Journal of Mathematical Sciences, Vol. 165, No. 4, 2010
APPROXIMATION IN Lp Rd , p , BY LINEAR COMBINATIONS OF CHARACTERISTIC FUNCTIONS OF BALLS
∗
We prove that translates of the characteristic function of a ball span the space Lp (Rd ) provided that 0 < p < 1 and d ≥ 2. Similar approximation problems are considered for some other functions. Bibliography: 5 titles.
1. Introduction
∈ R R R ! "#$ %
R
& '
{ ∈ R
+
|| }
⊂R
(
)
) "*
)
)
,
∈ " -∞
{' {'
.
R R
− }∈R − }∈R
/ ,
0 Æ
R
/
,
' *
R
' / "1 2 3 )
Z \ {*}$
,
∈
*
{' − }∈R
R
' 4 5 , 6 0 ,
∈ ≥ 1
*
& / &
F
{ − }∈R
∈ R
/
R
{' − }∈R
R
R
7
F
)
−
R
∈ R ( ) { ∈ R + F ) *} / S R 46 / , 0 / 8 R R R ∈ S R 7 8 R
0 , / "1$ "$ ' / ! 8
R
)
R
0 5 ! ! ∗ St.Petersburg
9 9
4 8
8
Department of the Steklov Mathematical Institute, St.Petersburg, Russia, e-mail:
[email protected].
Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 366, 2009, pp. 5–12. Original article submitted August 10, 2009. c 2010 Springer Science+Business Media, Inc. 431 1072-3374/10/1654-0431
2. Main results
R ⊃ R
R
-
||
∈ − −
-∞
∈ S R F ! ∈ R - || ∗ ) F F ) F 0 ∈ R - || Æ F , / F R - || F R - || , :/ ∗ ) ∈ R - || ∈ R / & 1 1 "1$ &
R
)
R
8 8 )
R ) R
R . R / ∩ -∞ ) ∩ -∞ ∈ R R R / "1$
)
{ ∈ R + || ∈ } ∩ "* -∞ ; 0
9
/
< ) 3 ∪ −3 < < R < * ≥ 1 / 3 ) { - + ∈ Z} ∈ "* −3 ) { − + ∈ Z} =/ 3
⊂ R - ⊂ R < 0
1 "1$ Æ 0 / 0 /
∈R
| | ≥
)
∈R
! 0
0
0
|| - | − - | ) ,0
- 1 - | | − − → *
→ -∞>
0
|| - | − − − | ) %
- 1 - | | − − − → *
0
→ −∞
Æ / , 0 ,
, 1 5
3 ) −3 3 3 R *
≥ 1
3
{ }∞ ) - -
→ ∞ * ∈ R { }∞ R ≥ 1 / ) / ! ∈ R − ∈ Z - ∈ Z < ) 3
∪ −3
, :
Æ /
R
<
⊂ R
!
¾
3 )
{ -
+
∈ Z} ' { }∞
< / :
=/ / 1 1 Æ 0
F ' )
{ }∞
<
−½
¾
−
'
9
−½ − | | − ¾ )
{ } ) { } : R ) R / / 1
= &
) - − - ! "5$
¾
1 | |
| | ¾
/ >
0 6
¾
1
1 Here we do not give a detailed proof of this inclusion because in the applications of this lemma which we consider in this paper, the inclusion F f ∈ C ∞ (Rd ) is fulfilled. Then it is clear that g ∈ S(Rd ) ⊂ L1 (Rd , (1 + |x|)N ). 2 Here and in what follows, a progression is viewed as a set rather than a sequence.
432
3. Concluding remarks ? : , 1 5
3 )
−3
/ 1 # '
, / ,
1 5@
7
)
' :/
1 5
R
9 "1 2 1$
)
R
/ < )
R
R\Z
% 0 ,
"
⊂ Z | − | ≥ ∈ < ) <
<
#
∞
{< }
R
* ∈
!
9 ,
% 0 / 0
<
$ - # ⊂ <
9
,
< ' 0 / < ? $ , 0 / 0 ,
#
*
|# | ≤
7 /
9
' Æ - < ?
*
*
& /
∅ < ∪ {" - # + * |# | ≤ } * / ∞
Æ / , ( < )
7! 0
{" }∞
*
/, ( < )
< < ) < −
< ?
∈
/ :
, : ?
' < ? 5 1
R\<
% , , , 1 5
1 5 ≥ 1 R
" ∞ ∞ { } % % % {% }∞
<
% 1 5 ! / / / "1$ # "1$ % ,
{ − }∈R
R
& ∈ R ½ ∈ R ¾ / { R ½ ¾ / R ½ ) R ½ R ¾ ) R ¾
3
R
/
R
− & − }∈R ½ ∈R
¾
, ! , Æ
3
Z
, 0 / "1$
∈ R
R ) R
∩ R
#
' Æ 7
∈ R
\Z
R
)
! "
R
§1$
0
/ 2 1 "1$
∈Z
0
-
Z
/ (
) * 0 /
% 5 2 1 0 / Æ 7 ' 0
- 1Z
∈ Z \ 1Z
2 1 "1$ ,
433
√
) * { }∞
R / )
R ⊂ R \ Z
' Æ / 1 , 7
!
)
- -
→∞
→∞
/
− − − →∞
1
/
) !
0 : 0 ,
! "
R ) R
R →C
8
R
8
∞
{ ) *} ) 8
0 ,
{ }∞
S R
1
≡
*
) 8
R ⊂ R :/
{ }
≥
*
6 Æ /
R
F −
⊂ R
& 1
"
Æ =/ * # "1$ Æ /
∞
+
4 ∞
∈S R
≥
∈ ' ∞ R
' : 0
)
R "
) R ∈ *
: ∞
R
+
R→C
R
)
R
R
R
)
R
! 8
% : 0 : 5 *
R ? / ≥ 5 * :/ R ) R ∈ * -∞
/ (, A& , 4 ? 4B C 1#*D 1**E F7=F C *E9*9**5E9
/ = 0
#$##%#&
$ % IED DE & " I 1** J % ' # , 0 ( D## F # ( / &/ J / K 4 ' % L DD* G ; 4 M ) # * + ( ; 4
= 0 AG/ 9/ 0 ! H/ B 1 = 0 A4 5 #
B
% 51 ( 0 ( ( % J / D
434