4.191 m (СН2О-ester, СН2О-phosphonte), 4.247 s (ОСН2-furan), 6.208 d (Н4-furan, 4JРH = 3.6 Hz, minor conformer), 6.296 d (Н4-furan, 4JРH = 3.2 Hz, main conformer). 13С NMR spectrum, δС, ppm: 11.739 (СН3-furan), 13.683 (СН3-butyl), 14.066 (СН3-ethyl, minor conformer), 14.117 (СН3-ethyl, main conformer), 16.290 d (СН3phosphonate, 3JPС = 5.8 Hz), 21.655 (СН3–СН2-butyl), 30.921 (–CH2–С=О), 31.311(СН2–СН2–СН2S-butyl), 40.232 d (РСS-, 1JPС = 143.1 Hz), 57.262 (СН3О), 61.281 (СН2О-ester), 62.299 d (СН2ОР, 2JPС = 5.9 Hz), 65.780 (ОСН2-furan), 112.420 (С3-furan), 115.300 (С4-furan), 141.866 d (С2-furan, 2JPС = 11.3 Hz), 151.733 (С5-furan), 170.308 d (С=О, 3JPC = 13.9 Hz). 31 Р NMR spectrum, δР, ppm: 21.984 (main conformer), 22.084 (minor conformer). Conformer ratio 1 : 0.5. Ethyl 2-(butylthio)-3-[(4-diethoxyphosphorylmethyl)-5-methylfur-2-yl]-3-(diethoxyphosphoryl)propionate (12) and ethyl 3-(butylthio)-3-[(4diethoxyphosphorylmethyl)-5-methylfur-2-yl]-3-(diethoxyphosphoryl)propionate (12a). Yield 72%, brown oil, 12 : 12а ratio 1 : 0.5. 1Н NMR spectrum, δ,
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
ADDITION OF BUTANETHIOL TO ALKYL 3-FURYL-3-(DIETHOXYPHOSPHORYL)ACRYLATES
ppm: common signals: 1.293–1.306 m (СН3-ester, СН3phosphonate), 3.941–4.049 m (СН2ОР), 4.192 q (СН2О-ester, JHH = 7.2 Hz), 4.198 q (СН2О-ester, JHH = 7.2 Hz). 12: 0.829 t (СН3-butyl, JHH = 7.2 Hz), 1.426 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.563 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.213 d.d (СН3-furan, 5JPH = 3.2 Hz 6JPH = 2.0 Hz), 2.251 t (СН2S-butyl, JHH = 7.2 Hz), 2.810 d (РСН2, JРH = 20.4 Hz), 3.745 d.d (РСНА, 2JРH = 19.2 Hz, JАВ = 11.6 Hz, main conformer), 3.821 d.d (–SCHВ, 2JРH = 5.6 Hz, JАВ = 11.6 Hz, main conformer), 3.693 d.d (РСНА, 2JРH = 20.2 Hz, JАВ = 11.8 Hz, minor conformer), 3.757– 3.861 m (–SCHВ, minor conformer), 6.263 d (Н3-furan, JPH = 3.2 Hz). 12а: 0.876 t (СН3-butyl, JHH = 7.2 Hz), 1.312 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.624 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.176 d.d (СН3-furan, 5JPH = 3.2 Hz, 6JPH = 2.4 Hz), 2.425 t (СН2S-butyl, JHH = 7.2 Hz), 2.454 d.d (–СН2–СО, НА, 3JPH = 7.4 Hz, JАВ = 12.2 Hz, main conformer), 2.512 d.d (–СН2–СО, НВ, 3JPH = 7.4 Hz, JАВ = 12.2 Hz, main conformer), 2.434 d.d (–СН2–СО, НА, 3JPH = 20.8 Hz, JАВ = 12.2 Hz, minor conformer1), 2.514 d.d (–СН2–СО, НВ, 3JPH = 7.4 Hz, JАВ = 12.2 Hz, minor conformer 1), 2.695 d (–СН2–СО, НА, 3JPH = 0 Hz, JАВ = 7.2 Hz, minor conformer 2), 2.697 d.d (–СН2–СО, НВ, 3JPH = 5.0 Hz, JАВ = 7.2 Hz, minor conformer 2), 2.753 d (РСН2, JРH = 20.0 Hz), 6.160 d (Н3-furan, JPH = 3.2 Hz). 13С NMR spectrum, δС, ppm: common signals: 16.218 d (СН3-phosphonate, 3JPС = 5.0 Hz), 16.266 d (СН3-phosphonate, 3JPС = 4.9 Hz), 16.443 d (СН3-phosphonate, 3JPС = 5.6 Hz), 61.901 d (СН2ОР, 2JPС = 6.8 Hz), 62.018 d (СН2ОР, 2JPС = 6.4 Hz), 62.083 d (СН2ОР, 2JPС = 6.6 Hz), 62.506 d (СН2ОР, 2JPС = 6.8 Hz), 62.897 d (СН2ОР, 2JPС = 6.8 Hz). 12: 11.616 (СН3-furan), 13.525 (СН3-butyl), 14.024 (СН3-ester), 21.747 (СН3–СН2-butyl), 23.504 d (РСН2, 1JPС = 143.0 Hz), 30.864 (СН2–СН2–СН2Sbutyl), 31.451(SСН), 39.840 d (РСН–, 1JPС = 136.7 Hz), 46.415 (СН2S-butyl), 61.286 (СН2О-ester), 110.074 d (С4-furan, 2JPС = 11.5 Hz), 113.091 br.d (С3-furan, 3 JPС = 9.8 Hz), 144.602 d (С2-furan, 2JPС = 9.2 Hz), 149.040 d.d (С5-furan, 3JPС = 11.5 Hz, 4JPС = 1.9 Hz), 170.649 (С=О). 12а: 11.499 (СН3-furan), 13.588 (СН3butyl), 13.935 (СН3-ester), 21.942 (СН3–СН2-butyl), 23.354 d (РСН2, 1JPС = 143.6 Hz), 30.864 (СН2–СН2– СН2S-butyl), 31.246 (–CH2–С=О), 40.246 d (РСS-, 1 JPС = 145.6 Hz), 46.286 (СН2S-butyl), 61.020 (СН2Оester), 110.184 d (С4-furan, 2JPС = 10.4 Hz), 111.397 br.d (С3-furan, 3JPС = 6.8 Hz), 145.995 d (С2-furan, 2 JPС = 8.7 Hz), 148.800 d.d (С5-furan, 3JPС = 11.0 Hz, 4 JPС = 2.6 Hz), 170.649 d (С=О, 3JPC = 19.1 Hz). 31Р
1155
NMR spectrum, δР, ppm: 26.393 (Р4), 21.785 (Р2) (12), 26.340 (Р4), 21.914 (Р2) (12а). Ethyl 2-(butylthio)-3-(3-methylfur-2-yl)-3-(diethoxyphosphoryl)propionate (13a) and ethyl 3-(butylthio)3-(3-methylfur-2-yl)-3-(diethoxyphosphoryl)propionate (14a). Yield 75%, yellowish brown, 13а : 14a ratio 1 : 0.4. 1Н NMR spectrum, δ, ppm: common signals: 0.910 t (СН3-butyl, JHH = 7.2 Hz), 1.175– 1.388 m (СН3-ester, СН3-phosphonate), 1.400 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.646 quintet (СН2– СН2–СН2S-butyl, JHH = 7.2 Hz), 2.673 t (СН2S-butyl, JHH = 7.2 Hz), 3.934–4.063 m (СН2ОР), 4.203–4.275 m (СН2ОС). 13а: 2.039 d (СН3-furan, JPН = 3.2 Hz), 3.743 d.d (РСНА, 2JРH = 20.4 Hz, JАВ = 12.0 Hz), 3.851 d.d (–SCHВ, 2JРH = 8.0 Hz, JАВ = 12.0 Hz), 6.134 br.s (Н4-furan), 7.312 br.s (Н5-furan). 14а: 1.987 d (СН3-furan, JPН = 3.2 Hz), 2.397 d (–СН2–СО, НА, JАВ = 12.4 Hz, main conformer), 2.487 d.d (–СН2–СО, НВ, 3JPH = 1.6 Hz, JАВ = 12.4 Hz, main conformer), 2.386 d.d (–СН2–СО, НА, 3JPH = 14.8 Hz, JАВ = 12.4 Hz, minor conformer), 2.496 d.d (–СН2–СО, НВ, 3JPH = 14.6 Hz, JАВ = 12.4 Hz, minor conformer), 6.220 br.s (Н4-furan), 7.248 br.s (Н5-furan). 13С NMR spectrum, δС, ppm: common signals: 16.246 d (СН3-phosphonate, 3JPС = 5.5 Hz), 16.301 d (СН3-phosphonate, 3 JPС = 5.5 Hz), 61.996 d (СН2ОР, 2JPС = 6.9 Hz), 62.401 d (СН2ОР, 2JPС = 7.0 Hz), 62.550 d (СН2ОР, 2 JPС = 6.9 Hz), 62.710 d (СН2ОР, 2JPС = 6.8 Hz). 13а: 10.087 (СН3-furan), 13.656 (СН3-butyl), 14.057 (СН3ester), 21.757 (СН3–СН2-butyl), 30.959 br.s (SСН), 31.272 (СН2–СН2–СН2S-butyl), 38.077 d (РСН-, 1 JPС = 136.7 Hz), 46.043 (СН2S-butyl), 61.326 (СН2Оester), 113.185 (С4-furan), 119.609 d (С3-furan, 3JPС = 8.4 Hz), 141.354 (С5-furan), 142.634 d (С2-furan, 2 JPС = 12.0 Hz ), 170. 879 (С=О). 14а: 9.834 (СН3furan), 13.520 (СН3-butyl), 13.912 (СН3-ester), 21.974 (СН3–СН2-butyl), 30.788 (–CH2–С=О), 31.528 (СН2– СН2–СН2S-butyl), 38.612 d (РСS-, 1JPС = 146.8 Hz), 45.882 (СН2S-butyl), 61.012 (СН2О-ester), 113.185 (С4-furan), 118.014 d (С3-furan, 3JPС = 8.3 Hz), 141.325 (С5-furan), 143.793 d (С2-furan, 2JPС = 10.8 Hz), 170.424 (С=О, 3JPC = 20.6 Hz). 31Р NMR spectrum, δР, ppm.: 22.171 (13а), 22.854 (14а). Ethyl 2-(butylthio)-3-(3-methoxymethylfur-2-yl)3-(diethoxyphosphoryl)propionate (13b) and ethyl 3-(butylthio)-3-(3-methoxymethylfur-2-yl)-3-(diethoxyphosphoryl)propionate (14b). Yield 75%, yellowish brown oil, 13b : 14b ratio 1 : 0.4. 1Н NMR spectrum, δ, ppm: common signals: 0.925 t (СН3butyl, JHH = 7.2 Hz), 1.193–1.370 m (СН3-ester, СН3-
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
1156
PEVZNER
phosphonate), 1.416 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.661 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.690 t (СН2S-butyl, JHH = 7.2 Hz), 3.924– 4.053 m (СН2ОР), 4.122 q (СН2ОС, JHH = 7.2 Hz), 4.351 s (ОСН2-furan). 13b: 3.364 s (СН3О), 3.810– 3.975 m (РСНА–SCHВ, main conformer, SCHВ, minor conformer), 3.851 d.d (РСНА 2JPH = 21.0 Hz, JАВ = 12.0 Hz, minor conformer), 6.422 br.s (Н4-furan), 7.396 br.s (Н5-furan). 14b: 3.342 s (СН3О), 2.462 d.d (–СН2–СО, НА, 3JPH = 1.2 Hz, JАВ = 12.4 Hz, main conformer), 2.500 d (СН2-СО, НВ, JАВ = 12.4 Hz, main conformer), 2.424 d.d (–СН2–СО, НА, 3JPH = 7.2 Hz, JАВ = 12.4 Hz, minor conformer), 2.512 d.d (– СН2–СО, НВ, 3JPH = 14.4 Hz, JАВ = 12.4 Hz, minor conformer), 6.353 br.s (Н4-furan), 7.332 br.s (Н5furan). 13С NMR spectrum, δС, ppm: common signals: 13.667 (СН3-butyl), 14.193 (СН3-ester), 16.828 br.s (СН3-phosphonate), 21.789 (СН3–СН2-butyl), 31.290 (СН2–СН2–СН2S-butyl), 46.031 (СН2S-butyl), 57.983 (СН3О), 62.536 d (СН2ОР, 2JPС = 6.6 Hz), 62.851 d (СН2ОР, 2JPС = 5.9 Hz), 111.494 (С4-furan), 121.752 d (С3-furan, 3JPС = 8.3 Hz), 141.977 (С5-furan), 144.447 d (С2-furan, 3JPС = 12.2 Hz). 13b: 30.914 d (SСН, 2 JPС = 5.2 Hz ), 38.401 d (РСН- 1JPС = 136.1 Hz), 60.408 (СН2О-ester), 65.694 (ОСН2-furan), 170.813 (С=О). 14b: 31.027 (–CH2–С=О), 38.856 d (РСS-, 1 JPС = 146.4 Hz), 61.061 (СН2О-ester), 65.533 (ОСН2furan), 170.049 d (С=О, 3JPC = 20.7 Hz). 31Р NMR spectrum, δР, ppm.: 21.691 (13b), 22.295 (14b). Ethyl 2-(butylthio)-3-[3-(diethoxyphosphorylmethyl)fur-2-yl]-3-(diethoxyphosphoryl)propionate (13c) and ethyl 3-(butylthio)-3-[3-(diethoxyphosphorylmethyl)fur-2-yl]-3-(diethoxyphosphoryl)propionate (14c). Yield 89%, brown, syrup, 13с : 14с ratio 1 : 0.3. 1Н NMR spectrum, δ, ppm: common signals: 0.807 t (СН3-butyl, JHH = 7.2 Hz), 1.113– 1.307 m (СН3-ester, СН3-phosphonate), 1.390 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.613 quintet (СН2– СН2–СН2S-butyl, JHH = 7.2 Hz), 2.640 t (СН2S-butyl, JHH = 7.2 Hz), 4.028–4.110 m (СН2ОР), 4.177–4.230 m (СН2ОС), 6.510 br.s (Н4-furan), 7.340 br.s (Н5furan). 13с: 2.951 d.d (РСН2, 2JPH = 20.8 Hz, 5JPH = 2.2 Hz), 3.833–3.997 m (РСНА–SCHВ). 14с: 2.407 d.d (–СН2–СО, НА, 3JPH = 7.2 Hz, JАВ = 12.4 Hz, main conformer), 2.479 d.d (–СН2–СО, НВ, 3JPH = 6.8 Hz, JАВ = 12.4 Hz, main conformer), 2.380–2.517 m (–СН2–СО, minor conformer) 2.994 d.d (РСН2, 2JPH = 20.8 Hz, 5JPH = 2.0 Hz). 13С NMR spectrum, δС, ppm: common signals: 13.519 (СН3-butyl), 16.090 d (СН3phosphonate, 3JPС = 5.5 Hz), 16.300 d (СН3-phospho-
nate, 3JPС = 4.9 Hz), 16.416 d (СН3-phosphonate, JPС = 5.5 Hz), 21.661 (СН3–СН2-butyl), 22.662 d (РСН2, 1JPС = 144.3 Hz, 31.240 (СН2–СН2–СН2Sbutyl), 46.408 (СН2S-butyl), 61.339 (СН2О-ester), 62.049 d (СН2ОР, 2JPС = 6.7 Hz), 62.112 d (СН2ОР, 2 JPС = 5.9 Hz), 62.482 d (СН2ОР, 2JPС = 6.8 Hz), 62.786 d (СН2ОР, 2JPС = 7.1 Hz), 112.742 (С4-furan), 113.423 d.d (С3-furan, 2JPС = 8.0 Hz, 3JPС = 8.0 Hz), 141.867 (С5-furan), 144.415 d.d (С2-furan, 2JPС = 11.8 Hz, 3JPС = 11.8 Hz). 13с: 14.047 (СН3-ester), 30.949 br.s (SСН), 38.300 d (РСН- , 1JPС = 136.0 Hz), 170.839 (С=О). 14с: 14.225 (СН3-ester), 30.858 (–CH2–С=О), 38.343 d.d (РСS-, 1JPС = 146.4 Hz), 170.531 d (С=О, 3JPC = 18.1 Hz). 31Р NMR spectrum, δР, ppm.: 25.962 d (Р3, 5JPР = 9.6 Hz), 21.648 d (Р2, 5 JPР = 9.6 Hz) (13с), 26.232 d (Р3, 5JPР = 7.7 Hz), 22.488 d (Р2, 5JPР = 7.7 Hz) (14с). 3
Ethyl 2-(butylthio)-3-(5-methylfur-3-yl)-3-(diethoxyphosphoryl)propionate (15) and ethyl 3-(butylthio)3-(5-methylfur-3-yl)-3-(diethoxyphosphoryl)propionate (15a). Yield 72%, light brown oil, 15 : 15а ratio 1 : 0.6. 1Н NMR spectrum, δ, ppm: common signals: 0.787 t (СН3-butyl, JHH = 7.2 Hz), 1.048– 1.163 m (СН3-ester), 1.200–1.276 m (СН3-phosphonate), 1.349 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.594 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.638 t (СН2S-butyl, JHH = 7.2 Hz), 3.815–4.014 m (СН2ОР), 4.116–4.190 m (СН2ОС), 5.993 (Н4-furan). 15: 2.200 s (СН3-furan), 3.540 d.d (РСНА-, 2JPН = 20.6 Hz, JАВ = 10.8 Hz, main conformer), 3.720 d.d (–SCHВ, 3JPН = 8.4 Hz, JАВ = 10.8 Hz, main conformer), 3.429 d.d (РСНА-, 2JPН = 20.0 Hz, JАВ = 11.2 Hz, minor conformer), 3.683 d.d (–SCHВ, 3JPН = 15.6 Hz, JАВ = 11.2 Hz, minor conformer), 7.212 d (Н2-furan, JPН = 3.6 Hz). 15а: 2.156 s (СН3-furan), 2.376 d (–СН2–СО, НА, JАВ = 12.4 Hz, main conformer), 2.486 d.d (–СН2–СО, НВ, 3JPH = 1.8 Hz, JАВ = 12.4 Hz, main conformer), 2.376 d.d (–СН2–СО, НА, 3JPH = 14.6 Hz, JАВ = 12.4 Hz, minor conformer), 2.468 d.d (–СН2–СО, НВ, 3JPH = 14.6 Hz, JАВ = 12.4 Hz, minor conformer), 7.142 d (Н2-furan, JPН = 3.6 Hz). 13С NMR spectrum, δС, ppm: common signals: 13.578 (СН3-butyl), 16.164 br.s (СН3-phosphonate). 15: 13.436 (СН3-furan), 14.004 (СН3-ester), 21.751 (СН3– СН2-butyl), 30.806 d (SСН, 2JPС = 5.1 Hz), 31.216 (СН2–СН2–СН2S-butyl), 36.318 d (РСН-, 1JPС = 138.2 Hz), 46.765 (СН2S-butyl), 61.115 (СН2О-ester), 62.138 d (СН2ОР, 2JPС = 7.2 Hz), 62.981 d (СН2ОР, 2 JPС = 6.7 Hz), 107.599 d (С4-furan, 3JPС = 3.2 Hz), 117.448 d (С3-furan, 2JPС = 7.9 Hz), 140.206 d
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
ADDITION OF BUTANETHIOL TO ALKYL 3-FURYL-3-(DIETHOXYPHOSPHORYL)ACRYLATES
(С2-furan, 3JPС = 11.0 Hz), 152.189 (С5-furan), 171.011 d (С=О, 3JPC = 2.3 Hz). 15а: 13.396 (СН3-furan), 13.823 (СН3-ester), 21.907 (СН3–СН2-butyl), 30.944 (–CH2–С=О), 31.441(СН2–СН2–СН2S-butyl), 37.087 d (РСS–, 1JPС = 146.1 Hz), 60.922 (СН2О-ester), 61.875 d (СН2ОР, 2JPС = 7.1 Hz), 62.792 d (СН2ОР, 2 JPС = 6.9 Hz), 107.217 d (С4-furan, 3JPС = 3.1 Hz), 119.231 d (С3-furan, 2JPС = 7.1 Hz), 139.412 d (С2-furan, 3JPС = 10.4 Hz), 152.189 (С5-furan), 170.389 d (С=О, 3JPC = 18.9 Hz). 31Р NMR spectrum, δР, ppm: 24.651 (15), 24.559 (15а). Ethyl 2-(butylthio)-3-(5-methoxymethylfur-3-yl)3-(diethoxyphosphoryl)propionate (9) and ethyl 3-(butylthio)-3-(5-methoxymethylfur-3-yl)-3-(diethoxyphosphoryl)propionate (9a). Yield 72%, yellowish brown oil, 9а : 9 ratio 1 : 0.6. 1Н NMR spectrum, δ, ppm: common signals: 0.888 t (СН3-butyl, JHH = 7.2 Hz), 1.084–1.321 m (СН3-ester, СН3-phosphonate), 1.398 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.625 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.651 t (СН2S-butyl, JHH = 7.2 Hz), 3.966–4.225 m (СН2ОР, СН2ОС), 6.373 s (Н4-furan), 7.422 s (Н2furan). 9а: 3.293 s (СН3О), 3.618 d.d (РСНА-, 2JPН = 20.6 Hz, JАВ = 10.8 Hz, main conformer), 3.746 d.d (–SCHВ, 3JPН = 18.2 Hz, JАВ = 10.8 Hz, main conformer), 3.481 d.d (РСНА-, 2JPН = 20.0 Hz, JАВ = 10.8 Hz, minor conformer), 3.751 d (–SCHВ, JАВ = 10.8 Hz, minor conformer), 4.338 s (ОСН2-furan). 9: 2.402 d.d (–СН2–СО, НА, 3JPH = 12.2 Hz, JАВ = 7.5 Hz, main conformer 1), 2.492 d.d (–СН2–СО, НВ, 3JPH = 18.8 Hz, JАВ = 7.5 Hz, main conformer 1), 2.405 d.d (–СН2–СО, НА, 3JPH = 12.0 Hz, JАВ = 8.0 Hz, main conformer 2), 2.487 d.d (–СН2–СО, НВ, 3JPH = 5.6 Hz, JАВ = 8.0 Hz, main conformer 2), 3.264 s (СН3О), 4.294 s (ОСН2-furan). 13С NMR spectrum, δС, ppm: common signals: 16.083 d (СН3-phosphonate, 3JPС = 6.6 Hz), 16.238 d (СН3-phosphonate, 3JPС = 5.9 Hz), 57.555 (СН3О), 62.026 d (СН2ОР, 2JPС = 6.9 Hz), 62.244 d (СН2ОР, 2JPС = 7.1 Hz), 62.817 d (СН2ОР, 2 JPС = 6.8 Hz), 63.067 d (СН2ОР, 2JPС = 6.7 Hz), 63.545 d (СН2ОР, 2JPС = 5.7 Hz). 9а: 13.632(СН3butyl), 14.048 (СН3-ester), 21.782 (СН3–СН2-butyl), 30.820 d (SСН, 2JPС = 6.0 Hz), 31.267 (СН2–СН2– СН2S-butyl), 36.176 d (РСН- , 1JPС = 138.4 Hz), 46.672 (СН2S-butyl), 61.272 (СН2О-ester), 66.324 (ОСН2furan), 111.462 d (С4-furan, 3JPС = 3.4 Hz), 117.563 d (С3-furan, 2JPС = 7.8 Hz), 142.229 d (С2-furan, 3JPС = 10.7 Hz), 151.668 (С5-furan), 170.382 d (С=О, 3JPC = 2.1 Hz). 9: 13.486 (СН3-butyl), 13.884 (СН3-ester), 21.948 (СН3–СН2-butyl), 30.967 (–CH2–С=О), 31.525
1157
(СН2–СН2–СН2S-butyl), 37.031 d (РСS-, 1JPС = 146.4 Hz), 47.600 (СН2S-butyl), 61.071 (СН2О-ester), 66.191 (ОСН2-furan), 110.960 d (С4-furan, 3JPС = 3.4 Hz), 119.333 d (С3-furan, 2JPС = 6.9 Hz), 141.499 d (С2-furan, 3JPС = 10.1 Hz), 151.760 (С5-furan), 170.369 d (С=О, 3JPC = 18.7 Hz. 31Р NMR spectrum, δР, ppm: 24.358 br.s. Ethyl 2-(butylthio)-3-[5-(diethoxyphosphorylmethyl)fur-3-yl]-3-(diethoxyphosphoryl)propionate (16) and ethyl 3-(butylthio)-3-[5-(diethoxyphosphorylmethyl)fur-3-yl]-3-(diethoxyphosphoryl)propionate (16a). Yield 83%, brown syrup, 16 : 16а ratio 1 : 0.3. 1Н NMR spectrum, δ, ppm: common signals: 0.839 t (СН3-butyl, JHH = 7.2 Hz), 1.142–1.321 m (СН3-ester, СН3-phosphonate), 1.397sextet (СН3–СН2butyl, JHH = 7.2 Hz), 1.644 quintet (СН2–СН2–СН2Sbutyl, JHH = 7.2 Hz), 2.672 t (СН2S-butyl, JHH = 7.2 Hz), 4.010–4.150 m (СН2ОР), 4.219 q (СН2ОС, JHH = 7.2 Hz). 16: 3.211 d (РСН2, JРH = 20.4 Hz), 3.619 d.d (РСНА-, 2JPН = 20.8 Hz, JАВ = 11.2 Hz, main conformer), 3.773 d.d (–SCHВ, 3JPН = 4.4 Hz, JАВ = 11.2 Hz, main conformer), 3.481 d (РСНА-, 2JPН = 20.0 Hz, JАВ = 10.6 Hz, minor conformer), 3.751 d.d (–SCHВ, 3JPН = 7.2 Hz, JАВ = 10.6 Hz, minor conformer), 6.311 d (Н4-furan, JР5H = 3.2 Hz), 7.356 br.s (Н2furan). 16а: 2.412 d.d (–СН2–СО, НА, 3JPH = 0.8 Hz, JАВ = 12.2 Hz, main conformer), 2.524 d.d (–СН2–СО, НВ, 3JPH = 1.8 Hz, JАВ = 12.2 Hz, main conformer), 2.423 d.d (–СН2–СО, НА, 3JPH = 14.8 Hz, JАВ = 12.4 Hz, minor conformer), 2.511 d.d (–СН2–СО, НВ, 3 JPH = 14.8 Hz, JАВ = 12.4 Hz, minor conformer), 3.192 d (РСН2, JРH = 20.8 Hz), 6.294 d (Н4-furan, JР5H = 3.2 Hz), 7.229 br.s (Н2-furan). 13С NMR spectrum, δС, ppm: common signals: 13.532 (СН3-butyl), 14.077 (СН3-ester), 16.285 d (СН3-phosphonate, 3 JPС = 6.3 Hz), 16.382 d (СН3-phosphonate, 3JPС = 5.8 Hz), 31.274 (СН2–СН2–СН2S-butyl), 61.296 (СН2О-ester), 62.293 d (СН2ОР, 2JPС = 6.5 Hz), 62.348 d (СН2ОР, 2JPС = 4.9 Hz), 63.094 d (СН2ОР, 2 JPС = 6.8 Hz). 16: 21.839 (СН3–СН2-butyl), 26.893 d (РСН2-, 1JPС = 142.3 Hz), 30.826 d (SСН, 2JPС = 2.8 Hz), 36.279 d (РСН-, 1JPС = 138.4 Hz), 46.655 (СН2S-butyl), 110.337 d.d (С4-furan, 3JP5С = 6.3 Hz, 3 JP3С = 3.4 Hz), 118.156 d.d (С3-furan, 2JP3С = 7.7 Hz, 4 JP5С = 1.3 Hz), 141.388 d.d (С2-furan, 3JP3С = 7.5 Hz, 4 JP5С = 2.5 Hz), 145.961 d (С5-furan, 2JP5С = 9.3 Hz), 170.987 d (С=О, 3JPС = 2.8 Hz). 16а: 21.968 (СН3– СН2-butyl), 26.750 d (РСН2-, 1JPС = 142.4 Hz), 30.985 (–CH2–С=О), 37.111 d (РСS-, 1JPС = 146.5 Hz), 47.621 (СН2S-butyl), 110.337 d.d (С4-furan, 3JP5С =
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
1158
PEVZNER
6.3 Hz, 3JP3С = 3.4 Hz), 118.156 d.d (С3-furan, 2JP3С = 7.7 Hz, 4JP5С = 1.3 Hz), 141.388 d.d (С2-furan, 3JP3С = 7.5 Hz, 4JP5С = 2.5 Hz), 145.961 d (С5-furan, 2JP5С = 9.3 Hz), 170.344 d (С=О, 3JPС = 18.7 Hz). 31Р NMR spectrum, δР, ppm: 24.331s (Р3), 22.621 br.s (Р5) (16); 24.215 s (Р3), 22.621 br.s (Р5), (16а). Ethyl 2-(butylthio)-3-(2-methylfur-3-yl)-3-(diethoxyphosphoryl)propionate (17a) and ethyl 3-(butylthio)-3-(2-methylfur-3-yl)-3-(diethoxyphosphoryl)propionate (18a). Yield of adducts 82%, yellow oil, 17а : 8а ratio 1 : 0.6. 1Н NMR spectrum, δ, ppm: common signals: 0.904 t (СН3-butyl, JHH = 7.2 Hz), 1.256–1.328 m (СН3-ester, СН3-phosphonate), 1.395 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.640 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.668 t (СН2Sbutyl, JHH = 7.2 Hz), 4.073–4.152 m (СН2ОР), 4.183– 4.265 m (СН2ОС). 17а: 2.274 d (СН3-furan, JРH = 2.8 Hz), 3.552 d.d (РСНА-, 2JPН = 20.8 Hz, JАВ = 11.6 Hz, main conformer), 3.800 d.d (–SCHВ, 3JPН = 6.0 Hz, JАВ = 11.6 Hz, main conformer), 3.420 d.d (РСНА-, 2 JPН = 19.6 Hz, JАВ = 11.6 Hz, minor conformer), 3.768 d (–SCHВ, JАВ = 11.6 Hz, minor conformer), 6.316 br.s (Н4-furan), 7.429 d (Н5-furan, JHH = 2.8 Hz). 18а: 2.227 d (СН3-furan, JРH = 2.8 Hz), 2.361 d.d (–СН2–СО, НА, 3JPH = 1.0 Hz, JАВ = 12.0 Hz, main conformer), 2.497 d.d (–СН2–СО, НВ, 3JPH = 2.0 Hz, JАВ = 12.0 Hz, main conformer), 2.351 d.d (–СН2–СО, НА, 3JPH = 14.8 Hz, JАВ = 12.0 Hz, minor conformer), 2.489 d.d (–СН2–СО, НВ, 3JPH = 14.6 Hz, JАВ = 12.0 Hz, minor conformer), 6.405 br.s (Н4-furan), 7.185 d (Н5-furan, JHH = 2.8 Hz). 13С NMR spectrum, δС, ppm: common signals: 16.209-16.368 m (СН3-phosphonate). 17а: 11.787 (СН3-furan), 13.532 (СН3butyl), 14.077 (СН3-ester), 21.866 (СН3–СН2-butyl), 30.835 (SСН), 31.004 (СН2–СН2–СН2S-butyl), 36.109 d (РСН-, 1JPС = 138.4 Hz), 46.700 (СН2S-butyl), 61.238 (СН2О-ester), 62.163 d (СН2ОР, 2JPС = 7.2 Hz), 62.893 d (СН2ОР, 2JPС = 6.9 Hz), 111.354 d (С3-furan, 2 JPС = 8.4 Hz), 111.698 (С4-furan), 140.106 (С5-furan), 150.594 d (С2-furan, 3JPС = 11.2 Hz), 171.157 (С=О). 18а: 11.572 (СН3-furan), 13.484 (СН3-butyl), 13.825 (СН3-ester), 21.969 (СН3–СН2-butyl), 30.593 (–CH2– С=О), 31.492 (СН2–СН2–СН2S-butyl), 36.860 d (РСS-, 1 JPС = 147.3 Hz), 47.389 (СН2S-butyl), 60.960 (СН2Оester), 61.818 d (СН2ОР, 2JPС = 7.1 Hz), 62.764 d (СН2ОР, 2JPС = 6.9 Hz), 110.848 (С4-furan), 112.923 d (С3-furan, 2JPС = 7.2 Hz), 140.272 (С5-furan), 149.830 d (С2-furan, 3JPС = 11.2 Hz), 170.525 d (С=О, 3JPС = 20.6 Hz). 31Р NMR spectrum, δР, ppm: 24.794 (17а), 24.996 (18а).
Ethyl 2-(butylthio)-3-(2-methoxymethylfur-3-yl)3-(diethoxyphosphoryl)propionate (17b) and ethyl 3-(butylthio)-3-(2-methoxymethylfur-3-yl)-3-(diethoxyphosphoryl)propionate (18b). Yield of adducts 82%, brown oil, 17b : 18b ratio 1 : 0.5. 1Н NMR spectrum, δ, ppm: common signals: 0.822 t (СН3butyl, JHH = 7.2 Hz), 1.117–1.334 m (СН3-ester, СН3phosphonate), 1.392 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.638 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.665 t (СН2S-butyl, JHH = 7.2 Hz), 3.921– 4.226 m (СН2ОР, СН2ОС). 17b: 3.360 s (СН3О), 3.591 d.d (РСНА, 2JPН = 19.8 Hz, JАВ = 11.2 Hz, main conformer), 3.505 d.d (РСНА, 2JPН = 21.2 Hz, JАВ = 11.2 Hz, minor conformer), 3.681–3.822 m (–SCHВ), 4.418 s (ОСН2-furan), 6.449 br.d (Н4-furan, JHH = 1.6 Hz), 7.363 d (Н5-furan, JHH = 1.6 Hz). 18b: 2.341 d.d (–СН2–СО, НА, 3JPH = 1.2 Hz, JАВ = 12.0 Hz, main conformer), 2.485 d.d (–СН2–СО, НВ, 3JPH = 8.0 Hz, JАВ = 12.0 Hz, main conformer), 2.403 d.d (–СН2–СО, НА, 3JPH = 14.8 Hz, JАВ = 12.0 Hz, minor conformer), 2.487 d.d (–СН2–СО, НВ, 3JPH = 8.0 Hz, JАВ = 12.0 Hz, minor conformer), 3.335 s (СН3О), 4.415 s (ОСН2-furan), 6.512 br.d (Н4-furan, JHH = 1.6 Hz), 7.313 d (Н5-furan, JHH = 1.6 Hz). 13С NMR spectrum, δС, ppm: common signals: 14.055 (СН3-ester), 16.236 br.s (СН3-phosphonate), 31.292 (СН2–СН2–СН2Sbutyl), 62.285 d (СН2ОР, 2JPС = 7.0 Hz), 62.784 d (СН2ОР, 2JPС = 6.7 Hz), 63.006 d (СН2ОР, 2JPС = 6.8 Hz). 17b: 13.634 (СН3-butyl), 21.845 (СН3–СН2butyl), 30.774 d (SСН, 3JPС = 5.7 Hz), 35.744 d (РСН-, 1 JPС = 137.7 Hz), 36.137 d (РСН-, 1JPС = 138.9 Hz), 46.440 (СН2S-butyl), 58.141 (СН3О), 64.375 (ОСН2furan), 111.825 (С4-furan), 114.550 d (С3-furan, 2JPС = 8.0 Hz), 115.664 d (С3-furan, 2JPС = 8.0 Hz), 141.936 (С5-furan), 150.312 d (С2-furan, 3JPС = 11.3 Hz), 170.990 (С=О). 18b: 13.490 (СН3-butyl), 21.951 (СН3–СН2-butyl), 30.982 (–CH2–С=О), 36.519 d (РСS-, 1 JPС = 146.7 Hz), 36.920 d (РСS-, 1JPС = 147.0 Hz), 46.597 (СН2S-butyl), 58.066 (СН3О), 64.292 (ОСН2furan), 111.042 (С4-furan), 117.053 d (С3-furan, 2JPС = 7.1 Hz), 142.133 (С5-furan), 149.519 d (С2-furan, 3 JPС = 11.5 Hz), 170.990 d (С=О, 3JPС = 19.5 Hz). 31Р NMR spectrum, δР, ppm: 24.213 (17b), 24.295 (18b). Ethyl 2-(butylthio)-3-[2-(diethoxyphosphorylmethyl)fur-3-yl]-3-(diethoxyphosphoryl)propionate (17c) and ethyl 3-(butylthio)-3-[2-(diethoxyphosphorylmethyl)fur-3-yl]-3-(diethoxyphosphoryl)propionate (18c). Yield of adducts 63%, brown syrup, 17с : 18с ratio 1 : 0.3. 1Н NMR spectrum, δ, ppm: common signals: 0.855 t (СН3-butyl, JHH = 7.2 Hz),
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
ADDITION OF BUTANETHIOL TO ALKYL 3-FURYL-3-(DIETHOXYPHOSPHORYL)ACRYLATES
1.087–1.373 m (СН3-ester, СН3-phosphonate), 1.418 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.664 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.693 t (СН2Sbutyl, JHH = 7.2 Hz), 4.097–4.153 m (СН2ОР), 4.233 q (СН2ОС, JHH = 7.2 Hz), 4.245 q (СН2ОС, JHH = 7.2 Hz). 17с: 3.319 d.d (РСН2, 2JРH = 20.8 Hz, 5JРH = 2.0 Hz), 3.336 d.d (РСН2, 2JРH = 20.8 Hz, 5JРH = 2.0 Hz), 3.666 d.d (РСНА-, 2JPН = 20.8 Hz, JАВ = 11.3 Hz), 3.798 d.d (–SCHВ, 3JPН = 5.2 Hz, JАВ = 11.3 Hz), 6.481 br.s (Н4-furan), 7.352 d.d (Н5-furan, JHH = 2.0 Hz, 5JРH = 2.0 Hz). 18с: 2.432 d.d (–СН2–СО, НА, 3JPH = 3.2 Hz, JАВ = 12.2 Hz, main conformer), 2.510 d.d (–СН2–СО, НВ, 3JPH = 7.6 Hz, JАВ = 12.2 Hz, main conformer), 2.462 d (–СН2–СО, НА, JАВ = 12.2 Hz, minor conformer), 2.508 d.d (–СН2–СО, НВ, 3 JPH = 14.6 Hz, JАВ = 12.2 Hz, minor conformer), 3.175 d.d.d (СН2Р, НА, 2JРH = 20.8 Hz, 5JРH = 1.6 Hz, JАВ = 16.0 Hz), 3.406 d.d.d (СН2Р, НВ, 2JРH = 20.8 Hz, 5 JРH = 1.6 Hz, JАВ = 16.0 Hz), 6.571 br.s (Н4-furan), 7.300 d.d (Н5-furan, JHH = 1.6 Hz, 5JРH = 1.6 Hz). 13С NMR spectrum, δС, ppm: common signals: 16.331 br.s (СН3-phosphonate), 31.295 (СН2–СН2–СН2S-butyl), 62.179-62.341 m (СН2ОР), 63.031 d (СН2ОР, 2JPС = 6.7 Hz), 63.596 d (СН2ОР, 2JPС = 5.5 Hz), 114.318 d.d (С3-furan, 2JP3С = 8.9 Hz, 3JP2С = 8.9 Hz), 144.905 d.d (С2-furan, 2JP2С = 11.9 Hz, 3JP3С = 11.9 Hz). 17с: 13.622 (СН3-butyl), 14.092 (СН3-ester), 21.633 (СН3– СН2-butyl), 25.356 d (РСН2, 1JPС = 142.3 Hz), 30.936 (SСН), 35.799 d (РСН-, 1JPС = 137.9 Hz), 47.175 (СН2S-butyl), 61.085 (СН2О-ester), 112.097 (С4-furan), 141.316 (С5-furan), 171.109 (С=О). 18с: 13.538 (СН3butyl), 13.878 (СН3-ester), 21.786 (СН3–СН2-butyl), 25.100 d (РСН2, 1JPС = 142.3 Hz), 30.998 (–CH2– С=О), 35.196 d (РСS-, 1JPС = 148.2 Hz), 47.761 (СН2S-butyl), 61.265 (СН2О-ester), 111.463 (С4-furan), 141.532 (С5-furan), 170.738 d (С=О, 3JPС = 18.4 Hz). 31 Р NMR spectrum, δР, ppm: 24.259 d (Р3, 5JPР = 11.3 Hz), 22.878 d (Р2, 5JPР = 11.3 Hz) (17с); 24.791 d (Р3, 5JPР = 9.4 Hz), 23.113 d (Р2, 5JPР = 9.4 Hz) (18с). Ethyl 2-(butylthio)-3-(4-methylfur-3-yl)-3-(diethoxyphosphoryl)propionate (19a) and ethyl 3-(butylthio)-3-(4-methylfur-3-yl)-3-(diethoxyphosphoryl)propionate (20a). Yield 78%, light brown oil, 19а : 20а ratio 1 : 1. Спектр ЯМР 1Н NMR spectrum, δ, ppm: common signals: 0.875 t (СН3-butyl, JHH = 7.2 Hz), 1.044 t (СН3-ester, JHH = 7.2 Hz), 1.064 t (СН3-ester, JHH = 7.2 Hz), 1.214–1.314 m (СН3-phosphonate), 1.372 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.616 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 1.957 br.s (СН3-furan), 2.012 br.s (СН3-furan), 2.683 t
1159
(СН2S-butyl, JHH = 7.2 Hz), 3.936–4.015 m (СН2ОР), 4.116 q (СН2ОС, JHH = 7.2 Hz), 4.180 q (СН2ОС, JHH = 7.2 Hz), 7.085 s (Н5-furan), 7.149 s (Н5-furan), 7.361 s (Н2-furan), 7.390 s (Н2-furan). 19а: 3.567 d.d (РСНА-, 2JPН = 21.6 Hz, JАВ = 11.6 Hz, main conformer), 3.801 d.d (–SCHВ, 3JPН = 8.8 Hz, JАВ = 11.6 Hz, main conformer), 3.373 d.d (РСНА-, 2JPН = 20.0 Hz, JАВ = 12.0 Hz, minor conformer), 3.747– 3.828 m (–SCHВ, minor conformer). 20а: 2.327 d.d (–СН2–СО, НА, 3JPH = 5.6 Hz, JАВ = 12.0 Hz), 2.485 d.d (–СН2–СО, НВ, 3JPH = 3.2 Hz, JАВ = 12.0 Hz). 13С NMR spectrum, δС, ppm: common signals: 7.821 (СН3furan), 8.412 (СН3-furan), 13.473 (СН3-butyl), 13.606 (СН3-butyl), 13.793 (СН3-ester), 14.026 (СН3-ester), 16.151 d (СН3-phosphonate, 3JPС = 5.3 Hz), 16.204 d (СН3-phosphonate, 3JPС = 5.8 Hz), 16.306 d (СН3phosphonate, 3JPС = 5.8 Hz), 21.751 (СН3–СН2-butyl), 21.917 (СН3–СН2-butyl), 47.074 (СН2S-butyl), 47.413 (СН2S-butyl), 60.972 (СН2О-ester), 61.220 (СН2Оester), 61.989 d (СН2ОР, 2JPС = 7.2 Hz), 62.203 d (СН2ОР, 2JPС = 7.2 Hz), 62.915 d (СН2ОР, 2JPС = 6.8 Hz), 63.134 d (СН2ОР, 2JPС = 6.8 Hz), 117.256 d (С3-furan, 2JPС = 7.6 Hz), 119.980 d (С3-furan, 2JPС = 7.4 Hz), 120.182 d (С4-furan, 3JPС = 4.4 Hz), 120.940 d (С4-furan, 3JPС = 5.3 Hz), 139.210 (С5-furan), 139.395 (С5-furan), 141.379 d (С2-furan, 3JPС = 6.3 Hz), 141.568 d (С2-furan, 3JPС = 7.0 Hz). 19а: 30.791 (SСН), 31.550 (СН2–СН2–СН2S-butyl), 34.984 d (РСН-, 1JPС = 138.2 Hz), 171.149 (С=О). 20а: 30.991 (–CH2–С=О), 31.240 (СН2–СН2–СН2S-butyl), 35.210 d (РСS-, 1JPС = 146.7 Hz), 170.372 d (С=О, 3JPС = 18.4 Hz). 31Р NMR spectrum, δР, ppm: 24.764, 24.781. Ethyl 2-(butylthio)-3-(4-methoxymethylfur-3-yl)3-(diethoxyphosphoryl)propionate (19b) and ethyl 3-(butylthio)-3-(4-methoxymethylfur-3-yl)-3-(diethoxyphosphoryl)propionate (20b). Yield 73%, yellowish brown oil, 19b : 20b ratio 1 : 0.4. 1Н NMR spectrum, δ, ppm: common signals: 0.905 t (СН3-butyl, JHH = 7.2 Hz), 1.082–1.314 m (СН3-ester, СН3phosphonate), 1.396 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.642 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.669 t (СН2S-butyl, JHH = 7.2 Hz), 3.936– 4.245 m (СН2ОР, СН2ОС), 7.297 s (Н2-furan), 7.397 s (Н5-furan). 19b: 3.340 s (СН3О), 3.609 d.d (РСНА-, 2 JPН = 20.2 Hz, JАВ = 11.2 Hz, conformer 1), 3.841 d.d (–SCHВ, 3JPН = 9.0 Hz, JАВ = 11.2 Hz conformer 1), 3.800 d.d (РСНА-, 2JPН = 21.2 Hz, JАВ = 14.4 Hz, conformer 2), 3.764 d (–SCHВ, JАВ = 14.4 Hz conformer 2), conformer ratio ~1 : 1; 4.381 d (ОСН2-furan, НА, JАВ = 12.2 Hz), 4.421 d (ОСН2-furan, НВ, JАВ = 12.2 Hz).
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017
1160
PEVZNER
20b: 3.311 s (СН3О), 2.423 d.d (–СН2–СО, НА, 3JPH = 20.0 Hz, JАВ = 8.0 Hz), 2.497 d.d (–СН2–СО, НВ, 3 JPH = 12.0 Hz, JАВ = 8.0 Hz), 4.326 d (ОСН2-furan, НА, JАВ = 12.4 Hz), 4.421 d (ОСН2-furan, НВ, JАВ = 12.4 Hz). 13С NMR spectrum, δС, ppm:common signals: 16.215 d (СН3-phosphonate, 3JPС = 5.1 Hz), 16.321 d (СН3-phosphonate, 3JPС = 6.2 Hz), 31.269 (СН2–СН2–СН2S-butyl), 31.616 (СН2–СН2–СН2Sbutyl), 47.583 (СН2S-butyl), 47.858 (СН2S-butyl), 62.165 d (СН2ОР, 2JPС = 7.2 Hz), 62.315 d (СН2ОР, 2 JPС = 7.1 Hz), 62.822 d (СН2ОР, 2JPС = 6.9 Hz), 63.101 d (СН2ОР, 2JPС = 6.9 Hz). 19b: 13.644 (СН3butyl), 14.049 (СН3-ester), 21.810 (СН3–СН2-butyl), 30.822 (SСН), 34.660 d (РСН-, 1JPС = 137.5 Hz), 57.875 (СН3О), 61.422 (СН2О-ester), 65.048 (ОСН2furan), 116.757 d (С3-furan, 2JPС = 7.4 Hz), 122.975 d (С4-furan, 3JPС = 5.7 Hz), 140.900 (С5-furan), 143.255 d (С2-furan, 3JPС = 6.7 Hz), 171.142 (С=О). 20b: 13.501 (СН3-butyl), 13.877 (СН3-ester), 21.948 (СН3– СН2-butyl), 31.013 (–CH2–С=О), 35.158 d (РСS-, 1 JPС = 145.7 Hz), 61.068 (СН2О-ester), 64.818 (СН3О), 65.048 (ОСН2-furan), 119.005 d (С3-furan, 2 JPС = 7.1 Hz), 122.187 d (С4-furan, 3JPС = 5.0 Hz), 140.838 (С5-furan), 142.353 d (С2-furan, 3JPС = 6.4 Hz),170.532 d (С=О, 3JPС = 18.8 Hz). 31Р NMR spectrum, δР, ppm: 24.763 (20b), 24.797 (19b). Ethyl 2-(butylthio)-3-[4-(diethoxyphosphorylmethyl)fur-3-yl]-3-(diethoxyphosphoryl)propionate (19c) and ethyl 3-(butylthio)-3-[4-(diethoxyphosphorylmethyl)fur-3-yl]-3-(diethoxyphosphoryl)propionate (20c). yield 83%, brown syrup, 19b : 20b ratio 1 : 0.4. 1Н NMR spectrum, δ, ppm: common signals: 0.888 t (СН3-butyl, JHH = 7.2 Hz), 1.072– 1.148 m (СН3-ester), 1.225–1.321 m (СН3phosphonate), 1.380 sextet (СН3–СН2-butyl, JHH = 7.2 Hz), 1.626 quintet (СН2–СН2–СН2S-butyl, JHH = 7.2 Hz), 2.653 t (СН2S-butyl, JHH = 7.2 Hz), 4.042– 4.242 m (СН2ОР), 7.460 d (Н2-furan, 4JP3H = 3.2 Hz), 7.525 br.s (Н5-furan). 19с: 2.939 d.d (РСН2, НА, 2 JP4H = 20.4 Hz, JАВ = 16.6 Hz), 3.113 d.d (РСН2, НВ, 2 JP4H = 20.4 Hz, JАВ = 16.6 Hz), 3.669 d.d (РСНА-, 2 JP3H = 20.8 Hz, JАВ = 10.8 Hz, main conformer), 3.753 d.d (–SCHВ, 3JP3H = 10.8 Hz, JАВ = 10.8 Hz, main conformer), 3.463 d.d (РСНА-, 2JP3H = 20.4 Hz, JАВ = 11.2 Hz, minor conformer), 3.791 d.d (–SCHВ, 3 JP3H = 8.8 Hz, JАВ = 11.2 Hz, minor conformer). 20с: 2.362 d.d (–СН2–СО, НА, 3JP3H = 7.8 Hz, JАВ =
12.0 Hz, main conformer), 2.456 d.d (–СН2–СО, НВ, 3 JP3H = 7.2 Hz, JАВ = 12.0 Hz, main conformer), 2.368 d.d (–СН2–СО, НА, 3JP3H = 7.8 Hz, JАВ = 12.4 Hz, minor conformer), 2.454 d.d (–СН2–СО, НВ, 3JP3H = 7.8 Hz, JАВ = 12.4 Hz, minor conformer), 2.930 d.d (РСН2, НА, 2JP4H = 24.0 Hz, JАВ = 16.6 Hz), 2.962 d.d (РСН2, НВ, 2JP4H = 24.0 Hz, JАВ = 16.6 Hz). 13С NMR spectrum, δС, ppm: common signals: 16.213 d (СН2ОР, 2JPС = 5.5 Hz), 16.367 d (СН2ОР, 2JPС = 5.0 Hz), 61.896 d (СН2ОР, 2JPС = 6.7 Hz), 61.964 d (СН2ОР, 2JPС = 6.8 Hz), 62.076 d (СН2ОР, 2JPС = 6.1 Hz), 62.306 d (СН2ОР, 2JPС = 7.4 Hz), 117.795 d.d (С4-furan, 2JP4С = 8.9 Hz, 3JP3С = 7.1 Hz), 141.158 d (С5-furan, 3JP4С = 5.9 Hz). 19с: 13.362 (СН3-butyl), 14.049 (СН3-ester), 21.364 d (РСН2, 1JPС = 142.6 Hz), 21.589 (СН3–СН2-butyl), 30.805 (SСН), 31.251 (СН2– СН2–СН2S-butyl), 34.736 d (РСН-, 1JPС = 137.7 Hz), 47.878 (СН2S-butyl), 61.239 (СН2О-ester), 116.169 d.d (С3-furan, 2JP3С = 6.4 Hz, 3JP4С = 6.4 Hz), 142.675 d (С2-furan, 3JP3С = 6.6 Hz), 171.102 (С=О). 20с: 13.373 (СН3-butyl), 13.847 (СН3-ester), 20.917 d (РСН2, 1JPС = 142.6 Hz), 21.940 (СН3–СН2-butyl), 30.966 (–CH2–С=О), 31.647 (СН2–СН2–СН2S-butyl), 35.009 d (РСS, 1JPС = 146.3 Hz), 47.508 (СН2S-butyl), 61.107 (СН2О-ester), 115.301 d.d (С3-furan, 2JP3С = 5.7 Hz, 3JP4С = 5.7 Hz), 141.680 d (С2-furan, 3JP3С = 6.5 Hz), 170.540 (С=О). 31Р NMR spectrum, δР, ppm: 24.676 (Р3), 26.751 (Р4) (19с); 24.735 (Р3), 26.802 (Р4) (20с). ACKNOWLEDGMENTS The work was carried out within the frames of basic part of State project of Ministry of education and science of Russia no 4.5554.2017/8.9 REFERENCES 1. Pevzner, L.M., Russ. J. Gen. Chem., 2016, vol. 86, no. 7, p. 1624. doi 10.1134/S107036321607015X 2. Pevzner, L.M., Russ. J. Gen. Chem., 2016, vol. 86, no. 8, p. 1864. doi 10.1134/S1070363216080156 3. Lenardao, E.J., Trecha, D.O., Ferreira, P., Jacobs, R.G., and Perin, G., J. Braz. Chem. Soc., 2009, vol. 20, no. 1, doi 10.1590/S0103-50532009000100016 4. Pevzner, L.M., Russ. J. Gen. Chem., 2015, vol. 85, no. 2, p. 428. doi 10.1134/S1070363215020139 5. Pevzner, L.M., Russ. J. Gen. Chem., 2015, vol. 85, no. 7, p. 1650. doi 10.1134/S1070363215070130
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 87 No. 6 2017