EVALUATION OF INTEGRALS AND THE MELLIN TRANSFORM A. P. Prudnikov, Yu. A. Brychkov, UDC 517.3+517.44
and O. L Marichev
1. INTRODUCTION 1o. Various problems, for the solution of which there arises the necessity of evaluating integrals, have stimulated the appearance of a large number of works regarding both the development of general methods for the evaluation of integrals and the determination of analytic expressions for concrete integrals occurring in applications. The fundamental methods for the evaluation of integrals are: 1. The direct evaluation of integrals with the aid of a change of variable, integration by parts, differentiation, limiting process with respect to parameters. 2. The expansion of the integrand into a series, t e r m - b y - t e r m integration, and the summation of the obtained series. 3. The application of operational relations of the type of the Efros formula. 4. The construction and the solving of a differential equation, satisfied by the considered integral. 5. The use of the properties of the differential equation, satisfied by the functions occurring in the integrand. 6. The reduction of the evaluation of the integral to the solving of a functional equation, satisfied by the integral. 7. The representation of the integral in the form of a composition of integral transforms, in particular Laplace transform, and the use of existing tables of integral transforms. 8. The application of contour integration and residue theory. 9. The use of the properties of integral transforms, for example the Parseval equality, for concrete functions. 10. The evaluation of more general integrals with the subsequent substitution in the result of particular values for the parameters. 11. The use of an operational approach, based on the Mellin transform. The last method is sufficiently universal, it is closely related to the methods 8-10, and allows the evaluation of a wide class of integrals, containing elementary and special functions of hypergeometric type and arising in various problems of mathematical analysis and applications. We mention that it has been used in an essential manner for the creation of a series of encyclopedic manuals on integrals and series [ 162]-[ 164], exceeding significantly in informativeness the well-known books [13], [14], [45], [678], [679], [1024], [1026], [1028], [1029], [1194]. Below, in Sections 2-8 we give a sufficiently detailed exposition of this method with numerous examples. The list of references contains works on the indicated methods, as well as on the evaluation of actual integrals, In it we have included papers and monographs reflected in the review.journal "Matematika", starting from 1953, and also works of an earlier period or not reviewed in this journal. Such a detailed and sufficiently complete list of works regarding evaluation of integrals is published for the first time. The majority of the papers is devoted to the evaluation of concrete integrals or of integrals containing certain classes of functions, for example, Bessel functions, Legendre functions, generalized hypergeometric functions, G- and H-functions. etc. From them, as consequences, one obtains simpler integrals, containing various elementary or special functions. Due to space insufficiency and the extensiveness of the bibliography, it is not possible to give the explicit form of the integrals evaluated in the cited works. Therefore, in the survey we indicate basically the handbooks and monographs containing extensive tables of integrals, as well as works referring to general methods for the evaluation of integrals. In many cases the content of the papers is sufficiently well reflected in the reviews from the Referativnyi Zhurnal Matematika;* the corresponding data are given in the list of references. It should be noted that isolated integrals or classes of integrals can be encountered in works on integral transforms and also in various investigations of an applied character; these are not given in the references.
*RZhMat data have been omitted in the translated list of references -- Publisher. Translated from Itogi Nauki i Tekhniki, Seriya Matematicheskii Analiz, Vol. 27, pp. 3-146, 1989.
0090-4104/91/5406-1239512.50 9
Plenum Publishing Corporation
1239
2~ Extensive tables of indefinite integrals of elementary functions are contained in [45], [50], [125], [162], [182], [187], [190], [346], [396], [679], [844], [958]. Tables of definite integrals of elementary functions can be found in [45], [116], [125], [162], [186], [272], [392], [575], [680], [846], and, moreover, many integrals are contained in tables of integral transforms of Fourier [13], [22], [137], [1024], Laplace [13], [22], [63], [108], [477], [551]-[553], [840], [1029], [1194], Mellin [13], [116], [476], [477], [908], etc. A significant number of integrals, containing only elementary functions, can be found in works on special functions as examples in the case of concrete selections of the parameters of the special functions. For example, integrals involving sin x and cos x can be obtained from integrals of the Bessel function J~,(x), taking into account the formulas
J1]2(x)= -V ~~ slnX,
J_1]2(r = V ~ _ ~ c o s x,
Tables of indefinite integrals of special functions are contained in [125], [163], [164], [187], [199], [932], [1075], [1559]. Extensive tables of definite integrals of special functions can be found in [163], [164], [272], [575], [579], [854], [1030]; they are contained also in books on integral transforms of Fourier [13], [22], [137], [1024], Laplace [13], [22], [63], [108], [551]-[553], [840], [1029], [1194], Mellin [13], [116], [476], [477], [908], Bessel [14], [1028]. Tables of double and multiple integrals can be found in [59], [162]-[164], [1547]. Some integrals, involving elementary and special functions, are computed in various works of analysis, theory of differential and integral equations, mechanics, physics, where they play the role of auxiliary results. A series of works contain formulas of a genera/character, in which the integrand involves an arbitrary function. In the case when the right-hand side is simpler than the initial integral (in particular, the multiplicity of the integral is reduced) or it gives the possibility to make use of already known results, such formulas turn out to be extremely useful. From works of this kind we mention [72], [102], [438], [509], [562], [620], [621], [632], [681], [687], [831], [834], [838], [953], [1008], [1041], [1080], [1253]. In particular, results from [33], [75]-[77], [105], [133]-[135], [153], [184], [702], [853], [1408]-[1410] allow us to reduce multiple integrals to simple ones. Some general methods for the evaluation of indefinite and definite integrals can be found in [21], [67], [116], [127]-129], [196]-[199], [220], [271], [393], [1041], [1580]. A series of methods for the evaluation of integrals are based on the methods of operational calculus and the properties of convolutions for various classes of integral transforms, first of all for the Laplace transform [21], [67], [127]-[129] (see also the surveys [26], [64]). Tables of integrals and integral transforms involving generalized functions can be found in [22], [476], [477], [840]. 2. MELLIN TRANSFORM 1% Several integrals that have been obtained by various methods can be evaluated with the aid of a general and, to a significant degree, formalized method, based on the Mellin transform [954]
oo
,Tg'*(s)--S ~ (x)xS-Idx, s:~-~ir.
(2.1)
0
Elements of the theory of the Mellin transform can be found in [13], [22], [56], [67], [116], [908], I1 t92] (see also the surveys [5], [64] and the references therein). The relationship of the Mellin transform with other transforms is reflected in the most complete manner in [21], [56], [I13], [116], [908]. In particular, in [21] with the aid of the Mellin transform one has shown that all the other classical transforms, such that the Hankel, Stieltjes, Hilbert, Riemann--Liouville, Weyl, Meijer, etc. can be represented in the form of compositions of Laplace transforms. The modern theory of special functions of hypergeometric type is based on the use of the Mellin transform and of the related Mellin--Barnes integrals (see [10], [I07], [164], [194], [578], [579], [853], [909], [917], [918], [1411]. The theory of Mellin--Barnes integrals has been developed in [547], [954] and has found applications in [191], [194], [273], [533]. However, special interest in it has arisen after the publication of a series of works by Meijer [944], [948], [949], [951], in which the G-function has been introduced and investigated, becoming fundamental among func-
1240
tions of hypergeometric type. The theory of Meijer's G-function, defined by the Mellin--Barnes integral
:=i
Yci
j=,
P
q
j=n+I
j =m+l
][ I'(~zj+s) ]I
=Gr
z-Sds
J~'1,. . . . .., %)~
(2.2)
r(1--l~j--s)
is set forth in [10], [116], [122], [164], [855], [908], [917], [1418]; the most complete list of its properties and extensive tables of special cases are contained in [164]. More general is Fox's H-function, introduced in [600] by means of the Mellin--Barnes integral
i 2~ti I
t~
~[ P (bj + ~js) ~[ F ( 1 - - a i - - c z i s )
n
j=l z _ s d S =i_]m n { Z ] (Oh, 0q), ..., (ap, ~p)] p q Pq ~ I(bl, 1~1), , (bq, ~q)] r[ P(ai+cxfi) IT l'(l--bf--[3js) j =i
j=n+l
(2.3)
]:m+l
with arbitrary positive coefficients of s. Its theory is presented in [164], [415], [918], [1452] and other works. If there exists a substitution s = as 1, after which all the coefficients of s 1 become rational, then such an H-function can be transformed into a G-function, but with larger dimensions m, n, p, q. With the aid of the theory of residues [44], [116], [908], a G-function can be expressed in terms of linear combinations of generalized hypergeometric functions pFq(al,..., ap; b 1..... bq; z) [I0], [107], [164], [271]-[273], [304], [599], [855], [917], [1418] or, in the singular (logarithmic) cases, in terms of the limiting values of these combinations [5], [915], [917] (see also Sections 5, 6). In the general case, an Hfunction is expressed in terms of series with coefficients depending on the Gamma function (see Section 6, Subsection 40). Problems regarding asymptotics in the theory of pFq-, G-, and H-functions are very difficult; they have been investigated in [122], [414], [599], [855], [917], [1038] and presented in [i0], [107], [116], [122], [166]-[168], [915], [918]. In [120], [122], [164] one has investigated the behavior of the pFq- and G-functions near a third singular point in the cases when it exists. In [273], [446], [578], [1217] one has defined multiple hypergeometric series and functions, while in [122], [425], [617], [ 1452] one has introduced and investigated their corresponding G- and H-functions of several variables, defined by means of multiple Mellin--Barnes integrals, similar to (2.3) (see (2.8)). We mention that in the case of the vertical rectilinear contour La _- (~/- ioo, ~/+ ioo), 91s -- 7, the integrals (2.2), (2.3) perform the inverse Mellin transform of the corresponding ratios of the products of Gamma functions. Thus, under certain conditions [121], [918], formula (2.1) holds, where instead of Yf(x) one has to take the right-hand sides from (2.2), (2.3) (for z -- x), while instead of Y~* (s) the mentioned ratios from the left-hand sides. This property, as well as the known convolution theorem for the Mellin transform (Theorem 2.3) and the theory of residues, are fundamental for the method presented here for the evaluation of integrals of products of several G- and H-functions. Moreover, we shall use Slater's [1418] convenient symbolism A
i,[(a)+s, ( b ) + s ] L(c)+s, ( d ) + s ] =
B
l I P (aj+s) H r(b/--s) j=i j=l c D I[ (Cj+ S) 1~ P (dj--s) j=i
.['
(2.4)
j=!
for the notation of the ratio of products of Gamma functions. We mention that, in the applications of the method in various concrete situations, one has separated two approaches: a constructive one (Sections 3-6) and a formal one (Sections 7, 8). Regarding the properties of the Gamma function and notations, see, for example, [164].
1241
2 ~ S o m e Properties o f the Mellin Transform. The Mellin transform o f a f u n c t i o n (0, oo), is defined by the f o r m u l a {Yd (x); s} -~ X'* (s) = J X' (x) x~-~dx, 0 If the image
Yd*(s)
is known, then the original
Yd(x)
Yd (x), given on the semiaxis
s = ~, + i'c.
(2.5)
is obtained by the inverse Mellin t r a n s f o r m f o r m u l a
y+i~
-Us
(s) x - ~ d s ,
x>O,
Re s =~t.
(2.6)
y--ioo
In a similar m a n n e r , the equalities
a~* (sl . . . . .
')~('1
sn) . . . . ~. J q.' ( x. l , . 0 0 '~'a+i~ Yn+ic~ 1
.....
Xn)~-'(22Ii);'
S
"'"
gt--ico
~ d~* "~n--ioo
xn) x~~-1 . .. x ,~ - 1a- x l . . . dx~,
(S 1 . . . . .
(2.7)
Sn) OClS~ . . . XnSnds1 . . . a s n,
(2.8)
"%= Re sk, k = 1, 2 . . . . . n, define, respectively, the direct and the inverse multiple Mellin transform of the f u n c t i o n Yd(Xl . . . . . x~). of cases, the formulas o f type (2.5) and (2.7) will be written also in the f o r m
In a series
(x) +-~X ~* (s). For the Mellin transform (2.5), by the convolution of the functions we mean the integral 0o
oo
0
0
Ydx(x)
and
,Yd2(x), defined for x > 0,
(2.9)
x>O. To the multiple Mellin t r a n s f o r m there corresponds the multiple convolution of the f o r m co
n+l
0
j=2
We give some results w h i c h will be used in the sequel [116]. T H E O R E M 2.1. Let YY(x) be a function, absolutely integrable on any finite interval (s, E), 0 < ~ < E < ~ , and assume that in the neighborhoods o f the points x = 0, x = ~ we have the estimates [5~(x) [ < A x -a, O < x ~ e , 1"7{(x) I < Ax-b, x ~ E , A being a constant, while a < b. Then, in the band a < ~ s < b o f the plane o f the variable s, the Mellin transform ~ * (s) o f the f u n c t i o n a~ (x) exists and it is an analytic function, while at each point x, where a~(x) is continuous, the f o r m u l a (2.6) for the inversion of the Mellin transform holds, in which the integral at e~ is understood in the principal value sense and the integration is carried out along any vertical line f r o m the band a < 91s = "/< b. At the points x where ,7d(x) is discontinuous but there exist b o u n d e d o n e - s i d e d limits ~ ( x - 4 - 0 ) , the function
3V(x)
in the l e f t - h a n d side o f (2.6) has to be replaced by the expression
1 -~ [Yd(xq-0) + 3 ~ ( x - - 0 ) ]
. In the
case o f an exponential decrease of Yd(x) at x --* oo (or x--* 0), the f u n c t i o n oval*(s) is analytic in the h a l f - p l a n e ~ s > a (91s < b) and one has to set b = -oo (a = -oo). T H E O R E M 2.2. Let Y d ( z ) , z = r e ~~ , be an analytic f u n c t i o n in the sector -cz < 0 3, 0 < cz _< It, 0 3 _< 7r, and assume that Yd(z) has order O( I z I -a-6) f ~ small z and O( I z [ -b+6), 6 > 0, for large z, u n i f o r m l y in any angle
1242
interior to -o~ < O < fl, and, moreover, a < b. Then the f u n c t i o n ~ * (s), defined by the f o r m u l a (2.5), is analytic with respect to s in the band a < 9r < b and satisfies the conditions (e-(~-e)~,~), a~t'* (s) - ( 0 (e(~-~)I'~'),
Im s-~ ~- oo, Im s-> - - oo,
for each e > 0, u n i f o r m l y in each band interior to a < ~ < b, and, moreover, f o r m u l a (2.6) holds, where x -- z. Conversely, if ff~*(s) is a given function, satisfying the indicated conditions, then the f u n c t i o n ff{(z), defined by the f o r m u l a (2.6), x = z, satisfies the above conditions imposed on it and f o r m u l a (2.5) holds. T H E O R E M 2.3. If the functions x ~ - t ~ ( x ) , j = 1, 2, are absolutely integrable on the ray (0, oo), then the convolution (2.9) exists, also the f u n c t i o n x r-~ (/7E~o~2) (x) is absolutely integrable, and for each s such that ~ s = % the Mellin transform of the convolution (2.9) exists and it is equal to the p r o d u c t o f the images o f the convoluted functions:
{(X'~oX'2) (x); s}-- X'~ (s) X'~ (s) = X'* (s),
Re s = ~.
(2.11)
Moreover, the indicated conditions on the functions Se~ are sufficient. P r o p e r t y (2.11) is preserved in certain cases also when one o f the integrals .7~j* (s) converges conditionally or is understood in the principal value sense. R e m a r k 2.1. If for each o f the functions W j ( x ) the conditions o f T h e o r e m 2.1 hold with order exponents aj and bj, j = 1, 2, then the intervals (al, bl) and (%, b 2) intersect and 7 has to be taken f r o m their c o m m o n part: max(a 1, %) < "t < min(bl, b2). F r o m the last inequality there follow the conditions a 1 < b 2 and a 2 < bl, ensuring the convergence of the integral (2.9) f o r x = 0 and x = oo. R e m a r k 2.2. F r o m the equalities (2.11), (2.6), (2.9) there follows Parseval's k n o w n f o r m u l a for the Mellin transform: oo
3r (x) ~
y+ioo
9g'1(t)
ff-{'l(s),)~2(s)x.-ds.
2 ~T ] 7 =2zx--7
0
(2.12)
~--ioo
The latter can be true also in those cases when one of the functions )~'j(x) increases exponentially at 0 or at oo and its image ff~j*(s) is understood in a certain generalized sense (see 3 ~ f r o m Section 6). R e m a r k 2.3. A p p l y i n g the operator o f the multiple Mellin transform (2.7) to the convolution (2.10), we obtain the equality n+l
if/'* (sl . . . . .
s,,)-~ 3~*~(s1-1- s2q- 9 9 9 q- s,) ]-[ ,Tt*i (s j_l),
(2.13)
.i=2
which is the analogue o f the relation (2.11). T H E O R E M 2.4. Assume that the function
.TE (x)
is continuous for x > 0, decreases at oo faster than any power co
of x, while in the n e i g h b o r h o o d o f the point x = 0 can be expanded into a c o n v e r g e n t series
3,
fit(x) =Y. ckx ~ , O < k=0
x~e, 0~-~0~.t~ ... and An --* oo, n ---, oo. Then the Mellin transform ff{*(s) o f this f u n c t i o n can be continued analytically to the entire plane s, with the exception of the points s = -A k, k = 0, 1,2 ..... where ~ * (s) has poles o f first order. R e m a r k 2.4. Setting c k = (-1)k/k!, Ak = k, we obtain function f i t ' ( x ) = e -x , whose Mellin transform ff/'*(s) is equal to the G a m m a f u n c t i o n F(s). F r o m T h e o r e m 2.4 there follows that F(s) can be c o n t i n u e d analytically into the plane s, with the exclusion o f the points s = 0, -1, -2, ..., where it has simple poles. As it is k n o w n , the residues o f r(s) are obtained by the f o r m u l a
resF(s)=~,
S~--k
k~0,
1,2 .....
(2.14)
1243
which follows f r o m the expansion r { s ) - -( ---3-W-/l I ) ~ ' " -? eq)(k + 1) + e-~[ a ~ + 3r 2 ( k + l ) - - 3 q / (k + 1)116 + ea [r~2, (k + 1) + ~pa(k + 1) - - 3q~ (k + 1) q / ( k + 1) + q~" (k + 1)1 / 6 "~- O (84)}, g ~ S -1- k, k = 0 , 1,2 . . . . .
(2.15)
valid in the neighborhoods of the points s = -k. In the neighborhoods of the remaining points the G a m m a function can be represented by the Taylor formula in the form r ( s ) =r(So){l+s,(So)+e2[,' (So)+,2(So)]/2+ -}-ea[* a (So) +3q~ (So), ! (So) -)-~" (so) ]/6-I-, O (e 4) },
(2.16)
8 = S - - S 0.
The properties of the Mellin transform and tables for it can be found in [13], [1 16], [476], [477], [958], [1028].
3. A L G O R I T H M FOR T H E E V A L U A T I O N OF I N T E G R A L S OF P R O D U C T S OF F U N C T I O N S OF H Y P E R G E O M E T R I C TYPE
Assume that there is given the integral b ,~--I
n~2, 3.... a
(3.1)
j=i
For its evaluation one can use the following general scheme: I) By means of the change of variables and functions
e , C~ ~
X J-1 --
j~2,
I (cl . . . . .
3,
" " "'
n--l,
x~_l -~bcl,
x.~acl,
(3.2)
c._1, a, 0):~ c{1~ (Xl . . . . . x,,)
and the consideration (for a # 0 and b # 0) of the Heaviside step functions Jd~,~(q) = H ( ~ I - - 1 ) , 28~+1 (n) = H ( 1 - - ~ I ) ,
(3.3)
where H07) = 1 for r/>_ 0, H(t/) = 0 for ~ < 0, this integral reduces to an integral of the multiple convolution type (2.10) for the Mellin transform. 2) To this convolution one applies the multiple Mellin transform (2.7) which, by the convolution theorem, reduces to equality (2.13), allowing us to find the value of 3f* (sl . . . . . s•) of the image of unknown integral 28 (xl . . . . . x~) in the form of the product of the images of the known functions- 3fj, j = 1, 2 . . . . . n + 1. 3) From the known image 3~* (sl . . . . . s,~) one restores the original 28(x~ . . . . . x~), leading, after the inverse substitutions of (3.2), (3.3), to the value of the desired integral (3.1). One makes use of the inversion formula (2.8) of the multiple Mellin transform. We mention that for a = 0 and b = oo it is not necessary to introduce one Heaviside function, while for a = 0, b = o~ both Heaviside functions and, instead of n + 1 functions 285 , the convolution (2.1 0) will contain n or n - 1 functions 28j . In many cases the convolution (2.10) has the form of a one-dimensional convolution for the Mellin transform (2.9) and, moreover, if 3 ~ (x/t) = H ( x / t - - 1), then this integral is indefinite ( 28' (x) = x-ljg'2 ( x ) ) . After applying the Mellin transform (2.5) we obtain the equality (2.11), where 28j* (s) are Mellin transforms of functions 28j(x), ]= 1,2 . From (2.1 1) we can obtain the function o~f"(x) with the aid of the inversion formula (2.6) of the Mellin transform
1244
or its equivalent Parseval formula (2.12). The latter may be preferable in the case of the exponential growth of one of the functions 5~j(x). The expressions of 5~ (x), YC (x~ . . . . . x~) from the mentioned formulas are obtained with the aid of the residue theory or with the aid of the previously established general formulas which, in turn, are also obtained with the aid of the residue theory. Moreover, we automatically obtain the restrictions on the parameters, ensuring the convergence of the desired integrals. The presented scheme is most effectively implemented in the case, important for applications, when the functions SfYj belong tO the class of functions of hypergeometric type, defined as linear combinations of the Mellin--Barnes integrals
(3.4)
j,~,t,,,~
where LPis some infinite contour, c~j, ilk, "re, 6m are real positive parameters, aj, bk, cs d m are complex parameters, and z is a complex variable. In this case, also their convolution ,Ze , if it exists, belongs to the same class with respect to each of the variables. In general, the value .~ (z) of the integral (3.4) is expressed in terms of the sum of the residues at the poles of the integrand, representing a linear combination of series of the form oo
;.~ ]-[, r ( ~ j + ~ w ) r ( t k - ~ (-;)'~ n=o ),k,t,ra r (~t +~,'~n) I" ('dm--'6mn) n! '
(3.5)
whose parameters are computed in a well-defined manner in terms of the parameters of the integral (3.4), while the prime denotes the absence of one of the factors of the numerator. If all the coefficients c~j, ilk, "/l, 6m are rational, then (z) can be represented in a somewhat more convenient form in terms of a combination of generalized hypergeometric series. If the integrand in (3.4) contains multiple poles, then, in general, ~ ( z ) can be expressed in terms of series including lnPz, p = l, 2 ..... which are obtained from the linear combinations of the series (3.5) by the continuity of the parameters. We mention that in such cases, which, for the sake of brevity, will be said to be logarithmic, the representations for ~ ( z ) may have a very complicated form (see Section 4). Many elementary and special functions belong to the functions of hypergeometric type; the basic ones are enumerated in Subsection 8.4 of [164]. At the implementation of the presented scheme, the greatest difficulty is met at the evaluation of the integral (3.4) or of its analogous Mellin--Barnes integral (2.8). If in the formula (3.4) we set aj = flk = "Ys = 6m = 1, then ~ ( z ) is expressed in terms of Meijer's G-function (see (2.2)). The general case leads to Fox's H - f u n c t i o n (see (2.3)). The theory of multiple Mellin--Barnes integrals is far from being complete. However, formally, in actual cases the multiple integrals can be evaluated by analogy with the simple ones and one obtains results in the form of n-fold generalized hypergeometric series, in particular, Appell--Horn and Lauricella series (see [273], [477], [578], [1217] and also Subsection 7.2.4 from [164]. Examples of such evaluations are examined in part 6 ~ of Section 6. 4. DEFINITIONS, NOTATIONS, AND SOME AUXILIARY FUNCTIONS 1~ Let (a) ~ a l , a2,. .. , aa; (a) + s = ai-t-s, a 2 + s . . . . . a~t+s; k (a) = k a l , ( a ) ' - - a j - - - - - a l - - c t j , . . . , a j _ l - - a j,
ka2 . . . . . kaa;
a j + l - - a j , . . . , a A - - a i,
The symbols (b), (c), (d), (a), (b), (~), (d) denote analogous vectors, having B, C, D, .4,/~, C,/~ complex components, respectively. Let [a] be a vector obtained from (a) such that after a renumbering and a permutation of the component places we should have the relations
1245
.4
N"
q,
r [(a)+ s l - I I r (a,+ s ) ~ H II r ((~,:§ s ) - r IIal+ sl, j=l
q j > l,
j~ l .....
j=l
r,
q~--l,
i
1
j = r § l . . . . . . V,
r=O .....
N
(4.1)
where [l~]'-~-/~ll~ 0~21, 9 ' ' ,
99
air, a2r, . . . ,
aq~ll
/~12~ ~22~ 9 9 .~ ~q22~ 9 9 9
~qr r, a l , r + l ,
O~],r+2, . . . ,
ct~+~,/--ctt/~mq,
m u ~ O , 1, 2 . . . . . j ~ l . . . . . r, +_1, +_2. . . . . j@rt,
au--ak~@O,
(4.2)
al,\%
i=l ..... j,n=l
qj--1,
.....
N.
A s s u m e also that
too~--O,
m q f l : oo.
(4.3)
O b v i o u s l y , we have N
r
q'=X j=l
qj+N--r--A,
(4.4)
j=l
while in the j t h g r o u p the p a r a m e t e r s aij , i = 1 ..... q j, will d i f f e r by integers, b u t o n l y a m o n g t h e m s e l v e s (and not f r o m the p a r a m e t e r s o f a n o t h e r g r o u p ) , a n d the series o f points s= --a~--l, l=m~_~,~. . . . . rn,~--i will be poles o f m u l t i p l i c i t y i f o r the f u n c t i o n F[[a] + s]. We d e n o t e b y [a]' - aij the (A - / ) - d i m e n s i o n a l v e c t o r [a] - aij, f r o m w h i c h one has r e m o v e d the first i c o m p o n e n t s in the j t h group: [a]
t --
aij~
all --aij,
9 9 9
gaij,
aqi_,,i-1
cti+l
,j
--
alj, . . . .
lT.qjj - - a i f i
(4.5)
al.j-71 - - aij~ 9 9 9 aqNN - - ai].
In a d d i t i o n , let
Rill:
(--1)Hi/zaH IX (l +ail--al~j)[
r [[a]'--aH' ( b ) + a H ] X / ( c ) - - a i / , (d)+ai/A (4.6)
(1-- (c)+ aij)t ((0)+ aij)t ((__ 1)C_az)t ' X ( l - - [ a ' 1+ ail)z((ct)+ aij)t i~l
.....
qj,
j~:l .....
N,
l=0,1,2
.....
where we have used Slater's s y m b o l (2.4) and
L//2I
Hij ~ X
(4.7)
t'~2#-1,1'
k=l
B
((o) + a,j)~-- II (o~ + aij).
(c)t = c (c + 1)(c + 2) . . . (c + l - - 1) =
k=l
r (c + l) r (e) '
(c) o ~ 1.
(4.8)
O b v i o u s l y , f o r j = r + 1 ..... N we have the e q u a l i t y oo
Mj = "~ 17,1.t : : za,iF [ [ a l ' - - a , i, (0)+ a , j ] X l=0
J
k(~)--a,i,
(d)+a~i
((b)+a,j, ll-}-at]--(e); (--1)C--A•), X B+cFA+o--1 \ ( d ) + a,i, + aaj--[a]' /
1246
(4.9)
where the symbol B+cFA+D-I ( ' " ; x) denotes the generalized hypergeometric function pFq(...; ...; x) [164] with dimensionsp:--B+Candq=A+D1. Further, let A
B
C
D
j~l
k=l
l=1
rn~l
(4.10) (4.11) j =1
k=l
/=1
m=l
A=A+D--B--C, A = A q - D - - B - - C ,
(4.12)
E=A+B--C--D,
(4.13)
6=rA--A, 1 [~= ~
E=Aq-B--C--D,
q0=~-1 ( r E q - E ) ,
r - - qD,
(4.14)
(E-I- E)-- v--'~--m~-- 1,
~=R-qRppt~aq-qaoclo3-p,
(4.15)
z=o-Uro3,
(4.16)
z o~- R R - ' / ' r ~ exp (-- r-l~r~i).
(4.17)
Here a, a, w are complex quantities, while R, R, p, q, r > 0 are real quantities. In the case of a rational number r we assume that the numbers p and q are relatively prime integers. Let 8 - = 1 / 2 for ] h ] = l ;
~ = 1 for ] A I > I ;
~_-1]2 for I~l=a;
~ = ] for 1s
~'c~ A
[~-I ':~c~
(4.18)
[ arg a 14- (D ~B) n
A
+ , ~ I R I I/EcOs ,arg~,+(b--~)~.~..
L~= A}_~_i~tasgn(argo)sin larg(,I+(D--B)u a E
(4.19)
+
, argo -arg co# 0 ,
(4.20)
X ~ = l i m X , for argo=/=0, a r g o - + +_0, ~ { = l i m ~ , s for argo-+ + 0 , argo0@0, X+~-----limX~ for argo-+ + 0 , argco~ T-0; s=
,,s~++~,+-s for argo = ark co.~=O.
~s~+~s
(4.21) (4.22)
for a r g o @ 0 , argr
Ls ~ ~+~,~- for argo = 0, arg o) :~ 0. ] = 1 , 2 . . . . . A for 7X<0,
(4.23)
2Re ( ~ - - bkrA q--v) < 1 --k E, k ~ 1, 2 . . . . . B for A > 0,
(4.24)
2Re(cx~A-}-a:-A+-v)(l+E,
2 . . . . . -,4 for A < 0 ,
(4.25)
2Re (aA--'bkA + rv) < (1 + E) r, k = 1, 2 . . . . . B for A > 0,
(4.26)
2Re(czA-q-~iAq-r,c)((lnt-E)r,
j~l,
1247
I A - - r'-A I + [2Re (c~5~A+ r~A + v A ) - - A E - - rAE] > 0,
(4.27)
rAE] > O,
(4.28)
I A - - rA 1-- [2Re (c~AA+ r ~ 5 + ~A) - - AE - larg~ l
(4.29)
Iarg(rl=~E/2,
(4.30)
I arg co I <
nEl2,
(4.31) (4.32)
largo) I = ~ E / 2 . If6=0and~o_<
r, then [ arg (1 - -
zgz-P) I < n,
(4.33)
and, moreover, for ~/3 > 0 the value z = z o is assumed. A
C
r(a)] ~*,. ,v [(c)J = ~= v (at)- ~=1 ~ * (c~), A
(4.34)
C
~, r( a)] =~.= 5:**.,., l(c)J w (at)- j=l ~ , ' (c). Here the and r while the nor f r o m
*
(4.35)
~]**
symbols ~ , mean that if the vector (a) contains nonpositive integer c o m p o n e n t s aj, then the terms ~b(aj) have to be replaced by r - aj) and -r - aj), respectively. For example, if a 2 = a a + m, rn = 0, 1, 2 ..... remaining p a r a m e t e r s as, a 4..... a A of the vector (a) (A _> 2) do not d i f f e r by integers, neither a m o n g themselves the p a r a m e t e r aa, then
[(a)--a2--l, (d)-+a~-q-l] L(c)--a2--l, (b)+a2+lJ = q ~ ( l + l ) + ~ A
D
(1 +re+l)+ C
(4.36) j=l
j=s
]=1
B
- - X ~ (b]+a2+l). ]=1
We introduce the notation A
B
I I r (a i + s) H r (bk--s)
[(a)+ s, ( o ) - s] = j=,c
r[(c)+s'(d)--sJ
~=t~
= fly* (s).
I I r (c~+s) H r (a~--s) l =1
m=l
Here the e m p t y p r o d u c t has to be replaced by unity; for example, for A = 0 we set
(4.37)
0
I I I" (a t-t- s) = 1. ]=1
The function
flY* (s)
at the points
s=--aj--m,
1248
] = 1 , 2 . . . . . A (s=bk+m, k = l , 2 . . . . . B), m = 0 , 1,2 . . . . .
(4.38)
has poles of certain multiplicities if the singularities of its n u m e r a t o r at these points are not c o m p e n s a t e d by the singularities of the denominator; c o m p e n s a t i o n m a y take place when the quantities [ aj - c e l , [ d m - b k [, - c t - b k, -aj - d m contain nonnegative integers. The points s = - a j - m, s = b k + m will be called, respectively, the left and the right poles of function 3tg* (s). Assume that the contour L_oo (L+ce) represents a left (right) loop, situated in some horizontal band, starting at the point - ~ + i~o1 (+ce + i~ol), leaving all the left poles of the f o r m s = - a j - rn of the f u n c t i o n aY* (s) on the lefthand side, while all the right poles of the f o r m s = b k + m on the r i g h t - h a n d side of the contour, and terminating at the point -oc + i~o9. (+ce + i~o2), where ~o1 < ~o2. Here w e a s s u m e that all the left poles are separated f r o m the right ones, i.e. there is a curve which separates them. For this it is sufficient if the conditions aj + b k ~ 0, - l , - 2 .... are satisfied. We denote by L i ec an a r b i t r a r y infinite contour, starting at the point ~ / - ice, terminating at the point "t + i ~ , and separating all the left poles f r o m the right ones. If 3t(aj + bk) > 0, then, in particular, for the contour L i ec one can take the vertical line Lip o = (7 - lop, 7 + lop), -glaj < ,'/< 9tb k. In the general case, the c o n t o u r L i ec = ('7 - ice, ,/+ ice) is a curve going f r o m 7 - i~o to 7 + ice, which m a y be obtained by a continuous u n b e n d i n g of the loop L_+oo, without passing through the poles of the function 3r ~* (s). We introduce the Mellin--Barnes integral of the f o r m
L
(4.39)
L(c)+s, (d)--s] z-'ds.
By the contour L we shall always mean any of the infinite contours L+ce, L_ce, Lioo, along which the integral converges under a p p r o p r i a t e conditions on the parameters. If several contours of this f o r m are assumed, then the contour can be arbitrary but to each choice there will correspond its own condition o f c o n v e r g e n c e for the integral. The function IL(z) is c o n n e c t e d w i t h M e i j e r ' s G - f u n c t i o n
Ore" '/zl(%)i '' (2.2) by the relation Pq
\ i /(%)
I L (Z) - - I'~A'B ----B+C,A+~D
Z
i 1-@), (a),
(c)/
(4.40)
1--(d)/"
Let f,(s)=NRss
,
f (ax)=~
N
[(a)+s, (b)--s], L(c)+s, (d)--sJ
(4.41)
+s, l(c)+ s,
(4.42)
@)-s]
l r (ox'R-1)-Sds, L(c)+ s, ( a ) - s J L
T
r > O,
(4.43)
(4.44)
s, (a)-sJ
where/~, by analogy with L, is one of the contours of the types/~_+ce, Lice;
(4.45)
where s = s
or ~q?ioo is an infinite contour, similar to L, separating left poles of function
from the right ones. T h e left poles are a m o n g the points among the points
s
bk+ m
q
a
p
S=
p
s = _ _ a j +qm ____~, p s=
~ - +p m
f*(qs+-;)i (-ps) while the right ones are
m = O, 1 2 ....
1249
a~'* (s)z -s at the left and right poles,
We denote by NA(z), EB(1/z) the sums of the residues of the function respectively,
a ]~a ( z ) = ~_j ~_]
res
{a~**( s ) z - q ,
(4.46)
res {9~'*(s)z-q,
(4.47)
j ~1 /z=O s=--ai--k oo
~]8(1/z)=--
~
k=l I=0 s=b,~+l
under the assumption that these series converge. By P,,__(a) and I3__,(1/6) we denote the analogous sums of residues of function q f * (qs+=/r) f * (--ps) z ps at the left and right poles, respectively. In this case the variables z and b will be assumed to be connected by the formulas (4.16). As it follows f r o m the definition, the orientation on the contours L+oo and La+oo is clockwise. The residues at the right poles are computed in the usual manner, i.e., counterclockwise; therefore, their sums ~3B(1/z) and E_~(1/~) will be taken with the minus sign in order to make it consistent with the orientation of the contours L+oo and LP+oo. 2 ~ The above defined auxiliary functions P~A(z), En(1/z), P.,_.(6) and E._,(1/~) depend continuously on the parameters occurring in them. For certain values of these parameters (in the logarithmic cases), in the analytic expressions of these functions there may arise indeterminacies of the oo - oo type. In the sequel we shall assume that in the logarithmic cases the functions EA(z) and their analogues are equal to the corresponding limits of the regular functions, given below, when the parameters tend continuously to the considered singular values. We formulate some statements on the representation of these functions in the regular and logarithmic cases with double, triple, and n-multiple poles [5], [116], [908]. T H E O R E M 4.1. Assume that all the poles of the function Y{* (s) (see (4.37-4.38)) are simple, which holds when the parameters of the vectors (a) and (b), where A _> 1, B >_ 1, do not differ by integers. If, in addition, aj + b k 0, 1, 2 ..... then we have the equalities
res {~P* (s) z - q = f f * ' ( - - a / - - k) z~J+~ ( - - l ?
s=-aj-k
le!
res {fig'* (s) z-s}=Yg '*'
s=Ok+t
(b~+l) z % - z (-1)z-~ l[
' '
(4.48) (4.49)
(the primes in .No*' denote that from Yf* one has removed the factors I'(-k), I'(-e)), the summation of which with respect to all the admissible values of j , k, e lead to the representation of the functions (4.46) - (4.47) in the form A ]~A ( Z ) = ~
Z a J r ](C/,)" - - a,j,
[(c)--aj,
(b)+aj]
.
(d)+a/ ] ""
(4.50)
((b)+ aj, (1 - - ( c ) + a j ; ( - 1)C-az), X B+cFA+D--1~ (d)+aj, 1--(a) + a i ] B
"
~
-~k" V(b~'--bk, ( a ) + G ] v ,
XA+DFB+c--I\
(C)'+-bk,
(4.51)
1,D--B\
1 - - ( b ) +Ok
J"
If A = 0 (or B = 0), then ~A(Z) = 0 (EB(1/z) = 0). T H E O R E M 4.2. Let a 2 = a 1 + m, m = 0, 1, 2,..., and assume that the remaining parameters a 3, a 4..... a A of the vector (a) (for which A >_ 2) do not differ by integers among themselves or from the parameter a v Assume, in addition, that the vector (c) - a 2 does not contain integer components, while the vector (d) + a 2 does not contain nonpositive integer components. Then the function EA(z) has the representation
A--~ Za(Z)= x
j =2
1250
m-1 Mj+ x
l =0
oo
(
R,~t-t-~]/;?2,, X --lnz--l-~" 1~0
[(a)--a2--l, (d)+a2+~]} (c)--a2--l, (b)Wa2+ '
(4.52)
w h e r e the v a l u e s Mj,
Rile (i
= 1, 2) are o b t a i n e d f r o m the f o r m u l a s (4.1) - (4.9) i f we set i n t h e m r = 1, ql = 2, N - A -
1, a l l =
a 1, a2.1 = ag., a l j = aj+ 1, j = 2, 3 . . . . . N, r o l l = m. T H E O R E M 4.3. L e t a 2 = a 1 + m , az = a z + n, m, n = 0, I, 2 ..... a n d a s s u m e t h a t t h e r e m a i n i n g p a r a m e t e r s a 4, a 5..... a A o f the v e c t o r (a) ( f o r w h i c h A ___ 3) do n o t d i f f e r b y i n t e g e r s a m o n g t h e m s e l v e s or f r o m the p a r a m e t e r a v A s s u m e , i n a d d i t i o n , t h a t the v e c t o r s (c) - a 2 a n d (d) + a 2 do n o t c o n t a i n c o m p o n e n t s e q u a l to 0, _+1, +2 . . . . a n d 0, - 1 , - 2 ..... r e s p e c t i v e l y . T h e n t h e f u n c t i o n r.A(z ) has t h e r e p r e s e n t a t i o n A--2
~_~A(Z)= x
m--1
Mj-q-~
) ~2
~,,11,-]-
t =0
n--1
(4.53)
+,=
L(c)-a3-/, (d)+~+
:
w h e r e the v a l u e s Mj, Ril s (i = 1, 2, 3) are o b t a i n e d f r o m the f o r m u l a s (4.1) - (4.9) f o r r = 1, ql = 3, N = A - 2, a l l = a l ,
@1 = a2, a31 = a3, a l j = aj+2, J = 2, 3 ..... N, r o l l = m, rng.l = n; f o r ~[::], ~'[::] see ( 4 . 3 4 - 4 . 3 6 ) . T H E O R E M 4.4. A s s u m e t h a t the f o r m u l a s (4.1)-(4.3) h o l d a n d the v e c t o r s (c) - azj a n d (d) + ag.j, j = 1, 2 ..... r, do n o t c o n t a i n c o m p o n e n t s e q u a l to 0, _+1, _+2.... a n d 0, - 1 , - 2 ..... r e s p e c t i v e l y . T h e n t h e f u n c t i o n ~A(z) has the representation
r
q] rntj--I
j=l
IV"
2; t2;= o
2; M..
i--1
(4.54)
]=r+t
where /--1
Xt-I~---Z tn~O
A~ ~
(--Inz)m rat
OmV~_.,,
.Ai_m-l,
V~ ~ ~ OmF._m,
tn~O
m~O i
l
+== k t + . .Z II .+. .+l~t=m s=l
(4.55)
p~0
P
N p k = "~ (--1) "-' ~r r(s)(l+l+aii~aki) ~=1 ~ l~o-,,k F]'i:t--Tq-~ " W2,,,+1 = 0 ,
W ~ m = 2 ( - - 1)m+12'"~-'-I (2m)l
N~
~x2mB2m
[Bm are the B e r n o u l l i n u m b e r s ] ,
F s = -- ~ TkF~_it, F o x 1, It Tk == X
(-- 1)'~Ck-"D~ '
,'TZ~0
kl-t-...+/~c~m s ~ l
II
,~str
(c~--a~i--i) ,
ks[F (ds + atl + 1),
1251
(3,= ~
(-- 1)"A,~.,,.,i3,.,,,
ti"Z=0
IIr(",'(o,+,,,+,) let+...+kB~m s~l
kslF(bs+au+l
qi
) ,
F(US)(asj~aji~l)
s=i+l
hi+l+...+~r
IV "rXS,kS~ ka+...+kN=m s=l ~1=0
s~]
qs
A(a) 3,kS~
rn
II nt!P(ats--aH--ll, r("P(at'--ai i--t) Am=X
ha+...+nqa~k $ t = l
.ll k zltn--la. k(1)a(2)
k--0
Remark 4.1. In Theorems 4.2-4.4 the restrictions on the vectors (c) - a2j and (d) + a2j can be removed by defining in these cases the functions (4.52)-(4.55) by continuity or taking into account the reduction of the multiplicity of the poles of the function (4.37) after the use of the multiplication formula for the Gamma function. Remark 4.2. Obviously, EA(z) and Es(1/z) turn into each other if one interchanges the vectors (a) and (b), (c) and (d), z and z -1. This property allows us to express the representation of EB(1/z) in the corresponding logarithmic cases. THEOREM 4.5. In the regular (non-logarithmic) cases we have the equalities
; . ,2: , , , : o ' @ ) + a / - h , (~)+;s, (~
~r~ ~ oo
(a)+as+h, (c)+;j,- (a)- ;sJ--;- S=l ~ h=o ~ ~(-1)~R-~ x L(c)--0j, ( d ) + 0 / , ( c ) + b s + h ,
(4.56)
(d)--bs--h J
Y~_>.(II~)=_/VJVi 2 --'hT-(--l)'~ ~t'i+"z(\R; z-~lri'/X y =l/z=0 x r [(a)+oj+/z, (o)'-bs-tz, (h)-m, (z;)+ns]+ [(c)+bFJ-h, (d)--bs--h, (cS--ni, (cl)+n] J
+-.7-~ 2 ~(-,? R~s ( - ~ ) %+hX j = l /z=0 •
(4.57)
[(a)+~j, (o)-~s, @'-,Ts-h, (~)+a~+~] [(c)+~ s, (a)-~, (c)-as-tz, (8)+~s+h ' ;i=(as+h)r+a,
~}~-(bs+h)r--=, o j = @ + h - ~ ) r -I, gs=(Ej+h+~)r -~.
(4.58)
In the logarithmic cases, i.e., in the cases when the vectors (a)' -- a / - - h, (5)--~s, (b)' -- /~j-- h, ( a ) - - 0 i or (b)'--b/--~- (a)--111, (~z)'--[zs--h, (b)--~j contain nonpositive integer components, the values of E,__(5) and E_+(1/5) are defined from (4.56), (4.57) by continuity. If, in addition, r = p/q, where p and q are relatively prime numbers, then E,_(~) and E._.(I/~) can be written in terms of generalized hypergeometric functions or in terms of the limits of these functions with respect to parameters in the following manner: in regular (not logarithmic) cases
1252
y,+ (~)= NAT ~ q-' -:=1 h=o
L(c) -- aj-- h,
(O)+aj+h, (a)+~y, (b-)--~j].+iF,,,(t, A(q, t.-(c)+ay+h), (d)+aj+h, (c)+~j, (d)--~jJ \A(q, 1--(a)+ai+h),
A (q, (b) + a / + h), A (p, (a) + ;/),
A (q, (d)+ a: + h), A (p, ~) + ;:), A (p, 1 -- ( 2 ) + ;j); (-- 1)q(c-A~+p~o-"~ ~ a (p, 1 - (g) + ;:) + NN
(h:) k
-- ~"
[(a)--0j,
~=o
(b)-JcO], ('~)-Jl-b]-~]z,
[ ( c ) - 0 j , (d)+0:,
(~)+~s+h,
(b)'--b/--h] {1, A(q, 1--(c)+01),'A(q, (b)+Oj), (d)--bj--h J"+'Fm\A (q, 1-- (a) + 0:), A(q, (d)+0j), A (p, ( a ) + b j + h ) , A (p, 1 - - ( d ) + b j + h ) ; (-- 1)q(c-a)+~176 "~ -
A (p, (c~) -+- b:+ h), A (p, 1 -- (b) +
-
b:-[-h)
) ,
(4.59)
B q--I
:=~=o
[(c)+b:+h,
"
(O)'--b:--h, (a)--~U, (b)-kBj] F (1, A(q, (a)+bj+h), (d) -- b1 - h, ~)--*li, (d) + ~I/ ] m+, . \A (q, (c) + b~+h), a(q, 1--(d)+O:+h), A(p, ~)+~lj), A(p, 1--(c)+~11); A(q, 1--(b)+b/+h), A(p, (d)+~l~), A(p, 1--(a)+~l/)
[ ( c ) + ~ , (d)--~:, (c)--as--h, (d)+a~+h J X.~+aF~ (1, A(q, (a)+~/), A(q, 1--(d)+~:), A(p, 1 - - ~ ) + ~ + h ) , \A(q, (c)+~fl, A(q, 1--(b)+~j), A(p, 1--(a)+a:+h),
(4.60)
A (p, (~ + ~ + ~); ( - ~)~o-~)+~-~) o--~ A (p, (d) + aj + h)
]
where m ----q (A + D) + p (/~ + C), n = q (B + C) +_ p (.4+/9), while in the logarithmic cases ~,__(a) and ~3_,(1/a) are determined from (4.59), (4.60) by continuity. In particular, if, for example, a~=at +n, bz-----biq-m,m, n = 0 , 1, 2 . . . . . then the points s~-- --a2--h, s = --b~--tt, h = 0 , 1, 2 . . . . are, in general, double poles of the function qf * (qs+c~/r)f ~ (_ps)zOS . If, in addition, the equation rk=h_ho"
(4.61)
ho~a_~+a.~r"
a~+k ~z, s = has nonnegative integer solutions k, h, then, in general, the poles s -~+h -, whose indices satisfy equation (4.61), are also double. If all the remaining poles are simple, tt~en the ocorresponding .p function ~ ( e ) for A_> 3, B_> 3hasthe form
( A
~
\
n-1
\j=4
2~4
/
h=0
~o { [(a.)- a,--/z, (d) -1742 -l-/'t ] +Xt,=0 (--1Y+h(n+h)!S~,a In( R/~-'zr)+~F [(c)--a2--h, (b)Wa2+h + 1253
{
+ r-' n=0 ~ ((re+h)! - l)m+--------~n T'~, ~ in (RL?-rz ") + qr [ (c) -- 0~_, (b) + O~J+ (4.62)
, (,:7)+ ~ 4- ~ j]/, l-t- ,,( q a~,)
-}-rWL(E)--~2--h
~(a~)
-i-F9 r~,~
2: sh) ,o+ #(73
[(c)--Oz, (b)+0~ J +
Jr-r~ k(d)--b3--h, ( ~ ) + ~ + h A where Pj are the terms of the sum X P1 , while Qj are the terms of the sum ~ Q1 1=1
in the formulas (4.56) or (4.59),
1=1 ~
h[
X
/(c)--aj--h, (d)+aj+k, (d)--; i, (~)+;H T i 'n ~ - F -
~z j
X
hi
(o)+% L(c)-% (d)+% (d)--Oj--h, (c)+Oj+h I here by S'2,n, T'2,h and T~,~ we have denoted the quantities $2, h, T2,h, and T3,h in which the following negative components have been omitted: a ~ - - a ~ - - h , "bl--bg_--h and ~ - - 0 3 = ~ k , respectively (for h = h o + rk). The symbols
L
l(~k ) h( ,,, ) h )
denote summation with respect to all nonnegative h, for which there do not exist (there exist)
nonnegative integers k, satisfying the equation (4.61). R e m a r k 4.3. The relations (4.56), (4.57) can be obtained formally from (4.59), (4.60) by replacing the functions n+lF m and m+lFn by 1, while p and q by c~. R e m a r k 4.4. In the formulas (4.59), (4.60) the vectors of type A(p, I - - ( a ) + a l - } - h ) contain a unit component and, therefore, the order of the functions n+lFm and m+lFn can be always lowered to nFm_l, mFn_l . R e m a r k 4.5. The function Y:_.{1/~) is obtained from ~L-(6) by replacing a, b, c, d, A, B, C, D, fi, tg,...,/), R,/~, w, o, c~ by b, a, d, c, B, A, D, C, b, h ..... C, R -1, R -1, co-1, a -1, -a. Performing this substitution, one can find a representation of ~._,(1/~) in the logarithmic case of the indicated form. 5. MELLIN--BARNES INTEGRALS The functions I]A(z), P,B(I/z), ~,__(a), P~__,(1/e), defined in Section 4, have a general character in view of the large number of independent parameters. This follows from the connecting formulas between the mentioned functions and the Mellin--Barnes integrals (4.39), (4.45), given here and in Section 7. THEOREM 5.1 (Slater). Assume that the function a~* (s) has the form (4.37). If the conditions --Reaj
] = 1 , 2 . . . . . A, k = l , 2 . . . . . B,
(5.1)
and one of the conditions
A+B>C+D, A+B=C+D,
1254
A+D=/=B+C, Re s ( A + D - - B - - C )
(5.2) 1
< ~---Re v,
(5.3)
(5.4)
A=C, B=D, R e ~ ' < O , where u is d e f i n e d in (4.10), hold, then for such s there exists inverse Mellin t r a n s f o r m having the f o r m [.~A(X) f o r X > 0 , ' J-f A @ D > 2 3 @ C , /~A(x) for 0 l , 3r (x) = / if A @ D = B @ C , [~.~z~(l/x) for . v ~ O , i f ' A 4 : - D < B q - C ,
(x) o f f u n c t i o n
ae*(s),
(5.5)
and, moreover, 9Y ~ ( 1 ) = E A ( 1 ) = E B ( 1 ) , • A+D=B-t-C, Re v + C - - A + I < 0 , A>~C.
(5.6)
Remark 5.1. If for certain parameters one or several of the conditions aj = cs + n (or aj = - d m - n) [b k = d m + n (or b k = -cg - n)], where n = 0, 1, 2 ..... hold and, moreover, the vectors (a)" - aj, (b)" -- b k do not contain integer components, then f r o m the group o f conditions (5.I) one can remove (or weaken) the conditions referring to these parameters. For aj = c~. + n [b k = d m + n] the corresponding conditions ~ ( s + aj) > 0 [~R(bk - s) > 0] are removed, while for aj = - d m - n [b k = -cs - n] they are replaced by the weaker ones 9t(s + aj) > - n - 1 [9t(b k - s) > - n - 1]. If the vectors ( a ) ' - a j , ( b ) ' - b k contain integer components, then the question regarding the relaxing o f the restrictions (5.1) requires a special investigation. Remark 5.2. The restrictions (5.1)-(5.4) ensure at least the conditional c o n v e r g e n c e o f the integral (2.5), (5.5) at 0, c~ (and 1). If they are violated, then, in general, this i m p r o p e r integral diverges. H o w e v e r , in certain cases it may exist in the principal value sense (see Example 12). Remark 5.3. I f the conditions (5.1) (taking into account R e m a r k 5.1) are not satisfied and the line ~Rs = 7 does not c,pntain poles of the f u n c t i o n (4.37), then T h e o r e m 5.1 remains valid if the functions I2A(X), ~2n(1/x ) are rep!aced by 2A+(X) - P , B _ ( I / x ) a n d ~B+(1/X) - ~A_(x), respectively, which are introduced in the following manner. We assume that the line 9ts = 7 dissects both series of points s=--a~--nj, s=b~-l-nk, n~, nh=O, 1, 2 , . . . , so that f r o m the l e f t - h a n d series the points with the indices nj -- 0, 1, 2,..., p j a r e cut off, while f r o m the r i g h t - h a n d series those with indices n k = 0, 1, 2 ..... qk, where j , k are some o f the 1, 2 ..... A, 1, 2 ..... B. Thus, f o r these indices we have the inequalities Re b k + q k < ~ y = R e s . < - - R e aj--pj, (5.7)
~ R e aj--p~--I < ~ y ~ R e bk+qkq- 1, while for the remaining indices j , k we have the corresponding inequalities f r o m the g r o u p (5.1). N o w we denote by ~A+(X) and ~ B + ( I / x ) the functions obtained f r o m (4.46) and (4.47) by r e m o v i n g the terms with the indices k = 0, 1 ..... pj and g = 0, l ..... qk, for which pj and qk satisfy the inequalities (5.5). By ~ A _ ( x ) a n d Z B _ ( l / x ) we denote the sums f r o m r e m o v e d terms: Y,A-(X)=Y,a(X) - - ~ A + ( X ) , ~ - - ( 1 / X ) - - - ~ B ( 1 / X ) - - ~ B + ( 1 / X ) . With these modifications, T h e o r e m 5.1 remains valid. For example, f r o m what has been said there follows that the orin
ginal o f the f u n c t i o n F(s) for - n - 1 < 9ts < -n, n = 0, l, 2 ..... is the f u n c t i o n
e-*--~ /z=0
(_x)k kl
(see 8.4.3.3 f r o m [164]).
A more complicated case is considered below in Example 13. We have the following statement regarding the representation o f the Mellin--Barnes integral in terms o f series, more general than T h e o r e m 5.1. T H E O R E M 5.2. Let aj + b k ~: 0, -1, - 2 ..... j = 1, 2 ..... A, k -- 1, 2 ..... B. T h e n the Mellin--Barnes integral (4.39) represents an analytic f u n c t i o n o f the variable z and complex parameters (a), (b), (c), (d), which can be written in the form & (z) = ~ ( z ) =
EA(Z), A + D ~ B q - C , L=L_~, Jz[<~; A@D=B+C, L--L_o~, I z ] < l ; = ~ ( 1 / z ) , A q - D < B @ C , L-=L+~, [ z l < o o , z=/=O; A-q-D=Bq-C, L=L+~, ]z]>l;
l
(5.8)
1255
~,A(Z)=Y,B(1/Z), A + D = B - t - C , R e v W C - - A + I C .
[zl=l,
T h e r e p r e s e n t a t i o n (5.8) r e m a i n s valid also in the case o f the c o n t o u r Lioo, going f r o m 7 - ioo to "y + ioo and s e p a r a t i n g the l e f t - h a n d series o f poles o f the f u n c t i o n (4.37) f r o m the r i g h t - h a n d one, i f f o r A + B > C + D one has (5.9)
l a r g z I , < (A + B - - C - - D ) r t / 2 .
If, in a d d i t i o n , A + D = B + C, then the f u n c t i o n s EA(z) and ~ B ( I / z ) a r e the a n a l y t i c c o n t i n u a t i o n s o f each o t h e r in the a n a l y t i c i t y sector (5.9) a n d , m o r e o v e r , in the cases A + B - C - D _> 4 the cut j o i n i n g the points, z = ( - 1 ) A - c and z = (-1)A-Cr can be r e m o v e d since at the p o i n t z = ( - I ) A - C the f u n c t i o n ~2A(z) does not have s i n g u l a r i t y w h e n A + B - C D _> 4. I f A + D -- B + C, A + B = C + D a n d ~tv < 0, then, in g e n e r a l , the f u n c t i o n s EA(z), E B ( 1 / z ) are not analytic c o n t i n u a t i o n s o f each o t h e r , b u t on the axis 0 < z < oo t h e y are c o n t i n u o u s at the p o i n t z = 1: EA(I) = EB(I) i f also ~lv + 1 < 0. T h e a b s o l u t e c o n v e r g e n c e o f the i n t e g r a l ILi~ (Z) is p r e s e r v e d also on the b o u n d a r y o f the s e c t o r (5.9), i.e., for ] a r g z ] = (A + B - C - D)~r/2, i f the f o l l o w i n g c o n d i t i o n s hold:
A-ff-B>~C-t--D, ,I (A-}- D - - B - - C ) < - - 1 - - R e ~;+ 89 (A-t- B - - C - - D).
In the case A + B = C + D, f o r the c o n v e r g e n c e o f the integral Then, u n d e r the c o n d i t i o n
"f(A+ D - - B - - C ) <
I L ~ (z)
it is n e c e s s a r y that arg z = 0, i.e., z = x > 0.
--Rev
the equalities (5.8) hold, w h e r e z = x 4= l , L = Lio o. 6. A P P L I C A T I O N O F T H E M E L L I N T R A N S F O R M T O THE EVALUATION OF INTEGRALS 1~ Simplest Examples. Example 1. With the a i d o f the s c h e m e c o n s i d e r e d in Section 3, we o b t a i n the r e l a t i o n oo
(6.1)
0
The integral r e p r e s e n t s the M e l l i n c o n v o l u t i o n (2.9) o f the f u n c t i o n s
,.7tl ( t) = t~e-t, ,7{2(rl) =e -1/". T h e i r M e l l i n t r a n s f o r m s are o b t a i n e d f r o m the f o r m u l a s 8.4.3.1, 8.4.1.5, 8.4.3.2 o f [164]:
,Tg'l*(s) =s162 The Mellin transform
Re s < 0 .
,7/'* (s) o f the integral (6.1) has the f o r m ~ * (s) = F (r
1256
Re(~xq-s)~0; ~2*(s)=s
F ( - - s ) , - - R e c~< Re s = ~ < 0.
(6.2)
The integral (6.1) is evaluated with the aid of the formulas (2.6), (5.5), (4.47), (4.49), (4.8) and 1Fo(a; z) - - ( I -
z)-~: 7+ioo
oo
y--ioo
k-0 s=~
=--
F(~+k)x-k(--O~-'=r(~)--~-L-Vk! /~=0
----
(6.3)
=
/z=0
= r (o0( 1 + ~ )1 -~ , I x l > l . In front of the sum we have the minus sign since all the poles s = k, k = 0, 1,2 ..... are to the right of the integration line 91s = 7. The residue of I'[a + s, -s]x -s is obtained by a simple substitution into this function of the value s = k with the subsequent replacement of F(-k) by (-l)k-1/k! since the function r ( - s ) has a minus sign in front of s. The obtained series converges for I x I > 1. Since for the considered function Yd*(s) we h a v e A - - B = 1, C = D = 0 ( f r o m w h e r e A +D-B-C=0),it follows that the corresponding Mellin--Barnes integral (4.39) can be evaluated, not only in terms of the residues at the right poles s = k, but also in terms of the residues at the left poles s = -cz - k, this time with another convergence condition I x [ < 1: oo
X'(x)=~
res
(r[o~+s,--slx-*)~
(6.4)
k=0 s=-- ~--k
--~r(c~+k)x~+~(--l)k=F(a)x~(l+x)-% --
k[
k=0
]x[
"
The right-hand sides of (6.3) and (6.4) continue analytically each other in the analyticity sector [ arg x [ < (A +
B - C - D)rr/2 = Ir, which exists in view of the fact that A + B - C - D = 2 > 0. Therefore, the condition on ] x [ can be considered as a derivation condition and the value of the integral I 1 can be written in the f o r m (6.1). The convergence condition 91cx > 0 follows f r o m the inequalities (6.2), while condition ~1(1 + 1/x) > 0 ensures the exponential decrease at c~ of the integrand and it is obtained as the analytic continuation of the condition x > 0, under which the convolution (2.9) is considered usually. Besides, this condition can be relaxed to ~(1 + I/x) = 0, $(1 + l / x ) ~ O, but in this case one has to adjoin the restriction 91a < 1, in order that the integral (6.1) should converge at least conditionally at oo. Example 2. We consider the integral oo
I2 =
~sin bt
I tcz-I ( t 2 - tZ2)la-1(COS bl~}dt.
(6.5)
a
Here it is convenient if after the substitution
t=a]/u
we introduce the notations
I~ = 89 a~+et~-eg~' (x), 0~0,
Ydl ('r
v ~' z(v __ 1)~-I,
fsin 2rl -~/2 )
2
(6.6)
Vx From formulas 8.4.2.4, 8.4.1.5, 8.4.5.4 of [164] there follows that the Mellin transform of the functions 3%(q) have the f o r m
Yg'~(S)--F(~)F(1--c~/2--f~--S]'I --r Re(c~/2+~+s)<
~(s)=V~r[(6
+6 / 12)-/s2 + s J]'
.7/'1 (~) and
Re ~ > O,
I;
--1/2~Res~8/2,
(6.7)
(6.8)
where 6 = 1 if one considers the formula with sin bt and 5 = 0 if one considers the formula with cos bt.
1257
The product of the formulas (6.7), (6.8) gives the following expression for the MelIin transform of the convolution /~ (x) : [
6/2--s,
~*(s)---K~r(~)r L(6+l ) / 2 + s , --1/2 < Re s < 6/2,
Re[~>0,
1--~/2--[~--s]
1--a/2--s
' (6.9)
1--Re(a/2+[~).
In this case A = 0, B = 2, C = D = 1, i.e., A + D - B - C < 0 and the corresponding Mellin--Barnes integral (4.39) of Yg'*(s) has to be evaluated by the sum of the residues at the right poles s = 6/2 + k, s = 1 - a/2 -/~ + g, k, g = 0, 1, 2 ..... We assume that these poles are not superposed, i.e., (~ + 6)/2 + 13 ~ 0, _+1, _+2..... Then, by Theorem 5.1 or by analogy with Example 1 (see also (4.47)), we obtain
--(a+6)/2,
X~F~ [ (c,-+-6)/2; \(cr
1/2+6J X
--x< ~ ~,2-o ~1- (cr ] ' 1/2+6}-+- x , ~-,'- t' [[3, ( 3 + ~ - - a ) / e - - ~ J X
{ 1--[~; X a,= 2~2_(a+6)/2_~,
--A;
(6.10)
-1
(3+~_~)/2_) /
This result can be simplified somewhat by taking into account that the parameter 6 satisfies
[ c+6/2,
F [(1 += 6F)c/~2 - ~- c/ 2]
(1--6)/2+c] [(1 + 6 ) / 2 - - c, (1 - - 6)/2-t-cj =
l
='-~-
2~c-~lAY [.cos c
"
Performing in (6.10) the inverse substitution of (6.6) and making use of the fact that the pair 6, 1 - 6 assumes the values 0, 1 in some order, we obtain finally the value of the integral
I2= ~-~a"+2~+~-~b~B(1~,I--I~----~)• XIF2\
_9
2
~--~-6;-----
~cos(=/2+[~).~v~ '-I~; 2 - ~-13,
(a+2[~--2)X
(6.11)
2
[b, Re[~>O; Re(a-}-2[3)<3]. The restriction 9~(c~+ 2fl) < 3, following from the inequalities (6.9), ensures the conditional convergence of this integral at infinity. If in the equalities (6.5), (6.11) we set 13 = 1, then we obtain the value of the following indefinite integral:
i t~-i Lcosbt fsinbt} dr--
a~+~ b6 F2 ( a + 6 . a + 6 a~462) _~T_.ff 2 ' 2 ~ - 1 , ~1+ 6 ; -+
a
. , (sin (~a/2))
+O-~T ~/Z)'l.cos(~za/2)~ [O>0, Re~< 1]. This integral can be evaluated also in a straightforward manner by turning to formula 8.4.2.2 of [ 164], rather than 8.4.2.4, and performing the substitution Yg'l('0 =x~/2H(~--l), where H(O) is the Heaviside function (see (3.3)). Example 3. For the evaluation of the integral e~
Ia ~ S t~-le-ma sin bt dt 0
1258
(6.12)
we perform tile substitution pt 3 = r 3 and we write it in the form
la~p-=/~
sin 2
~
(1:3)ct/ae-'~'d'r -~-.
0
Setting then sin 2 ] f x ~ Yg'1 (x)
2~Up 3
x ~ ' e -~ ~ - ~ 2
(x),
--
x ~--T--,
lx=~/3,
I3 .~ p-~la fft'o (X),
(6.13)
we obtain the modified convolution co
I gL/'l / x -2 0
In accordance with formulas 8.4.1.6, 8.4.5.1, 8.4.1.5, 8.4.3.1 of [164] and the multiplication formula (3.16) from [116] for the Gamma function we have
63~o (6S) ~- l / ~ r[ 1 / 2 -
+3s2S+~]----
2~-' t2 ~ 3-61~ r[s--}-lx/2' s-+-(Ix+ 1)/2, 1/6--S, 1/2--S, 5 / 6 - - s ] - - V 3 - " "- " s+l/3, s+2/3, s+l
(6.14)
For the function r[::] in the right-hand side of (6.14) we have obviously A = 2, B = 3, C---3, D = 0. Therefore, making use of Theorem 5.1 under the condition -9t#/2 < ~ls < I/6, i.e., for 9t(z > -1, with the aid of formula (4.51) it is easy to obtain the corresponding value of the original P.B(1/z) = Q(z), where B = 3. Performing then the inverse substitution (6.13), we obtain the desired value of the integral (6.12):
This value contains a combination of three series 2Fs. Example 4. We evaluate the integral co
14 ~ S t"-le-Pt sin bt dr.
(6.15)
9
Here one can proceed in two ways: 1) Performing, as above, the substitutions
bi=2V~,
Y{'l (x) =x~'n sin 2 ] f x , ,7{2(x)=e -2~-112, I4=2~'-Ib-~ a~ (x),
b/p=]/-x,
we obtain the convolution (2.9) and then, with the aid of the formulas 8.4.5.1, 8.4.3.2, 8.4.1.5-6 of [164], its image
1259
(A = D = 1, B -- 2, C -- 0) and, finally, the original
(x)=xO+~,)/zp [(1-}-c~)/2, 1+~/2] 3/2
rc~+l ~ 3 2F~ ~ , ~ + I ; T ;
--x.
)
2) A different f o r m of the result in terms of an arbitrary parameter c can be obtained after a substitution of the form
t=c~, Oc=sin~,
p c = = a + c o s ~ , x-----lla,
I4 =c~x~;~ (x), ~ (t)-----e-t~~ ~
sin (t sin I~),
(rl) = e-l/nT1 - ~ .
(6.16)
Then the Mellin transform corresponding to the convolution (2.9), by virtue o f formulas 8.4.5.15, 8.4.3.2, 8.4.1.5 f r o m [164], will be
IS,
0~-- S
]
&**(s)--~r[13s ' l_lgs],
--l
[~1<112.
(6.17)
This expression differs f r o m the analogous representations (6.2), (6.9), (6.14) by the presence in f r o n t o f s o f the coefficients f l r 1. Here the analogues o f A + D - B - C and A + B - C - D are 1 + fl - 1 - fl = 0 and 1 + 1 - fl - fl > 0, formed by the coefficients o f s. Therefore, just as in the second case o f T h e o r e m 5.1, the f u n c t i o n ~ ( x ) has here various representations, continuing analytically each other through the c i r c u m f e r e n c e I x ] = 1 into the sector I arg x I < (A + B - C - D)~r/2 -- (1 - fl)Tr. These representations are obtained by formulas similar to (4.46), (4.47), (4.48), (4.49), by introducing the values o f the poles s --- - k and s = c~ + k into ~ * (s)x-q the replacement o f l"(-k) by ( - l ) k / k ! , and summation with respect to all k:
o~(x)=r(~)2sin(l~kz)(~)~ ~,
Ixl
#=0
:e{x)=r(~)x-~ si~tl~(~+k)=l{~)o{~-~~-~, l~l>t. The obtained series converge in the indicated domains and, after the elimination o f x and fl f r o m them by means o f the formulas
x=(pc--l/--f--s following parameter Condition 2 ~.
~3z~=arcsinbc,
c
f r o m (6.16), they represent and equivalent f o r m for the integral 14=c~x~(x), containing the arbitrary c. Obviously, the integral (6.15) converges for 91a > -1 and 9tp > 0 (if b > O) or ~tp > ] ~b [ (if ~b r 0). ~lc~ > -1 follows f r o m the inequalities (6.17).
Logarithmic Cases. Example 5. We prove that
I x=
t ~-1 In n
dt := ( - - 1)'~rt! ~
a
t~T ~z=O
b>a>O,
b
~,,+1 ,
"
(6.18)
~z4= O.
This equality can be verified also in a straightforward m a n n e r by differentiating both sides with respect to b; however, we make use o f the general method. P e r f o r m i n g in the integral (6.18) the substitution t = ar and extending the definition of the integrands with the aid of the Heaviside f u n c t i o n by the formulas
Sr (x) = x ~ l n ~ H (x - - 1), 15 ~ a ~ 1260
(x),
~2(n)=HCn-- 1), b tz
(6.19)
we obtain the convolution (2.9). By virtue of the formulas 8.4.6.4 and 8.4.2.2 of [164], we have
~(s) The desired value o f
(--1)"-'n! (s + cz)~+~ ' R e s < - - R e c z ;
Yd(x)
Sr 2 (s) - - - - s , R e s < 0 .
(6.20)
can be represented by a Mellin--Barnes integral o f the p r o d u c t o f the functions
(6.20): y+ioo
9g' (x) =
(--l)nn[
I
2,i
x-~
s (s + c~)~+, :ds,
~, ~- Re s < 0,
- - Re oz.
(6.21)
y--ioo
Each of factors (s + a) -~ can be written in the f o r m
(s-f-~)-~ = - - r r( (l - - a - - s )
9 This means that to the f u n c t i o n s - l ( s +
cz)-n-lthere correspond the conditions A = C = 0, B = D = n + 2. Thus, here, just as in Example 4, the second case of T h e o r e m 5.1 holds. T h e r e f o r e , the integral (6.21) for b > a, i.e., for x > 1, has to be evaluated by the sum o f the residues at the right poles s = 0 and s = - a , taken with the minus sign. At the simple pole s = 0 the residue a - n - l i n accordance with (4.48) is obtained by replacing s -- 0 in the coefficient of s-l: res Is -I (s + o,,)-"-zx -'] = c~-"-1.
(6.22)
s=O
For the determination o f the residue at the (n + l ) - f o l d pole s = - a , first one has to p e r f o r m the substitution s = - a + and to expand the integrand in powers of e up to e-l:
xae-elnx
X--.x
s (s + cz)TM
- - ~ (1 --sic9
xCL ~.~ (--~ ln x)k ~ s"+' --
--c~8"§
k=0
1
s]
~-~
~- =
j=0
x" ' ~ (--In x)e
Obviously, the desired residue is contained in the r o u n d parentheses o f the last expression: T/
res [s-l (s + oO-'~-lx -s] s~--~x
x ~1 ~ c*~§
(--~,ln /el x)k ""
(6.23)
k~O
Now, in order to obtain the value o f the integral (6.18), in accordance with (6.19), (6.21) we multiply the sum o f the residues (6.22), (6.23) by (-1)nnla a, we introduce b / a instead of x, and we change the sign o f the obtained expression since the poles s = 0, - ~ are situated to the right rather than the left of the integration contour (~t - ioo, 7 + ioo). Equality (6.23) can be obtained also on the basis of the formulas (4.54), (4.55), writing first the integrand f r o m (6.21) in the f o r m
s (s + cqn*, - - ( - - 1 ) nF
sz, s l - - c z . . . . . s l - - c z s l + l, s l + l - - o c . . . . . s l - q - l - - ~ 9 "
sl = - s,
(1/x)-""
n+l'~a3
[Re s~ > O, Re cq.
Introducing then into the indicated formulas
N = 2 , r = 1, qi =n.-~l, a~z=a~l . . . . =an+l, z = - - c ~ , a t 2 = 0 , c t = l , c z = c a = . . . = c a + 2 = 1--cz
1261
and taking into account that in the given case we have the equalities
G,,-- A(2) ,n,
l=0,
T~--Ck,
/~n+l,I,0 --
X~ (~
it is easy to obtain f o r m u l a (6.23). E x a m p l e 6. We evaluate the following integral of the product of two exponential integral functions:
(6.24) 0
After the substitution ct = r and the introduction of the notations
I8=c-~3~(x), x = b c , ,~1 (T) = ~ E i ( - - " 0 , Yd=(n ) = E i (--rl)
(6.25)
this integral will have the f o r m of the Mellin convolution (2.9). The Mellin t r a n s f o r m of the functions Ydj ('c) are given in 8.4.11.1, 8.4.1.5 f r o m [164]. Multiplying them, we obtain the value of Yd(x) in the f o r m of the Mellin--Barnes integral 1 ~' oo
.7{' (x) = ~
Yd* (s) x - s d s ,
.Td* (s) =
r (s) P (a + s) s (~ + s)
(6.26)
y--ioo
"f> 0 , - - R e c~. We consider the four cases of the disposition of the poles of the integrand of (6.26), taking into account that all of them are situated to the left of the integration contour. 1. Let c~ r _+n, n = 0, 1, 2 ..... T h e n the points s = 0 and s = - a are double poles, while s = - k - 1, s -- - a - k - 1, k = 0, 1, 2 ..... are simple poles. T h e residues at the simple poles are obtained by the f o r m u l a (4.48) by substituting the corresponding values of s into the f u n c t i o n 3r (s)x -~ with the subsequent r e p l a c e m e n t of l"(-k - 1) by ( - l ) k + l / ( k + 1)!: res
s~-k-1
res
(Yg'*(s)x-0=
r ( a - - k -- 1) (--k
(k+l)!
(--~--k
' "
P (--o~--k--
(~*(s)x-O
(--x)k+,
1)(~--k--1) --
1) x a
1)(--~--1)
(--x)/~+ t
(k+l)!"
(6.27)
s=--ct--k--I
At the double poles the residues are obtained by the method described in E x a m p l e 5, with the aid of the formulas (2.15), (2.16):
yd*(S) X - S N S s--~O
S [ I + ~ p ( 1 ) S ] - if- 1 - -
X[1--slnx]--~s
X'*(s)x-~=x
~a)
l+,(1)
~ r(--~+8)r(8)
r(a)[l+q~(a)s]X
s---d-+q~(a)s--slnx x-~--x~
r(--~______~)•
F r o m these expansions we obtain the following values for the residues:
--
1262
-s,
r (~) I , ( 1 ) _ 1 + ,
(cz)_ in x ] '
,
r (--~) x ~
res (Yd* (s) x -*)
q) (1)-[-- -~- + q~ ( - - o~)-- In x ].
(6.28)
S~--G6
S u m m i n g all the o b t a i n e d r e s i d u e s , we o b t a i n the value o f the integral (6.24): co
Z i., (c,__ k__ 1) (__x)~ X' (x) = x k=o (k + 1) (co--k-- l)(k + I ) ! oo
~Xa+l~O
P(--~--'k--l)(--x)k
= (~ZU(Tg~(~u
-§
-1(6.29)
_+x, +_2
. . . .
2) L e t c~ = n, n = 1, 2, 3 . . . . . T h e n the points s = 0 and s = - n - k - 1, k = 0, I, 2 ..... are d o u b l e poles, s -- - k 1, k = 0, 1,..., n - 2, are s i m p l e poles, while at the p o i n t s = - n we have a triple pole. T h e residues at the points s -- - k 1, k = 0, 1..... n - 2, a n d s = 0 are o b t a i n e d b y the f o r m u l a s (6.27), (6.28) b y i n t r o d u c i n g the v a l u e ~ = n. T h e residues at the points s = - n - k - 1 are o b t a i n e d f r o m the e x p a n s i o n o f the f o r m
fit'* ( s) x-s = x n§ s=-n-k-I +e
r(--n--k--I
+s)r(--k--1 +s) x_~
(--n--le-- 1 + e) ( ~ k - - I + s)
(n+k+l)(k+l)
1-{n+~+l ( ~ 1)k+~
X [l + ~p(n + k + 2 ) ~ ] ~ [ l
~
(n+k+l)!s
~z~
+ ~ ( k + 2) 8l [ 1 - - e l n x],
w h i c h follows f r o m f o r m u l a s (2.11), (2.12). Thus, we have
xn+k+~(-- 1)r~ res (9~* (s) x-O - = - ( n + k + l ) ( k + l ) ( n + k + l ) l ( k + l ) [ • s=-n-k-I
+[,,+I k + l
1 +
+k-'-~
(6,30)
~p(n+k+2)+~(k+2)--lnx].
In o r d e r to o b t a i n the r e s i d u e at the t r i p l e pole s -- - n , we have to c o n s i d e r a g a i n the c o r r e s p o n d i n g expansion in p o w e r s o f s + n = e, b u t this time w i t h the a c c u r a c y o f terms up to s 2 in the n u m e r a t o r . M a k i n g use again o f the f o r m u l a s (2.15), ( 2 . t 6 ) , we o b t a i n as a result the f o l l o w i n g e x p a n s i o n
~=_n+~
•
(--n+~)~
~0--ns
-h-+~
•
8']
(--1)= I1 .~ ~-+*(n+l)~+(~+3r
X
-~mx-t-~j,
•
~' (1)=~. Thus,
res (Jd*(s)x-~)-- x~(--1)~-'n!n Iln~ ----s
x (~(1)+~(n+ 1 ) + 1 ) +
n2 + 2 ~ ( l ) + 2~t(n+ l)--2~" (n+ +V(1),(n+
1 ) + --~-+*(1) l,(n+
~_1._~_
(6.31)
1)].
1263
Summing the residues (6.27), (6.28), (6.30), (6.31), we obtain the value of
-
=
Yg' (x):
[, ( , I - ) + ,
n--2
P ( n - - k - - l ) (-- x)k+,
--k~=O (k+l)(n--k--1)(k+l)!
@
co
&-k
+ ( - - 1)~x~+l ,~=o(n + k + l)(k + I) ( n + k + 1)! (/~ + 1)! >< X [n+}+t
(6.32)
+k-@i+*(n+k+2)+*(k+2)--lnxl+ q-
res
(if/'* (s) x-O.
3) Let c~ = 0. T h e n the point s = 0 is a quadruple pole, while the points s = - k - 1, k = 0, I .... , are double poles with residues obtained by the f o r m u l a (6.30) for n = 0. In order to obtain the residue at the point s = 0 we consider the expansion o f the f u n c t i o n ,7{*(s)x -~ in powers of s = e with the a c c u r a c y o f terms up to e z in the numerator:
ffl,,(s)x_ ~ r~(~) _~ a=0
~ e----T- X
+2"(1)+~'~*(I)+2'"(I)12
I 1 [1+,(1)8_1_6,~(1)+.~ ~
a~o e'-' e 2
"
12
e2"-~-
~ 3 2 [ ] . - - ~ l n x - ~ ~'ln2x2, ~ln~x]3' "
The coefficient o f e-1 gives the required residue: res (YE* (s) x - O = n*@(1)q'-4@a(1)+~"(1) s=ct=0
3
(6.33)
1 [12~ 2 ( 1 ) + zt2] In X + ~ (1) In 2 x--Ing-Yx
6
6
Summing the residues (6.30) f o r n = 0 and (6.33), we obtain the following value of the f u n c t i o n
Yd (x):
co
9Y'Y(x),=x = ( k + l ) . ( k ! ) 2 ln3-~x+ ,
2~(k+2)--lnx
--
(1) In2 x - - ~ -I [12q~2(1)+r~ z] in x +
(6.34)
_~ : ~ * ( ] ) + 4 . ~ ( I ) + ~ " 0 ) 3 The last value can be obtained also with the aid of the formulas (4.54), (4.55) if we set there r = N = 1, qt = 4 , /=0, [ a ] = 0, 0, 0, 0, ( c ) = 1,1 and we take into account the equalities V~=Fk, Th=Ck, R410 ~ i 4) Let c~ = -n, n = 1, 2, 3 ..... This case is similar to case 2 since the integral (6.26), after replacing s by s - a reduces to the p r o d u c t o f x a by the corresponding integral of (6.26), in which instead o f c~ one must have -~. Therefore, in this case the value of ~ ( x ) can be obtained by multiplying the r i g h t - h a n d side o f (6.32) by x -n. P e r f o r m i n g now in the formulas (6.29), (6.32), (6.34) the inverse substitution (6.25), we obtain the expression for the integral (6.24) f o r any values o f c~. This integral converges for 9~b, 9~c > 0 since f o r these values of the parameters the integrand decreases exponentially at 0 and at c~. In conclusion we note that the sums in the f o r m u l a (6.29) can be written in terms o f generalized h y p e r g e o m e t r i c functions. For example,
r (a--k--1)(--x) k k=0 (k + l ) ( ~ k ~ l ) ( k + l ) !
F(r a--1
1264
3F4(I I, I--~; 2, 2, 2--r
2--r
x).
Example 7. We evaluate the integrals I ~ = ~3 t e-I (t - - a)~-' t In (ct + a) l dt.
a
(6.35)
(ln l c t - - d l ]
For this we can use two methods: 1) Obviously,
I+ - -
dpa A (p) [o=0,
A (P)
=i t~-1(et(t-a)~-1+ el)9
dt.
tTt
For the d e t e r m i n a t i o n of A(a) we a p p l y the technique presented in Examples 1-3, which, in the most reduced f o r m leads to the following Mellin c o r r e s p o n d e n c e Yd(x)-,~-,Td* (s):
1
~ct a+~- Id-~
for a, c, d, 9t/3 > 0, ~l(c~ + 13 - p) < 1. D i f f e r e n t i a t i n g n o w A(p) at p = 0, we can obtain the desired value of 17+. 2) H o w e v e r , the value of 17+, as well as that of I7-, can be obtained in a simple w a y by a n o t h e r m e t h o d , namely by the s t r a i g h t f o r w a r d application to 17-+ of the above presented c o m p u t a t i o n scheme. Making use of the previous substitution t ----ar and of the f o r m u l a s 8.4.2.4, 8.4.1.5, 8.4.6.5, 8.4.6.7 f r o m [164], we obtain
l~-----a"+~-I
~ - 1 ( ~ - - 1)~-1 j'In ('c/x + 1) ][ l n ] f i x - - I [f d~/x=(ac)-,a +
(6.36)
Since 0 < 91s < 1, 1 - 9t(cz +/3), it follows that the double pole s = 0 is situated to the left of the contour ~Rs = 7. We introduce the notations
In accordance with the signs f o r s, the function [164]); h e r e A =--D= 1, B = 2 ,
C=0,
3~{'~(s), can be r e f e r r e d to the type
( "+- -_- - - )
i.e., for it we h a v e A + D - B - C = 0 a n d A + B - C - D = 2 .
by virtue of the equality cos s~r = 7r/I'[1/2 + s, 1/2 - s], belongs to the type
(~ /
(see 8.4.52 f r o m Function
-- --)
YdL(s)
, for w h i c h ,4 + D - S - C /
A + B - C - D :-- 0. T h e r e f o r e , the original 3~'~-(s) , corresponding to Yl'+ (x) will be an analytic f u n c t i o n in sector [ arg x [ < 2.r/2 (see (5.9)), while ,7/'_ (x) will be a piecewise analytic function with a possible discontinuity on the
1265
c i r c u m f e r e n c e I x I = 1. Function o~d'+(x) can be evaluated by any of the following methods: for I x [ < 1 it can be represented in terms of the function P~A+(x), which is the sum of the residues at the left simple poles s = - k - 1, k = 0, 1, 2 ..... and at the double pole s = 0; for I x I > 1 it can be represented in terms of the function XlB+(1/x), equal to the sum of the residues at the right poles s = k + 1 and s = 1 - ~ - fl + k, k = 0, 1, 2 ..... which m a y be s u p e r i m p o s e d on each other under the condition cz + fl = 0, -1, -2 ..... If the obtained expressions for ,7/'+ (x) are expressed in terms of the function pFq(X), then f r o m the two functions EA + and EB+(1/x) one can retain that which has a simpler f o r m , discarding the restrictions on x. T h e other function is an analytic continuation of the first one. In the case of the f u n c t i o n ,Td_(x) both sums I2A-(x)and X2B-(I/x), for any way of writing their r i g h t - h a n d sides, have to be retained since they do not continue analytically each other. Thus, replacing in if/'; (s) x -~ the value of s by - k - 1 or k + 1, or even 1 - cz -/~ + k, and then replacing r ( - k - 1) by _+(-1)k+l/(k + 1)! (in accordance with (4.48), we obtain the following formulas for the residues at the simple poles: res
(Y{'~ (s) x - ' ) =
s=--/~--I
=F[k+1 89
s
1
(k + 1) res (3~d~ (s) x - ' ) =
(6.38)
a} (--x),+, (e + 1)! '
s=k+l
--a--/~ res
(6.39)
(~ + 1)! '
( ~ : (s) x-~)----- - - r [1 - - a - - ~ l + ; ' _ _ ~ + [ ~ - -
1 - - k ] )<
s=l--~--~+k
X(cos(1--c~--~+k)
. -~.~
~+[~#o, -L
(6.40)
,
-2 ....
(the minus signs in front of r[: :] in the last equalities appear because of the minuses in f r o m of s in the arguments - s and l - e - fl - s, which are related with the corresponding right poles). The residues at the double poles s = 0 and s = n + k + l, k = 0, l, 2 .... (for c~ + fl = -n, n = 0, 1, 2 .... ) are c o m p u t e d as in E x a m p l e 6, f r o m the following expansions in the powers of e: 9 1 [1 + r Ed++_(s)x-'N W S~8--~O
9=.+k+~+,
1 [ 1 - - ~ ( 1 ) ~ ] r (1--a--I~) _----7r(1--a) X[1--~(1--~z--~)el[l+~p
[~--/~-- e
cos(n+k+
(1--~)~][1--elnx],
1+e)=
.~0 r n
1
a+f~=-n
X [1-4:-, ( n + k + 1) el [1 + 4 (13-- k) ~1•
(--l)"+k+l --(,,+ k + ~)t [ 1 - - , ( n + k + 2 )
a] (-1)* [ 1 - - , ( / ~ + 1) , l x
X { ( _ 1;.+k+l} x-~-k-~ [1 - - e In x ] . The coefficients of e -1 give the required values of the residues: res s=O
(ark
x-,)=
[ 1 - -t--c~ ~--[3] [, (l_~)_V(l_ = --r L res s=n+k+l ~+~=-n
X [,(n+k
( *,1~ ~,y-t'=,s,x-,,=rL + 1)+,
[ n + k + 1] (-- 1)n+~x-n-k-~ ( +_1)~+k+l
([~-- k ) - - ,
[3--k j
(6.41)
~ _ ~ ) _ l n x],
(n+k+l)!kl
(n+k ~2)--,(k
X
(6.42)
+ I) - - In x].
S u m m i n g the corresponding residues (6.38)-(6.42), we obtain the following expressions of the original of the function (6.37): cc
,9g'+(x)=~,
res
k=O s ~ - - ~ - - I
1266
* -8 (,3f*+_(s)x-*)-kres(Yg+(s)x), s=O
Ix[<1,
(6.43)
~"~"~ s ~ - ~ + l
=
]x[>l,
s=I-c~-13+~
~z+[~@0, - - 1, - - 2 . . . . .
n--I
(6.44)
oo
res (~;(s)x-~)--~_~
,7/'• ( x ) = -- x k~0
s=k+l
k=0
[xl>l,
a+l~=--n,
res s~n+k+l
(i~l'*~(s)x-'),
(6.45)
n=0,1,2 ....
(the minus signs in the last formulas are due to the fact that one sums the residues at the right poles). Introducing now the values (6.38)-(6.45) into the formula (6.36) instead of the function (6.37), replacing x by (ac)-~d, carrying out transformations, and expressing some sums in terms of the functions vFq, we obtain finally the following expressions for the integrals (6.35): d
I ~ = + e (i3, 2 - - ~ - - fi) 7 a,~+o -2 •
•
1, 2 - ~ - ~ ;
2, ~-~: ~
d ~-)+
+ B ( ~ , l - - a - - ~ ) a ~ + t 3 -1 [~ ( 1 - - a) - - ~b( 1 - - a - - [ l ) + l n ( a c ) ] ,
[dl<[acl, arZ+~-2d
B(~,--~-~)3e~(l, ~, ~+~; ~ + ~ + ~ , 2; A-
~)•
__.
~' 1--~'---~
[ ctg (a + [I) r~ J )'( (6.46)
-~-B(~, 1--a--~)~.a+~-ltrid,
[dl>lact,
o~+~--/=0, - - 1 , - - 2 . . . . .
r/--i
[~=-+a~+~-2d X (a+l)k (7) ------~--B ( 1 ~ , - a - - [~) (k + 1 ) ( a + p + 1)~ -~
k_
k=0 "co
[ [dl>lac[,
a-b~--n,
n=O, 1,2 . . . . .
Obviously, the integrals (6.35) converge under the corresponding conditions a, R e i g > 0 ;
Re(a+[~)<(1,
f[arg(cx+d)l<~ I c, d > 0
for
a~
which in the cases ac + d = 1 can be relaxed somewhat. The expression for I7 +, by virtue of the analytic dependence on (ac)-ld, is valid also for [ d [ > [ac [. 3 ~. Functions of Exponential Growth. Example 8. We evaluate the integral oo
I8= ~ t"-Ie-atoF2 (b, c;
-- zt) dt.
In order to transform it to a convolution form, we perform the substitution
~,(T)=*%F2(b, c; --*),
(x) = z~Is,
(6.47)
zt = r and
X'2(n)=e-'/~,
z
a
1267
On the basis of the formulas 8.4.51.1, 8.4.1.5, 8.4.3.2 from [164], we have the relations
~ (~) ,~--~ ~e~'(s) = r [b, c] r[b[ ~ -+ s~ - s, c - a - s l ' s=--a--kE~0
~(s)=r
+,
k=0,1,2 .....
(-s),
~,=Res <0.
The first of them means that the Mellin--Barnes integral (4.39) of Yd~*(s) converges only along the left loop L_~, containing all the left poles s = -e, - k, situated in the domain ~ + to the left of the contour L_oo. This loop cannot be straightened into the contour ( ' / - ioo, 7 + i ~ ) since for Yd~*(s) we have the inequality A + B - C - D -- -1 < 0 and corresponding function Yd~0;) increases exponentially at 0% having a principal term of order O(~ca~-b-~+~e30/3/2). Therefore, the Mellin transform of Yd~('c) does not exist. Making use of Parseval's equality (2.12) and of Theorem 5.1. for A + D = 3 > B + C = 1, it is easy to obtain the value of the integral (6.47) in the form Z
I8=a-~F(~)~F2(~; b, c; ---d )' Recx>0. This integral remains convergent for 9ta > 0 and for arbitrary arg z since the function e - ~ at oo decreases exponentially faster than oF2(b, c; -zt) increases exponentially. Example 9. We consider the integral co
i9 ~ j" t ok-1e-~tI~ (bt) dt.
(6.48)
0
Turning to formulas 8.4.3.2, 8.4.1.6, 8.4.22.1 from [164], here we could apply the arguments from Example 8 since for x --* + ~ the function Iu(x) increases exponentially. Instead of this we shall make use of formula 8.4.22.3 from [164]. For the functions e-X/2I~,(x/2)we introduce the notations
*=2bt,
2b x-- a--b '
~1
(rt)=e-1/nq c*, (6.49)
Yg'2(x)=e-~/2I~(~),
Yd(x)=x-~(2O)~I 9.
Then the integral (6.48) turns into the convolution integral (2.9). Multiplying the images convoluted functions, we obtain Yd*(s)=--~F[ Computing the original integral (6.48):
3~(x)
sq-v'lq-v-sl/2-s' ~ - - s ] , - - R e v K R e s < l / 2 ,
3tdj*(s), ] = 1 , 2
, o f the
Rea.
by Theorem 5.1, after the inverse substitution of (6.49) we obtain the value of the
I
(2b)~,a 2v+l;
b~_~_vp[~-~l/2, a-j-v]2 F ( ~ + 1 , 2b ~. ~),
Re(a+v)~0,
Rea~]Reb]~0
(z+u; (6.50)
(condition ~ v > - 1 / 2 can be omitted here, being a derivation condition). Example 10. We consider the integral oo
Iao=S 0
1268
t~.--I
K~(at)I~(bt)dt.
(6.51)
Making use of formula l~(z) = (-i)~Jv(iz), we transform the function I u into Ju, for which the Mellin transform exists. Then the integral (6.5 I) assumes the form co
I10-- ( - - i) v j' t~-lK~ (at) Yv (ibt) dr. 0
From here, after the substitution
t~
bi '
x ~ -- ~a ,
X'~(~I)=K~
V-
~
'
we obtain equality (2.9). The images of the corresponding functions can be found by making use of formulas 8.4.23.2, 8.4.t.5, 8.4.19.1 f r o m [164]. Multiplying them, we obtain
3r
1
(s)=-~ F
[(aq-~)/2--s,
(a--~)/2--s, lq-v/2--s
--Rev/2
v/2-t-s]
'
Re (o~ + ~)/2.
Now, with the aid of Theorem 5.1 it is easy to find the original ff/'(x), and then the value of the integral (6.51) itself:
X~F~ c,+ + v , Re ( ~ + v +
2
'
(6.52)
a~'
ix), Re(a__+ b ) > 0 .
Setting here # = 1/2, replacing c~ by c~ + 1/2 and making use of the formula (6.52) we can obtain the equalities (6.48), (6.50). 4 ~. Some General Integrals. Exarnple 11. We calculate the integral
Kt/2(x) =l/zt/(2z)e -z,
from (6.51),
(90
lu(x)=Sta-le-x/t-trdt,
r>0,
x@0.
(6.53)
0
Setting
f f d 1 ( x ) = e -x,
3f2(x)=e-xrx%
and taking into account formulas 8.4.3.1, 8.4.1.5 - 6 from [164] and (2.5), (2.9), (2.11), we obtain the equality
(6.54) Res >0,
- - R e oz.
The function (6.54) differs f r o m the Mellin transforms Y{~*(s) of the previous examples (except Example 4) by the presence in front of s of the coefficients 1 and r - I , where, in general, r ~ I. The analogues of the dimensions A, B, C, D for it are the quantities 1 + r -1, 0, 0, 0. Since A + D - B - C = I + r -a > 0, it follows that the original I n ( x ) for the image (6.54) must be evaluated in terms of the residues in the two series of left poles s = - m and s = -c~ - rk, m, k = 0, 1, 2 ..... which may be partially superposed if the equation
m--rte=~z,
m, k = 0 , t, 2 . . . .
(6.55)
is solvable. 1269
!) Assume that equation (6.55) is not solvable in integers. Then all the poles of the function (6.54) are simple and, moreover,
s=--m res
s---a-lz r
m!
{F[s, L-~]x-~}
(--lpr i,(_cz_kr) le I
x~+kk.
For the derivation of these formulas we have made use of the equality (4.48), but in the second case the coefficient r -1 of s has led to an additional factor r in the right-hand side of the formula. These residues can be easily summed, leading to the value of the integral (6.53):
o~
oo
IlI (de) = m~=0-~-'~r Ia ('~--~)(--'"xT)m-~'X~ k--0 ~ I~ (--~--kr)/~!" ( - - Xr)k'
(6.56)
Since the integral (6.53) converges for all r > 0 and a, not only for x > 0 but also for 91x > 0 (or ~Rx = 0, x ~ 0 and 91a > -1), it follows that the equality between (6.53) and (6.56) is preserved for any r > 0 and ~Rx > 0 (or 9tx = 0, x 4,0 and ~Rc~> -1).If a ---, m - k r , m, k = 0, 1, 2 ..... then the left-hand side of (6.56) is continuous; therefore, also the right-hand side of (6.56) is continuous, where for a = m - k r one has an indeterminacy of the oo -- oo type. This indeterminacy can be solved by continuity or by using the residues at the corresponding double poles s = - m = - a - r k . 2) We assume that the equation (6.55) is solvable for some values of m and k. In order to determine the residues at such double poles s = - m = - a - r k , we expand the functions (6.54) and x -s in powers of ~ = s + m = s + a + r k , taking into account in the numerators of the terms containing ~1 (see Examples 5-7): I ~ , ( s ) x -~
1 (_~)~ [1+8,(.z+~)]
~0 r
m!8
r(--1)ky k~ --
X [1 q - -sV , (k q- 1) ] x'~ [1-- ~ In x]. Multiplying these expansions and separating the coefficient of e- i , we obtain
res
(1~1 (s) x -~) =
1)m+kxm [~l~(rrt+ 1) + ~I- * ( k + "=: ( - - m.k'
1)-- In x ].
Thus, in the general case we have 1 In(x)=
X
~2)
[ap(l+m)+~-,(1-4-k)--ln
X]
(--1)rn+kxm
re!e!
m=~+kr
m,k
where the symbol
2)
Z( m=~x+kr
denotes summation with respect to all the double poles, i.e., with respect to all m, k = O, 1,
2 ..... connected by the equality (6.55), while
~ ( 1 ) denotes summation with respect to the remaining indices m, k,
tt~k
which correspond to the simple poles. The empty sums are replaced by zero. 3) Assume now that r is a rational number: r = p / q , where p and q are relatively prime natural numbers. We show that in this case the function (6.56) can be written in terms of generalized hypergeometric functions. For this we transform r ( - c t - k r ) according to the formula F(z)r(1 - z) = r / s i n Zr and then according to the multiplication formula: ~p--Ct--kolq--1/2
I' ( - - ~ - - k r ) =
~ n (cz + k p / q ) z P i l + ~ + k p / q ) ~--- - -
O--1 l=0
1270
(2Z~)(p--I)f2
Let k = nq + j, where j = 0, 1, 2 ..... q - 1, while n = 0, I, 2 ..... Then, with the aid of the formulas of Appendix 11.3 in [164], we obtain the representation (-- l)r
r(-oc-kr)=
12-rip (2g) (o-1)12
sin (]r -}-a) z~~
P n .q-
l=0
( __ p ) _rtp
sin(jr+cQM'(jr+l+c~)
off(-~--4 l + a +pl )n l=0
(--- p)-nPr ( - - s - - j r )
II'[J l=0
l+ct+t
i-g+
)n
p
If we perform similar operations also with c r ( - ~ - ~ ) , ml, kl, then equality (6.56)can be written in the form
Iu (x)=
o-1 rilH(i'q-lq-l~
~=0 n=0
q-t II/i--r
/=0 q--1
q_x ~ ' ~
=
l-t-l\
ol,--?--+-7-).
eo
~'~
_ q - ~ q ( - - p ) ~ (--cr
J l X) nI t( = J +o \l +ql
j
= (J~-7+ l + ~ + l ) n O
p--I
~--i (-7-)
5' (--W
(1; A(p,i+l), a(q,
t=O
(6.57)
q--I
i=0
X1Fp, o(1; A(q, j - t - l ) , A(p, 14-, co-t-jr); z),
Z ~- ( -- 1)P+qxPp-Pq-q, where A (p, ~) - ~-, ~ p+ I " ' "
.~ + pp- - 1
We note that, since the vector A(p, i + 1) contains a component equal to 1, the function aFp+q from (6.57) reduces to oFp+q_l .
4) If in the relations (6.53), (6.57) we set r = 1, then we obtain the known formula
~t~-ae-*/t-tdt=F (C~)oFa(1 --r
x)q-x~F (--cr
oF, (1-1- c~; x ) =
0
2x~/2K~(21/r-.~)[Rex>O]
or
[Rex=O,
x@O,
Rea>--l].
Example 12. We evaluate the integral o~ l Lct_le_p t
I12~-- ~
dr, y, r>O.
(6.58)
0
A f t e r the s u b s t i t u t i o n t = ry a n d
Y/'~(rl)=e -~/n, X =(pL])-I
..~2('t')=cr__l,
1 1 2 = y a - - r ~ (X)
(6.59)
1271
we obtain the convolution (2.9). The formulas 8.4.3.2, 8.4.2.6, 8.4.1.5 -6 f r o m [164] lead to the relations
Y,f~*(s)=F(--s), Res
O
r ctg--/--n,
Thus, by virtue of f o r m u l a (2.12) we have
:~ (x)
n
=
- - -2•ir
v co
[(a-k-s)/r,
1--(a-q-s)/r,
--s
v-i~ r [1/2q-(a-~s)/r, 1/2--(~+s)/rJ
x>O,
] x_~ds, (6.60)
r--Rea.
--Rea<~=Res<0,
Here, the analogue of the expression A + D - (B + C) o f T h e o r e m 5.1 is the quantity r -1 + r -1 - (r -1 + 1 + r -1) < 0. Therefore, the integral (6.60) has to be evaluated by the sum o f the residues at the poles s -- k, s -- r + r e - a, k, e -- 0, 1, 2 ..... We assume that all of them are simple; for this it is sufficient that the condition of non-solvability be satisfied for the following Diophantine equation:
rl--k=o:--r,
k,l=O, 1, 2 . . . .
Then, by the same m e t h o d as the one used at the derivation of f o r m u l a (6.56), we obtain
.71' (x) = - - 7-
~
ctg-7-
a+
k=O
i:(-') " ' r rL 3 / 2 + l , r,=o---F--
-1/2--1J
lx ' .... ,/l"
Performing the inverse t r a n s f o r m and making use of a f o r m u l a for the G a m m a f u n c t i o n f r o m A p p e n d i x II.3 o f [164], we finally obtain the following value o f the integral (6.58):
112=
F-
~
ctg-7--- ~ +
k=O co
pr
(py)", r, g, R e ~ , R e p > O . I,-O
Conditions for its c o n v e r g e n c e follow f r o m the conditions in (6.60) and f r o m the requirement for the convergence of the integral (6.58) for complex p. We mention that in [618] a detailed investigation was p e r f o r m e d of an integral o f general form, containing a product of an exponential, sine or cosine, and generalized Laguerre polynomials. 5 ~ Integrals of Several Functions of a Special Form. Example 13. We consider two integrals o f the f o r m
L
oo
r
0
9=
(6.61) "
L
]=0
9@--1, --2, --3 .....
1272
]t
I13=
~--'
e- p ~ -
t
(--tr~2)J
][
(c~'~-~ k r (
2K,~(c+)
j)
j=O
]=0 v = O, + l ,
+2 .....
where g and m are integers such that in the first case [ r n - k + ~ l ( c ~ - p ) [ < l, in the second case [ m - k + 9 1 v [ < 1, and in both cases -2 < g + k + ~tp < 0. Performing, respectively, the following changes of variables and functions
t=pr, ~,(n)=r(o)
x =pz ,
~z=p+v,
[0+n)-~176162 j=o
1,3---- P-~ n-o
jt
(x),
,
(0)j (--~)-J ] j!
j=O
(6.63)
I
2 V T ~- cr,
C2
x=Tfi,
~o/~J ' ~z=29-I-v, llz=2V-'c-vp-OK(x), j=o
J!
'
k
(0 = 2t"K
(2 V r ) -
r
(6.64) Jl
( --
t)i
--
1=0 P
j=0
(--v--j) jt (--04
in both cases we obtain the Mellin convolution formula (2.9). In order' to find the Mellin transform of functions o~, 0 l ) , Jg2(t)we make use of formulas 8.4.2.5, 8.4.3.1 2, 8.4.23.1 from [164], expressing the Mellin transforms of the functions ( l + x ) - L e-*, e -~/~, K~(2t/x). It is easy to see that a~, (TI) differ from the enumerated functions by the absence (or presence) of segments of Taylor series in the neighborhoods of the points 0 or oo. By virtue of formula 8.4.3.3 from [164], we have 17l
e - ~ - ~.~ ~ , - + F j=O
(s)
[ - - m - - 1 < Re s < - - m].
(6.65)
Taking into account the values of the residues from the equalities (6.3), (6.4) and assuming that the line (7 - ioo, 7 + ioo) intercepts k + 1 left and g + 1 right poles, from formula 8.4.2.5 of [164] we derive the correspondence
r
(v) i (1-1- x) - ~
k (P)i (--x)J j=O j[
~,t (o)j(--x)-J ]
--X-O~= 0
j]
]~"
(6.66)
,~r [s, o - s ] , [Re [~+l, - - k - - 1 < Re s < Re p - t - l + 1, - - k ] (here the functions EA+(X) and EB_(X)from Theorem 5.1 and Remark 5.3 assume the values
,
x-O ~ (P)j(~ x .j =0
)_g_)
j ~_~ (P)J (--x) i!
and
j=k+,
. Obviously,
in this case p, e, and k must be connected by the condition -2 < l + k + ~lp < O.
Otherwise, the mentioned line does not exist. If in formula (6.65) we replace s by s + v, and also s by p - s and m by e, then we obtain the correspondences
[
~, (_x)l ..
L j=~ j! J I - - m - - R e v - - 1 ~ R e s ~ - - m - - R e ~],
(6.67)
1273
(--
x-o e-~/~--
~I' (0-- s)
[Re O + l < Re s < Re 9 + l +
(6.68)
1].
In a similar manner, from formula 8.4.23.1 of [164] one derives the relation
i!
1=0
( - x F - x~
2
It
j=O
( - x)J (6.69)
~ r [s, s + "~l I--k--l, --m--Rev--1
--k].
It should be mentioned that the correspondences (6.66) and (6.69) hold only under the conditions p ~ -1, -2, -3, ... and v = 0, _+1, _+2. . . . . Otherwise, their right-hand sides have multiple poles and instead of the indicated correspondences we have r
IS 1
- - -e
~] (~-V-4-i7 ( - - X ) T - - I 2-1 ~ (1, 1; r + 2 ; - x ) + ( oj~
r--/~--I
1)r-lxk+l •
xY
j~__o(k + ] + 1)1 (m--k
[--9=r-~k+
1)I [q~(k + j q- 2) -- ~ ( r - - k -- ] ) - - lnx[
1, k + 2 . . . . ; - - k - - 1 < R e s <
--k];
C~
F [s, n-t-s],-,(-- 1)"xk+a~
#
1=o (k+ j ' t ' l ) t ( k ' t - j m n ' l ' l ) l
X
[~p(k + j + 2) .-t-~ (k + j -- n-t- 2)-- In x] [ ~ = n - ~ 0 , 1, 2 . . . . . k; - - k - - 1 < R e s < - - k ] . Multiplying the obtained Mellin transforms of the functions ou{'~(x), a~2(x), i.e., the right-hand sides of the formulas (6.66), (6.67) and (6.68), (6.69), by the convolution theorem (2.3) we obtain the following formula for the Mellin transforms of both integrals:
~ * ( s ) = r [ s , v+s, o--s] [ - - k - - l , - - m - - R e v - - l , Re p + l < R e s < R e p-t=l+ 1, - - m - - R e v; --k].
(6.70)
Making use again of formula 8.4.46.1 from [164], we obtain the following correspondence:
r [s, v + s , p - s l ~ r [o, p + v l ~(p, 1 -,~; x ) -
~ r [~--J,p+J] ]I
m
(__x)/_xv x
] =o
r [--~--1,j!p + v + j ]
(--xy--
j =o
(6.71)
l
x-~
P [P+J'
P+~+]]/
fi
,--
x)-]
.
[9#--I,
+__1, +_2. . . . ; - - k - - l , - - m - - R e v - - 1 , /+l,
--m--Rev,
--2, --3,
....
" v4:0,
Rep+l
For v = n _< k this correspondence turns into
r[s, n + s , o - s l u r n--1 j =0
1274
[p, p + n ) ~F(p, l - a ;
X)--
l
v [ n - j , p + j l ( _ _ x ) J _ x _ o ~ rio+J, ~+n+ Jl ( - x ) - J - j! jl j=O
k--n
(_x)~ ~ r(p+n+ l) xj i=o (n+j)!j! [q~(n+j+l)+,(j+l)-~ ( p + n + j)--lnx] [p@ --1, - - 2 , - - 3 . . . . ; v-~n~O, 1,2 . . . . . k; --k--l, Rep+l
(6.72)
while f o r u = n _ _ , k a n d p = - r < - k i n t o
F [s,n+s, --r--s]~, r--k--1
~-* (--1)k+r+n xk+l X (--x)] '" 2 (k+j+l)l(k~-j--n+l) (r--k--j--1)t X j=o {ln~ x - - 2 [~ (k + j + 2 ) + a p ( k + j - - n + 2 ) - - ~ z 2 + , ~ (k + j 4 2 ) + ,
(r - - k -- j)] In x +
2 (k + j - - n + 2 ) + , z
( r - - k -- ] ) - -
, ' (k + j + 2 ) - , , (k + j - n + 2 ) - , ' (r - k - ] ) + 2~ (k + j + 2) ~ (le + j --n + 2)-- 2o2(k + j + 2) ~p(r-- k - - j ) - -
- - 2 , ( k + j - - n + 2) , ( r - - k - - j)]+ ( - - 1)n xr~:I
(6.73)
llxJ
j=o (r+j+l)t(rq-j--n+ 1)1 X
[,(r + j + 2 ) + , ( r + j - - n + 2)~,a;(j + l)--lnx] [ n = O , 1,2 . . . . . k; r = k + l , k + 2 . . . . ; - - k - - l < R e s < : - - k ] .
We denote by fir(x) the functions given in the right-hand sides of the formulas (6.71)-(6.73). Their form depends on the conditions on the parameters v, p, but in all cases the right-hand sides of these formulas express the desired original Yf(x) , whose image has the form (6.70). If in the obtained expression for ,7f(x) we perform the inverse substitution of (6.63), (6.64), then we obtain the corresponding values Iz3 and I13" of the integrals (6.61) and (6.62). If - m - 1 < ~ s < -m, then it is convenient to transform the right-hand side of (7.65) into the form
r (s)'=(-1)m+'r [ s + m +l'- s - m - s ] "
(6.74)
To formula (6.7'4) one can apply directly Theorem 5.1 since gl(s + m + 1), 91(-m - s) > 0. Making use of Theorem 5.1 in the case A = B = D = I, C = 0, from the right-hand side of (6.74) we obtain easily the correspondence F (s) ~ (--x)m+' r (m + 2) 1F1 (1;
m+2; --x),
which, together with (6.65), leads to the equality _
O; ,,, +
-
r
_
+
In the same way, with the aid of formula (6.74), the function (6.70) can be transformed into
~ * (s)~-(-- 1)l+~+k-lr I S + k + 1, - - k - - S , S+ ~ + m + 1, [ 1--s, 1 --v--S, --~--m--s, s--p--l, l+p+l--s l s--p+l
1275
We mention that in this case the formal application of Theorem 5.1 would have led to an equivalent, but significantly more complicated finite expression. Now, if in the inequalities from (6.70) we perform the substitution u = a - p (for the integral (6.61)) and p = (c~ u)/2 (for (6.62)) and then we add the restrictions ] arg z I < 7r, 91p > 0 for the integral (6.61) and 91c, ~lp > 0 for (6.62), then we determine all the convergence conditions for the integral (6.61) in the form IRe (c~--p) + m - - k I < I, - - 2 < R e o~qzmq--l 0 , and for the integral (6.62) in the form
--2O. The conditions 91p, 91c > 0 mean the exponential decrease at c~ of the functions e-p ~, e-p ~' and K~,(cr), the condition I arg z I < r means that z ~ (-c~, 0), while the remaining conditions are a direct consequence of the existence of ~Ils, satisfying the system of inequalities from (6.70). 6 ~ Integrals Reducing to Multiple Mellin Convolutions. Now we consider two examples of integrals that are reduced to the multiple Mellin convolution (2.10) for n = 2 with three functions ~ j (t). In the first example we make use of the series decomposition of one of the functions o~5 ; in the second example we apply formally the computation scheme from Section 3. Example 14. We evaluate the integral cx~
N~ (b, p ) : S ~-~e-~'~'-Pr err (c'0 dr.
(6.75)
0
Turning to 8.4.3, 8.4.14 from [164], we note that in the table there are given functions which allow us to evaluate this integral only in particular cases, when p = 0 or b = 0. We assume that the value of Na(b, 0) has been found. Then it is easy to express also the value of the integral Na(b, p) if we take into account that the function e-P'can be expanded into a series of powers of - p r and if we assume the possibility of the t e r m - b y - t e r m integration of this series: oe
~ (_p)k ~v~+~ ~r (b, 0). N= (b, p ) ~ ,z~"---s
(6.76)
/~0
In order to determine (6.75) we perform, in the integral N~(b, 0), the substitution
b~=V-t,
cl/x=b,
X l ( ~ ) = e r f ( l @ ~ ), (6.77)
,7l'2 ('0 ~e-~'cr
,7t' (x)= 2b =N~ (b, 0),
after which we obtain the one-dimensional Mellin convolution (2.9). Turning to the formulas 8.4.14.4, 8.4.3.1, 8.4.1.5 from [1641, we find the product of Mellin transform 9g'* (s) =,Jr (s)Jf2* (s) in the form ,Y/'* ( s ) = I--~--F I s ~' l / _
sSq-C~/2'q1 1/2--s],
0,--Re~/2
The preimage ,7/'(x) of this expression is evaluated with the aid of Theorem 5.1. After the inverse substitution of (6.77) we obtain
Na(b, O ) ~
-I.-~-1
/2b
~ ' a q - 1 ) . ~ (1 aq-1 3 zt'l 2 ' 2 ; 2;
cl ( ~
Recz> --1.
1276
c2 )
bz '
Replacing in this equality a by c~ + k, we form and evaluate the series (6.76), dividing it into two series with even and odd indices k:
b-c'-~c V~
N ~ (b, p)
~_ ( k,
p~kr((a+k+l)/2+m)(I/2),~ /
o - - ~-]
kl (3/2)raml
c~
c'~"
k--~'}
21~
(6.78) ]/-~"~+I F
a~J'l
7;" ' 2' 2' 2;
b~'
3
V~-0~+2 cp r ( 2 ) l+t S1l ( , ~ _ . A y l , ~ ;. 1 ~3 _~;
4b 2
cz , _ ~ p') " b2
For the derivation of the last part of this equality we have used the duplication formula for the Gamma function (see Appendix II.3 in [164]) and the notation of the degenerate hypergeometric function of two variables ~l(a, b; c, c'; w, z). Taking into account the asymptotic properties of the function erf(x), it is easy to establish that for the convergence of the integral (6.75) at oo it is sufficient if one of the following groups of conditions holds: a) ~ > - I , 9~(b9) > max(0, -~(c2)); b) ~ > -1, ~(b z) = max(0, -~(cZ)), ~ p > 0; c) ~l(b2), = max(0, -~(c2)), ~ p = 0 and ~l(c ~) < 0, 1~1~ I < 1 or ~ ( c 2) > 0, -1 < ~la < 0. Under these conditions, the term by term integration of the series in the interval (0, oo), carried out above, is legitimate and the integral (6.75) takes the value (6.78). Example 15. We evaluate the integral
i t~-l (tr--ar) ~-lsin(btu)[cosctjdt, /si n ct~
11.5=
r, tt>O.
(6.79)
a
After the substitution t =
ar and ,7/'1 (x) ='c~ (a : r - 1)~+-',
,Td2(X)= sin x-u,
9 , (sin~-'] t,~ 3 ["C)=~COS ~.-1~, I15=a~+~-~YC(xl, x2),
a-'b - 1 1 ~ xl,
(6.80)
(ac)-l= x2
we obtain the equality (2.10), where n = 2. By virtue of the formulas 8.4.2.4, 8.4.1.4-6, 8.4.5.4 from [164] and (2.77), (2.10), (2.13), the Mellin transforms of the convoluted functions have the form
Yt; (sl q- s2)= rr@ v [1--~--(~+ s, + s2)/r] ' ~[ 1--(~-k-s,+s2)/r J' Re l]> O, 9g'~(s,)
=
Re(s,+s2)
V-~- 2-~,/u-,F [1/2--s,/(2u)] / l + s , / ( 2 u ) J'
ff/,~(s~)=if~-2-~r~Fr[(1(6-sz);2 ] + 6 + s2)/2J'
[R~s,l
--1 < R e s 2 < 6 ,
where 6 = 1 if from the two functions Y/'a(x) one takes the function sin r -1, and 6 = 0 if one takes the function r -1. Thus, by virtue of the equalities (2.8), (2.13), the problem of the evaluation of the integral (6.79) has been reduced to the determination of the value of the Mellin--Barnes double integral
~(xl, 9"~2! ~ = 4 nr(13) v'ii~176 v'i~~176 [(6--s2)/2, ~ ) 2 (2x2)-~'ds2 r 1(1 + 6 + s2)12, y~--ieo
y1--ioo
1277
1/2--sl/(2tt), 1--~--(~+ sl+ s2)/r] 1--(~+sl+s2)/r (21/~x,) -~' dsl.
l~Sl/(2tt),
(6.81)
We evaluate this integral with the aid of the residue theory, without dwelling on the question of the justification of the intermediate operations. If we fix the value of s~., then in general the poles of the integrand in the plane sl are the points s 1 = u + 2uk, s 1 = (1 -/~ + k)r - a - s 2, k = 0, 1, 2 ..... Introducing these values into the integrand and replacing r ( - k ) by 21ri(-1)k/ (k!~o), in accordance with (4.48), (4.49) we obtain fig'(X,, X2)=
~r(ts)~ ~(--,?{(2!mxl)-~-2~k2ttX
4ur2~i
k=0
W~~~176[(6--S2)/2, 1--~--(c~+tt+2ttk+S2)/r F [(1 + 6 + s 2 ) / 2 , 3 / 2 + k , (1 --(~+tt+2uk d
yz--too
] +s2)/rj X
)< (2x~)-*~dsz+ (2t/Ux~) ~-(1-~+n)~ r X w+~i~176 F [(~-- s2)/2, 1/2--((.1 --~+ k) r - - ~ - - s~)/(2u), [(1+6+s2)/2, l + ( ( 1 - - ~ + k ) r - - o ~ - - s 2 ) / ( 2 t ~ ) , d
]
~--kJ X
~ls - - i oo
ds 2j.
-)
s2=6+2l, s~= (l---~.+l)r--~z--u--2uk, s2=6--}-2l, s2---=(l--13+k) Taking into account that, in general, the points r--a--u--2ul, l = O, 1, 2 . . . . are simple poles of the last integrands, using again the theory of residues, but in the sz-plane, we obtain 4ur
k!l!
(2'/UX,)-u-2uk4tt (2X~) -~-2t X
k,l~O
[1 - - f i - - ( a + u + 2ttk + 6 + 21)/r F [ 6 - + - / + 1 / 2 , 3/2-+-k, 1 - - ( a + u + 2 t t k + 6 + -{- (21/"x0 -"-2"~ 2ttr (2x2) ~+"+2~-~ [(6--(1 --~+l) r + = + u)/2 + uk FL(l+6+(1--~+l)r--~--u)/2--ule, H (1 - - u) X,, ([ xl [--] x2 l) +
2l)/r] + X
3/2+k, ~--
l] X J
(6.82)
(2'/~xa)~-O-~+k)~2r ~(2'-'/~X~x-----7---/]-~-et X
F [(tt + o~--1-6-1- 2 / - - ( 1 - - {~-1-k) r)/(2u) [1/2+6+l, l+((1--~+k)r--o~--6--2l)l(2u),
~--k] X
H (u-- 1) x. (I x~i --Ix, I)}, where Xu(t) = 1 for u ~ 1 and Xl(t), while H(t) is a step function. The factors of the type H(u - 1)Xu(t) characterize the presence of the second or the third terms: if u < 1, then the first and the second terms are present and there are no restrictions on xl, x2, while for u = 1 the first and the second (for I x 1 [ > Ix2 I) or the first and the third (for Ix1 I < Ix2 I) terms are present. If, however, u = 1 and [ x l I = I x21, then one has to take only one of the last two terms. After the substitution (6.80), from (6.82) we obtain the desired value of the integral (6.79). The conditions for its convergence have the form b, c > 0, 9 ~ > 0 and ~ ( a + r/~) < m a x ( l , u) + r (if a ~ b or u r 1) or ~(c~ + r/3) < r (if a = b and u = I).
Formula (6.82) can be obtained from the double integral (6.81) also directly in the following manner. The integrand has poles at the points
s1=u+2uk, s2=6+2l,
k~O, 1,2 . . . . . l-=0, t,2 .....
sl+s~=(1--~+m)r--o~,
1278
m~-O, 1,2 . . . . .
We introduce the values s 1 = u + 2uk, s 2 + 6 + 2e into the integrand of (6.81) and we replace I'[-k, -el by 4u(27ri)L (-1)k+l/kff! in accordance with (4.48), (4.49); then we obtain the first term f r o m (6.82). We introduce the values s 1 = u + 2uk, s 1 + s 2 = (1 - fl + m ) r - ~ and we replace I'[-k, - m ] by 2ur(27ri)2(-1)k+m/k!m! and m by e; then we obtain the second term and then, similarly, also the third one. The advisability of the use o f the functions H(t) and Xu(t) follows f r o m the following arguments. We f o r m the matrix f r o m the elements o f the integral (6.81), containing s 1 and s2: - - s2/2, - - st/(2u), s2/2, sl/(2u),
- - (s~ + s2)/r~ - - (sl 4- s2)/rJ"
(6.83)
First we consider the term corresponding to the residues at ~the poles s 1 = u + 2uk, s 2 = 6 + 2L Fixing sl, we separate from the matrix (6.83) a submatrix with respect to the variable s2:
--s2/2, - s 2 / r 1 s2/2, - s2/r}' and, similarly, fixing s 2, we separate a submatrix with respect to sl:
-st/r/
/(2u), --st~r/" N o w we; f o r m the analogues of the expression A + D - B - C f r o m T h e o r e m 5.1 for the last matrices: O+l/r--(1/2+i/r)--1/2,
O+l/r--(1/(2u)+l/r)--l/(2u).
Obviously, they are always less than zero (since u > 0) and, therefore, by analogy with the case A + D - B - C < 0 of the indicated theorem, there arise no restrictions on x 1 and x 2 in the first term o f (6.82). The second term is the sum o f the residues at the poles s 1 = u + 2uk, s 1 + s 2 = (1 -/~ + m ) r - a. We fix s 1 + s 2 = s and we separate f r o m the matrix (6.83) the corresponding submatrices with respect to the variables s 1 and sz: --(S--St)/2, (S--St)~2,
--Sl/(2tt)' 1 St/(2tt)]'
{--S2/2, ~ S2/2,
--(S--S2)/(2U) I (S--S2)/(2U)]"
The analogues o f the expression A + D - B - C for them are equal to 1/2-FI/2--(2u)-J--(2u)
-t, ( 2 u ) - ~ + ( 2 u ) - t - - 1 / 2 - - 1 / 2
respectively, and they change sign when passing through the point u = 1. Therefore, the second term f r o m (6.82) must be present only for u < l or for u = 1 and Ix1 I > I x2 [. In a similar m a n n e r one establishes the conditions for the presence of the third term f r o m (6.82). At the evaluation o f (6.81) one has assumed that the lines ~ls 1 = 71 and 9~s2 = 7),2 separate the poles in such a manner that the functions u%/'~,Yd2, Y~s occur entirely (by complete series) in the integral (6.79), i.e., the cases of the type considered in Example 13 are excluded here. 7. INTEGRALS OF GENERAL FORM
1~ T h e F u n d a m e n t a l T h e o r e m . Let f and f be the functions introduced by the formulas (4.41)-(4.44). We consider the integral oo
.i'x=-lf(cfxOf(o3x)dx~-.~(cr,
o),
r•0,
or, o ~ 0 .
(7.1)
0
Obviously, this integral is invariant under transformations of the following three forms: 1) the interchange o f the parameters a and a, b and b, c and c, d and d, R and R, w and a, N and At, and the replacement o f r by r - l , a by o~/r with the subsequent division of the integral by r; such a t r a n s f o r m a t i o n interchanges the functions f ( x ) and f ( x ) . 1279
2) the interchange of a and b, c and d, t~ and b, ~c and d, R and R - I , / ~ and ~ - 1 , e and a -~, w and w-~, c~ and - a , which leads to the r e p l a c e m e n t of f(x) by f ( l / x ) and f(x) by f(l/x). _ 3) the interchange of a and b, b and a, c and d, d and c, R and R - I , a and w-x, N and N, r by r -~, and o~ by -c~/r, with the subsequent division of the integral by r. This change is the composition of the first two changes and leads to the transformation of f(x) into f ( l / x ) . It is easy to see that the restriction r > 0 does not lower the generality since if r < 0, then, a f t e r the interchange oc of a and b, c and d,/~ and R - I , a and a - x , a and - a , we obtain the integral ~ x~-~f (exit,) f (ox) dx f o r which [r [ = 0
--r> 0, T H E O R E M 7.1 1118]. Assume that there is given a contour La such that qs + c~r-1 ~ L and -ps 9 L for s 9 ~ , while the functions f(axr), f(wx) are defined by the formulas (4.41)-(4.44) and satisfy the conditions
Re(a-i-rai+"@,)>O, Re(--~+rbk-{-~E)>0,
j-=l, k=l,
a~+b~,
2..... 2.....
A, B,
j~l,
2.....
k=l,
2.....
A, B,
(7.2)
ay+b~--/=O, --1, --2 . . . . .
as well as some group of restrictions f r o m the list of the convergence conditions in part 2 ~ of this section. Then the integral (7.1) converges and has the value q j - , , /r
o~,=wlf*(qs+~)f*(--ps)~-~'~"ds=
(q,
a-~/'.Y-d~ (z),
(7.3)
z =~-~t%,
where Yt'l (z) has the f o r m (4.45) and, m o r e o v e r , for 6 = A r - - A < 0 or for 6 = 0, ] ~r [ < 1, as La one has to take the left loop ~e_oo, while for 6 > 0 or for 6 = 0, [ ~ [ > 1 one has to take the right loop La_+oo.U n d e r the additional conditions
2~o = E + Er > 0, [ arg(aw) -r) [ < ~o~ror 2~ _ 0, [ arg(aw)-q [ _<_~ , 9iB > ,/(qA - pA), these loops m a y be unrolled into some contour ~ioo = (ff - ioo, '7 + ioo). The function Yd~ (z) d e p e n d s analytically on z in the cases when 6 # 0 (for any arg z) or f o r 6 = 0, ~o > 0 (for I arg z I < ~o~r/r). For 6 = 0, ~o = 0, 9ifl > -1 the function ffda(z) is piecewise analytic. In the general case the value of 3~g'1(z) can be represented by the residue sums E,__(~), E_,(1/a) (see (4.56)(4.62)) using the f o r m u l a s
~1 (z)= E~__(~) for
0~61<1
!
if
E~(1/~ A--Ar,
if
A
if
iE__,(1/~) for l ~ l > 0 ,
~(z)=E+_t~)=E~(1/~), if
~Kr,
Re~>O,
for
I'~]>l, (7.4)
!ol=l,
A--C>~(D--B)r.
2 ~ Convergence Conditions. In the list of the convergence conditions for the integral (7.1) we use the notations (4.10)-(4.33), ( 4 . 3 7 ) a n d , m o r e o v e r , we assume that all the points -(a), (b) and -(fi), (b) are irreducible poles of the functions f*(s) and f*(s). 1. The cases w h e n regular singularities: la) ABAB # 0 , E > lb) AB # 0, E > 0, lc) AB = 0, E > 0, ld) E = A = E = A
(~/R) 1/r ).
at the points x = 0, x = oo (and, possibly, x -- R, x = J~) both functions f(x) and f(x) have 0, E > 0 ((4.29), (4.31)); E = A = 0, 9iv < 0 ((4.30), (4.31)); ~ = A = 0, 9ib < 0 ((4.29), (4.32)); = 0, (4.30), (4.32) and 9iv < 0, 9ib < 0 (for to=/=~? (cr/R) 1/r
)orgt(v+v)<-I
(for ~ o = R
2. T h e cases when one of the functions f(x) or f(x) has at 0 or at oo a p o w e r - s i n u s o i d a l singularity of the type O(xnsin ax), while at the remaining singular points both functions are regular:
1280
2a) 2b) 2c) 2d)
A/~ ~ 0, E _> 0, _E > 0 ((4.30), (4.31)) and one of the conditions (4.25) or (4.26); AB 4=O, E >(3, E >_ 0 ((4.29), (4.32)) and one o f the conditions (4.23) or (4.24); E = A = 0, E >_ 0, ~tu < 0 ((4.30), (4.32)) and one o f the conditions (4.23) or (4.24)); E -- A -- 0, E _> 0, 91u < 0 ((4.30), (4.32)) and one o f the conditions (4.25) or (4.26).
3. The cases when both functions f(x) and f(x) have at 0 or at oo a p o w e r - s i n u s o i d a l order and, moreover, at distinct points: 3a) E ___ 0, ~ _> 0, A > 0, ~ < 0 ((4.23), (4.26), (4.30), (4.32)); 3b) E >__ 0, E _> 0, A < 0, A > 0 ((4.24), (4.25), (4.30), (4.32)). 4. The cases w h e n both functions f(x) and f(x) have at 0 or at oo a p o w e r - s i n u s o i d a l order and, moreover, at identical points: 4a) E >_ 0, ~ >__ 0, A > 0, ~ > 0 ((4.24), (4.26), (4.28), (4.30), (4.32), (4.33)); 4b) E >_ 0, E >_ 0, A < 0, A < 0 ((4.23), (4.25), (4.27), (4_.30), (4.32), (4.33)). 5. The cases when at least one of the functions f(x) or f(x) tends to zero exponentially at 0 or at o~ in such a manner that the integrand >:~-~f((~x~)y(o~x) tends to zero exponentially: 5a) AB = 0, E > 0 (4.31) and one o f the following conditions: 6 < 0 (for A > 0) or 6 > 0 ( f o r / } > 0) and, moreover, arg ~ is arbitrary: E > 0, (4.29); Zk = E = 0z ~ u < 0 (4.30); E ___ 0, A < 0, A > 0 ((4.25), (4.30)); E _> 0, A > 0, B > 0 ((4.26), (4.30)); 5b) AB = 0, E > 0 (4.29) and one of the following conditions: 6 > 0 (for A > 0) or 6 < 0 (for B > 0) and, moreover, arg co is arbitrary: /~ > 0 (4.31); = E = 0, ~Rb < 0 (4.32); ~_> 0, 4 < 0, A > 0 ((4.23), (4.32)); E_> 0, A > 0, e > 0 ((4.24), (4.32)). 6. The cases when both functions f(x) and )(x) have at 0 or at oo an exponential order and, moreover, one of them increases but the f u n c t i o n x = - ~ f (ax r ) . f ( o x ) is integrable: 6a) AB = 0, E > 0, 6 = 0 ((4.31), (4.33)), one o f the three conditions: Ar > 0 or A~ = 0, ~Rfl > -1 (for A8 ~ 0) or Ae = 0, ~ > 0 (for A~ = 0), and also one o f the following conditions: E<0,
A>C,
larg~J<(A--C+l)~
E<0,
B>D,
[argtrl<(B--D+l)z~
(for
A>0);
(for / ~ > 0 ) ;
E>O,
A>O,
z~E/2
(for A>O);
E>0,
A<0,
zE/2
(for /~>0);
6b) AB = 0, E > 0, 8 = 0 ((4.29), (4.33)), one of the three conditions: Ae > 0 or )'e = 0, ~Rfl > -1 (for ,X8 4=0) or ,Xe -0, 91fl > 0 (for A8 = 0), and also one of the following conditions: E<0,
A>C,
Iargol<(.4--C+l)#
E<0,
B>19,
largo~[<(B--D-kl)#
(for A>0); (for .'B>0);
/~>0,
z~?~>0, u E ? / 2 < t a r g ~ o l < ( _ A - - C - k ~ ' ) z t ( f o r A > 0 ) ;
E>O,
A
~ E / 2 C ] a r g ~ o [ < ( B - - D q - e ) ~ x (for B > O ) ;
Remark 7.1. If points s ~ -- a]-- r - ~ , bk-- r-~a , r-la~~, r - ~ ~ are not poles o f the f u n c t i o n r-- f * (s + t'-la) f * (--rs), then the corresponding convergence conditions can be relaxed somewhat. 3 ~. Proof of the Fundamental Theorem. Assume that certain conditions hold that ensure the absolute convergence of the integral (7.1) and o f the Mellin transform [ 121 ] f*(qs 1 + ct/r) o f the f u n c t i o n f(x) at all points qs 1 + a/r f o r which s~6.o~ , while qs 1 + a/r ~ L and -ps z ~ L. In (7.1) instead o f f(x) we introduce its expression (4.44) and then we inter-
1281
change the order of integration and we introduce new variables s = -ps 1, ax r = t. assuming that So = 0. Under the mentioned conditions, these operations are legitimate and lead to the equalities
0
l
L
= 2~i i
7" (S) o~-*as i
xc~-~-~f (ox r) d x
=--
o
=
(7.5)
( - - PSi) cr-q"co~
~
~a
o
f 7" ( - - p s O
=Td
t(~+~
(t) dt
=
r)g-qs~o~pS'dsl.
The contour ~e, obtained from/~ by the substitution s ; -ps 1, is considered at integration in the same direction as/~ and, moreover, ~e will separate the left poles of the functions f*(-psl), f*(qs 1 + a/r) f r o m the right ones. The conditions for the absolute convergence of the integrals (7.5) can be relaxed somewhat to conditions that ensure conditional convergence, since all the functions, occurring in (7.5), are analytic with respect to the parameters and, therefore, they can be continued analytically to a larger domain. Thus, the integral (7.1) can be represented as the Mellin--Barnes integral (4.45), (4.41), (4.42), (7.3). However, the latter, under appropriate conditions is computed in terms of the sums of the left or right residues of the integrand, Formulas (4.56), (4.57) for these sums are obtained by analogy with (4.46), (4.47), (4.48), (4.49) by introducing the values s = - - ( h - J - ~ / r - l - a j ) q-r , s = --(h-t-b])p-1 and s =(bi4-. h--c~/r ) q-l, s ~ ( a i + h ) p-1 into the function q f * ( - - p s ) f * (qs-}-~/r) z p', the replacement of r ( - h ) by (-1)h/h!q (or (-l)h/h!p in the second and the fourth cases), and by the subsequent summation with respect to the indices of all the poles. This is how one has to proceed in the regular (not logarithmic) cases, when the enumerated poles are not multiple. I f r --- p/q is rational, while p and q are relatively prime integers, then the integral (7.3) can be transformed into the form (4.39), while the sums (4.56), (4.57) can be written in terms of generalized hypergeometric functions in the form (4.59), (4.60). For this one has to make use of the multiplication theorem for the G a m m a function. Indeed, introducing the notation (7.3), (4.45), we obtain the representation
a~, (z)=-~T~ f rq [(a)-i-~/r-I-qs' [(c)@cz/r @qs, •
I_(d) +
(b)--~zlr--qs] (d)--o~/r--qsJ X
(7.6))
'
ps, (c)-- psJ
where
bl ~ q N N R ~'/" (1/-2-~)0-q)e+Cl-p)~'qv+'~/r-e/~p'~-~/2,
r,l(a)l=r [ (a) q ' (a)+l ~ '
....
(7.7)
(a)+q--1 ]' q
while a is connected with z by the formulas (4.16). We compare the integral (7.6) with (4.39). To the A-dimensional vector (a) + s f r o m (4.39) there corresponds the Aq + Bp-dimensional vector
=
A(q, ( a ) + c ~ t r + q s ) , A(p, ( b ~ ) + p s ) = (a),@ w . ( a ) + q ~ l jr_ c~ q
W +s .....
&-} + s , .. p
"'
q
- T + s,
(b3+P-~ +s; p
similar relations hold among the vectors involving b, c, d. To the variable Z from (4.39) there corresponds ~, while to the quantities A + D - B - C, A + B - C - D the expressions ZXq - LXp, Eq + Ep. Therefore, on the basis of Theorem 5.2 1282
one can conclude that the integral (7.6) f o r qA > ZXp (qA < Z~p) or f o r qA = Ap, but < 1 ( > l ) has to be c o m p u t e d by means of the sum of the residues at the left (right) poles, taking as La the left (right) loop La_oo (La+oo). U n d e r the additional conditions 2q0 ~ E + / ~ r ~ 0, I arg (aco-r) ] < q~n or :- q~>~ 0, I arg (ao~-') [ ~< qD~, ~ (qA - - pA) < Re [~ (see (4.15)), t]hese loops can be unrolled into some contour Laioo = (7 - ioo, 7 + ic~). T h e f u n c t i o n Yg~ (z) in the cases 6 = rA - A r 0 (for any arg z) and 6 = 0, ~o > 0 (for [ arg z [ < ~o~r/r) is an analytic function, while f o r 6 = 0, ~o = 0 and 9119 > -1 the f u n c t i o n YE~ (z) is piecewise analytic. F r o m here we obtain the equalities (7.4), (7.3), (4.16). It is sufficient to establish only the first of the formulas (4.59), (4.60) since the second one is obtained f r o m the first one by the t r a n s f o r m a t i o n 2) of 1% By the method of the comparison of (7.6) with (4.39) and of E,_(~) with (4.50), it is easy to find the p a r a m e t e r s occurring in the h y p e r g e o m e t r i c function n+iFmf r o m (4.59). Indeed, to the vector (b) + aj f r o m (4.50) there correspond two vectors: the vector
(a)+=+p--lq a~+h p -'-'~
'
p
,
(b)q-ai-bh-Fq--I ,
('~)-bo:~_ai-Fh
q q P q where s u m m a t i o n has to be carried out with respect to j (j = 1 2 ..... A) and with respect to h
(h = 0, 1 ..... q - 1), and also the vector
(a)-b biq-hh-p--I
(b)+a/+n
(b)q _] ~'j + h--~p ,
...,
(b)+q--lq
[_
-#j+~--CCp, , (a~)+b~+hp ,
...,
where s u m m a t i o n has to b e c a r r i e d o u t with respect to j (j = 1, 2 ..... /~)and with respect to h (h =
0, 1..... p - 1). In a similar m a n n e r one finds also the other p a r a m e t e r s of the f u n c t i o n n+lFm and the quantities m, n. T h e coefficients o f n+iFmin f o r m u l a (4.59) are equal to the r i g h t - h a n d sides of (4.56) if the s u m m a t i o n with respect to h is carried out f r o m 0 to q - 1 (or to p - 1). This is established in the following manner. The first sum f r o m the r i g h t - h a n d side of f o r m u l a (4.59) can be derived f r o m the first sum of the r i g h t - h a n d side of (4.56) if we represent the index h (h = 0, 1, 2,...) in the f o r m h = kq + h 1, where k = 0, 1, 2 ..... while h I = 0, I ..... q - 1. For k = 0 the s u m m a t i o n in both sums is carried out only with respect to h = h 1 f r o m 0 to q - 1. M o r e o v e r , the first term of the generalized h y p e r g e o m e t r i c series for the function n+lFm(tO which there corresponds the index k -- 0) is equal to 1; this leads to the m e n t i o n e d equality between the coefficients of (4.56) and (4.59). Introducing into (4.56) the value h = kq + h 1 and representing the first sum
2
in the f o r m
h=0
2'2
, we obtain
h~ =0 k=0
finally the first sum f r o m (4.59) if instead of the sum with respect to k we use the notation n+iFm f o r the series. Its parameters have been established above by means of comparison. Thus, to the group of terms f r o m h -- qk to h = q(k + 1 ) - 1 in the first sum (4.56) there corresponds the group of terms f r o m the first sum (4.59), obtained by the multiplication of the kth term of the series for n+lF m by the coefficient given there. It is easy to see that by changing a and b, c and d, N to N, R to R -a, r to r -1, ~ to -a/r, a to a l/r, r to wr in the first sums f r o m (4.56), (4.59) and by their multiplication by z-"r-l,we obtain the second sums. This corresponds to the invariance of the integral YC~(z) under the t r a n s f o r m a t i o n 3) from 1~ We show how one can establish f o r m u l a (4.62), expressing the value ~,._(d) in the logarithmic case, when a 2 = A
ax + n, b2 =/~1 + m, m, n = 0, 1, 2 ..... while equation (4.61) has nonnegative integer solutions k, h. T h e sums B
"V
n--1
Q~' ~ ]=4
/~=0
m--I
S~n, 2 h=0
2
PJ,
j~4
T~n' 2
T3h, 2
h(gk )
S3h, generated by the residues of the function qf*(qs + a/r)f*(-ps)zP" at the
k(~k)
simple poles, are obtained without d i f f i c u l t y by the simple introduction of the values s = -(aj + h)/q - c~/p (for Sjh) or s = -(bj + h)/p (for Tjh) into this function with the subsequent replacement of P(-h) by (-l)h/h!q or (-l)h/h!p (for Tjh ). The term, containing the sum of
S~h , can be also obtained by introducing the value
s=
a~+,~ q
-~ p
into the
mentioned function, by r e p l a c e m e n t o f F[-n - h, - h i by (-1)a/(n + h)!h!q2, and by multiplication by (In [R-qRpz-p]-- - q ~ * ['" ] -F p ~ [ :: 1). The last bracket is f o r m e d by analogy with the curly bracket f r o m (4.52). The reason of its appearance is elucidated at the analysis of the examples f r o m 2 ~ in Section 6. In a similar m a n n e r one finds the terms containing T'zb , T3h. N o w we shall dwell on the derivation of the convergence conditions of the integral (7.1). In accordance with the formulas (5), (7) f r o m [20], the integral (4.43), in the presence of both left and right poles at the points -(a), (b), in the composition of the principal terms contains terms of order x~a/ (for x ---, 0) and x -r~ (for x ~ ~ ) and does not contain exponentially increasing terms ff E _> 0, while [ arg a I < Ez/2. T h e r e f o r e , for the c o n v e r g e n c e o f the integral (7.1) at 0 and at ~ , one has to assume that conditions (7.2) are satisfied, which ensure the c o n v e r g e n c e of the
1283
"equivalent" integrals
Jx
~ J
dx
0
for small ~0 and large E 0. If some points - - a 1, bk,
and Eo
- - a I, b~
are not poles of f*(s), f*(s), then conditions (7.2) can be relaxed somewhat (see R e m a r k 5.1.). In the case A - C = 0, - 2 , - 4 .... and A = 0 the f u n c t i o n f(x) has as singular point also the point x = R (Theorem 4 o f [20]), at which, in general, f(x) = O[(R - x ) A - c - " - 1 ] + O(ln ]R - x ] ). We show that A - C cannot be negative. Indeed, if A - C < 0 and A = 0, then B - D < 0 and, therefore, E < 0, which makes impossible the selection for L of the contour Lioo. We select the left (right) loop L_oo (L+oo): then the function f(x) will be d e f i n e d for 0 < x < R (x > R), while f r o m the condition -ps E L~oo o f the fundamental theorem it will follow that s ~ LP_+oo.Thus, the f o r m of the contour LQ+ooand the value o f the integral (7.3) will depend on the sign o f x - R; however, this integral does not depend on x. Therefore, in the case A = 0 one has to take A = C and then E = 0. In order that the f u n c t i o n f(x) be_integrable at the singular point x = R, one has to require that condition ~ u < 0 be satisfied. If, however, E = A = E = A = 0, then the integral (7.1) has two singular points: x = (R/o)1/r and x = R/w. Therefore, there arises the additional condition ~R~, < 0 for the case w ~ R(a/R)l/r,.when these points do not coincide, and the condition 9t(u + b) < -1 in the case when the singular points coincide. If E > 0, then the function f(wa) is analytic with respect to w in the sector I arg w ] < Er/2, where the integral (4.44) is trivially convergent (see T h e o r e m 5.2), which leads us to the analyticity o f the integral (7. I) with respect to w in this sector. Thus we obtain the conditions l a, lb, ld f r o m 2 ~ Condition lc can be written by s y m m e t r y f r o m lb; it is established by the replacement of A by B, etc., indicated in the group 3) f r o m I ~ We consider the situation 2 f r o m 2 ~ If E _> 0, A ~ C, ] arg a ] = ETr/2, then the f u n c t i o n f(ax r) at 0 (for A < 0) or at eo (A > 0) has a power-sinusoidal order, i.e., the principal terms o f the asymptotics contain an additional term, including a sine. F r o m T h e o r e m 9 (part 3a) o f [123] there follows that this term generates additional terms in the asymptotics o f f u n c t i o n x~-lf(ax~)f(wx), which in case A > 0 at oo have orders O I x ~~ ik 1 sin ( A I x ' ~r 11a'17 ~o~
pA=v~
1--E 2
~-
)j,
Now, in order to obtain the additional restriction o f that case 2a f r o m 2 ~ where A > 0, it remains to oo
make use o f condition 91X < 7, guaranteeing convergence o f "equivalent" integral
j x z- ~cos (x v) d x , ~ > 0, at oo. 1
Interchanging a and b, c and d, b and a, a and - a , we obtain the additional constraint o f the case 2a for A < 0. If, however, E = A -- 0, arg oJ -- 0, then the function f(x) has a third singular point, which, as already mentioned, leads to the necessity o f a condition o f the f o r m ~ < 0. This aspect is reflected in case 2d. On the basis of the obtained conditions o f the cases 2a, 2d, and of the above mentioned T h e o r e m 9 of [123], it is easy to obtain by s y m m e t r y the conditions of the cases 2b, 2c and to f o r m the conditions for 3a, 3b, 5a, 5b, and part of the conditions f r o m 4a, 4b. The remaining conditions f r o m 4a, 4b are obtained in the following manner. If in the expansions at oo both functions x a - l f ( a x r) and f(wx) have power-sinusoidal terms, then by their multiplication there appears an additional term o f another type. Its principal term contains f o u r terms o f the order
Taking into account that the integral oz
j'xx c o s x ~ ' c o s ( a x n) dx,
a ~ O, ~ > 0,
~ > 0,
1
converges for ~lX < max(A, 7) (if), ~ "r or a :g 1) or even for 9~X < 0 (if)~ = 7 and a = 1), we obtain easily the condition
2 R e ( A ~ c z ~ r v A q - v A ) < t A ~ r ~ A I q - A E ( i f A ~ A r o r Atcr/RI llA ~ A l ~ / ~ t l / ~ ) , w h i c h f o r A = A r a n d r ~ R r ! ~ t = R t c o } r has to be strengthened to 2Re (~cz q- v @ Q < E - ] - / ~ - - 2, i.e., to ~fl > 0 (see (4.15)), since in the last case one loses the possibility o f the conditional c o n v e r g e n c e o f the integral. If A = Ar (which means the rationality of r and, moreover, then A = kp and lx = kq, where k is an integer), then the function Kz(z) has a third singular point z ~ z 0 = ~?R-t/rrXe-~ ~o~ (4.14), in which b = exp{[(C - A)p + (D - B)q]Tri}. In this case there arises another condition ] arg[l - (zo/z)P ] ] < r, denoting the necessity of a cut. In accordance with Theorem 4 f r o m [123], the order g o f the power singularity at this point is equal to t3 (4.15). Therefore, as mentioned in the conditions (4.33), for ~Rfl > 0 the value z = Zo. is assumed~ In the case 5a f r o m 2 ~ one has the condition AB = 0. Let B -- 0,/~ > 0; then, obviously, ~ > 0. If we assume also A > ~ r , then also A > 0. Since by T h e o r e m 9 (part 5) f r o m [123], in this case the f u n c t i o n f(wx) has at oo an exponential
1284
decrease of order O (e-cxl/A), c > 0 , while, in general, f(crxr) at ~ may increase exponentially, but not faster than 0 (ea*rtA), d > 0 , it follows that their product decreases exponentially for A > ZXr for any arg a and [ arg w I < Er/_2, while for A = Ar the product has a power-sinusoidal order. The case A > Ar is reflected in 5a, while the case A = Ar is singled out in 6a, 6b and requires a special consideration, which will be given below. Let B = 0 , k 2 > 0 , A - ~ r , l a r g o I < k ' ~ / 2 , A>C, h > 0 , max(O, E r ~ 1 2 ) < l a r g a l < ( A - - C - b g ) ~ .Then, in accordance with Theorems 6, 7, and formula (15) f r o m [123], the function xa-lf(axr)f(wx) for arg a.arg w 4=0 has at c~ order O {exp [ - - (~,~q- i ~ ) x~/a] x ~+~o+y-1} , where A~, As are given in the equalities (4.19), (4.20). Obviously, for Ar > 0 the exponential decrease is preserved, while for ,~ 0 the convergence may be conditional (when A8 ~ 0) or absolute (for),~ = 0). In these cases there arise the restrictions ~lfl > -1 or ~lfl > 0. However~ if, for example, arg a = 0, arg w 0, then instead of the condition As ~ 0 (or As = 0) one has to impose the restriction ,~+),~-~ 0 (or)~8+A~- =_0), where ),~-+ have the f o r m (4.21). This follows f r o m the relations (35), (38) of [123]. Setting, by definition, As = As+)~8- for arg a -0, we preserve in this way the previous f o r m of the conditions: A, ~ 0 (or As -- 0). Similar modifications are carried out also in the cases when arg a = arg w = 0 or arg w = 0, arg a , 0. The analyzed cases give us the possibility to formulate all the convergence conditions f r o m 2 ~. 4 ~ Applications of the Fundamental Theorem. For the evaluation of a concrete integral of the f o r m (7.1) of the product of any two functions f and f of the hypergeometric type, in particular, of functions contained in Table 8.4.2.51 of [164], one has to: I) represent these functions in the form of Mellin--Barnes integrals (4.43)-(4.44);_ 2) express the collections of concrete parameters (a), (b), (c), (d), N, R, (t]) ..... R, r, p, q, a, a, w, form the fundamental characteristics A, A, 6 of (4.12), (4.14), allowing to determine which of the sums E,__(a) or I3__,(1/~) of the form (4.56)-(4.62) expresses the given integral (7.1), and elucidate whether the logarithmic case holds or not and which formula has to be used to evaluate the sum E=; 3) after the composition of the necessary functions B= and argument (4.16), express the value of the given integral by the formulas (7.3), (7.4) and compute the fundamental convergence characteristics of this integral E, E, u, ~ (4.10)(4.13); 4) from the list of the convergence conditions of the integral (7.1), given in 2 ~ and taking into account the restrictions (7.2), establish the corresponding convergence conditions of the given integral; 5) compute, if necessary, the auxiliary characteristics ~o, p, z o f r o m (4.14)-(4.17) and f o r m the additional convergence conditions (4.23)-(4.28), (4.33) for the given integral; 6) in certain cases the obtained expressions of the integral can be simplified with the aid of the tables for the special cases of the generalized hypergeometrie functions f r o m the sections 7.3-7.18 of [164]. Remark 7.2. In complicated cases, when one considers an integral of the product of several functions of type f of (4.43) or when there appear logarithmic eases with a high multiplicity of the poles, as well as in the very simple cases, it is advisable to carry out the constructive method described in Sections 3-6. Remark 7.3. As it follows from (4.40), the functions f and f, defined by the formulas (4.43), (4.44), represent modified Meijer G-functions (2.2). Therefore, all the results presented in Section 7, in the case of a rational r, can be reformulated in terms of G-functions. In particular, the integral (7.1), (4.43), (4.44) reduces to the integral from 2.24.1.1 of [164], while its convergence conditions, after substitutions and rearrangements, obtain the f o r m of the conditions 1)-35) from 2.24.1.1. For such a transformation, in the integral (7.1) one has to change a to aR, A to m, B t o n , C to p n, D tq q - m, (a) tO (bin), (b) to 1 - (an), (c) to an+ 1..... ap, (d) to 1 - bin+l,., u 1 - bq, r = p/q to g/k, w to wR, A to S, B to T, C to U - T, D to V - S, (t~) to (dS), (b) to 1 - (CT), (c) to CT+x..... Cv, (d) to 1 - d s , 1..... 1 - d r , and also N = N I; then the fundamental characteristics are replaced in the following manner: A by q - p, A by V - U, 6 by -~o, E by 2e*, E by2b*,uby/~+e*1,~,byp+b*1. Remark 7.4. The integra_ls of the f o r m (7.1), (4.43), (4.44) express the values of the integral transforms with definite kernels x '~-1, f(ax r) or f(wx), if the remaining functions are assumed to be arbitrary. To the kernel x a-x there corresponds the Mellin transform, while in the remaining cases one can obtain in particular the Lap_lace, Fourier, Hankel, Stieltjes, Hilbert, Riemann--Liouville, Weyl, Meijer transforms, the G-transform, etc., if for f or f one takes appropriate concrete functions. 8. EXAMPLES
Example 16. Setting in the formulas (4.41)-(4.44), (4.10)-(4.17)
1285
N-----r-' (0,), N = v-' (g~), we obtain
f*(s)-----NI'[s,b,~s], E=/~2,
,~-~bt, ~=b~,
q~=r+l,
zr=~-~/~o,
J3=l--bz--b~,
A=:~=6=0, "~=(~qO3-P,
zo~exp[--(r-~ @ l)~i]
(we mention that the parameters 13, ~o, z o are not required here). Making use of the indication 8.4.52 from [164] and of formula 8.4.2.5 from [164], we find that
y (x)=(1 +x)-~,
f (x)=(l+x)-~.
Making use of Theorem 7.1 and of the enumeration of the convergence conditions in the case I a, we can write the value of the corresponding integral in the form ~o
S -~'-' 0 + ~')-~, 0 + ~)-~,a~ =/o-':'E~- 8)- o <2~1< ~,
(8.~)
[ct-"/rZ~.(l/cO, I~l> 1,
.o
where, by virtue of (4.56)-(4.60), in the regular cases we have
N
q--1
~lt~
p--1
}
~,--/zr--~] ~/,I •T - ~.Ca ( - l )hi~ z - ~ - h r [ - O ~ , b,+O, ' O,+hlx~ h=O
'
q~l ,o--1 } -t- r-1 ~ ~iI)n z"l~ [~1, b, -- ~1, b, -t-/l] X4 , h~O 0 1 = ( b l q - h - - ~ ) r -1, rh~--(b~+k)r--~, ~ = ( / z + ~ ) r - L Here p -- q - ~ , Xk = 1, k = 1, 2, 3, 4, if r > 0 is arbitrary; if, however, r = p/q is rational and p and q are relatively prime integers, then the functions Xk can be represented also in the following form (see (4.59), (4.60)):
X,=~r
(I, a(q, bl+k), A(p, kr+~); (--1)P+ooqoJ-,~, a(q, 1 .+h), A(p, 1--b,q-hr-q-~,)
(8.2)
)
( | , A (q, b t + 01), A (]7, bl -[- h); ( - - l)P+q(Iq(o-P~,.
~2 = l~.q+l F ll.+q \
a(q, l+oi), t~(p, 1q-h) (1, A (q, bl + h ) , A (p,
\
(8.3)
/
b,+111); (-- 1)P+q(J-qOJP~,
A (q, 1 + k), A (p, 1 + n,)
X4=p+q+lFo,q(1, A(q, ~,), A(p, ~ + k ) ; (--1)o*r A(q, 1-o,+~,), A(p, l + k )
]
/"
The functions E~(8) and ~3__.(1/a) are analytic continuations of each other through the circumference [ b[ = 1 and, therefore, the function ~__,(1/6) need not be written in the case of the use of the symbols (8.2), (8.3). The integral (8.1) converges if the conditions Reck>0,
Re(--~+rb~+b~l)>0, [argol<~,
b~, b~4=0, - 1 ,
--2 .....
Iargco [ <-~
are satisfied (see (7.2) and conditions la from 2 ~ of Section 7; moreover, the restrictions b 1, bl § 0, -1, -2 .... can be removed since ~R(rb1 + ha) > ~Rc~> 0).
1286
In particular, for r = 1 one has to set p = q = 1, while the function XL__(~)can be transformed by the formula 7.2.1(1) from [164] to the form
~_~)],=l=z_aF [o~, bt+~_~] F (~, bl; 1-Ot+t~l
bl+bl oa
]2 ~
-
1).
From here, after replacing e by z -1, w by y-l,/~l by A, and b 1 = p, we obtain the known integral 2.2.6.24 from [162]. Example 17. Setting
A=C-~R=r=I,
B-~D-~aI~-O, N=r(cO,
by the formulas 8.4.52, 8.4.2.3 from [164] we obtain f(x) = (1 x)el-1 for 0 < x < 1 and f(x) = 0 for x > 1. Selecting the function i f ( x ) = (1 + x) -~' , with the corresponding parameters, indicated in the previous example, we make use of Theorem 7.1 and of the enumerated convergence conditions in the case 1b. Then we obtain the value of the following integral: 0)-1.
9
L01, cl+~lJ
o XaFg_ c l + g l , Recz>0,
A(1, 1) '
~ 1 7 6 1 7 6 gl-~cz'
Rect>0,
argr
~-------cl,
largol<#.
By virtue of the analyticity of this integral with respect to the variable ~, we can restrict ourselves to the corresponding value of ~ ( l / c ; ) from formula (4.60). After replacing a by a -I, w by z -1, and c 1 = fl, b 1 = p, we obtain finally formula 2.2.6.15 of [162]. Example 18. Setting f(x)=(1
--
~'~ C':t -I
-w+
,
f ( x ) = (1-- x)~r -I,
r=l
(the corresponding parameters are indicated in Example 17), we form the integral mIn(aTx, o-x~
J'
x ~-1 (1 - - ax) *'-1 (1 - -
0
This integral is not an analytic function of a and w since here the formulas
X~F~(1, 1 - - c 1, a; ~) 9 1, c~Tl-c* '
ox)'L-ldx ~ Jt.
(8.4)
E = A = / ~ = A-~ 0. Its value Jx has to be computed from
a~cr~
(8.5) z=~176
la[
The value of J1 for I ~ [ > 1 is obtained from (8.5) if we interchange a and w, c 1 and cl. From the formulas (7.2) and the convergence conditions in the case ld we obtain the following convergence conditions for the integral (8.4):
Re~:>O,
o>0,
o>Oand
Recl>O, if
Recl>O
Re(cl+~i)>l
(for a ~ o ) (for or=o).
1287
Example 19. We consider the integral x "-I (1 q- o~x)- ~ sin V"o-~x'dx-~ J2.
(8.6)
0
We introduce the notations
y ( x ) = ( l + x ) -~,
/(x)=sinl#~,
reducing the integral J2 to the form (7.1). From the formulas 8.4.2.5, 8.4.5.1, 8.4.1.4 of [164] there follows that to the functions f, f there correspond the representations (4.43)-(4.44) with the parameters
A=D-~4=B=R=dI=I, B=C=C=D=a1=O, / ? = 4 , ai=l/2, ~N=I/'~-, .,V=I'-!(b~). In this case the parameters (4.10)-(4.17) assume the values ~,-------1/2, '~-b~, A = 2 , A = 0 , E = 0 , E = 2 ,
6=--2,~0,
~ - r , ~=4-qq-2actqo3-~p, z=~-~1%) (here 13 and z o are missing). Making use of Theorem 7.1, we can obtain the corresponding value of the integral N
j~ = o-~lr N,_ (~) in terms of an analytic function, which is not given here. The convergence conditions of the integral (8.6), in accordance with the case 2a from the enumeration of the convergence conditions in part 2 ~ of Section 7, have the "form Re(~q-r/2)>0,
argo=0,
largo~l
-' 2Re (2~-- 261 -- r/2) < r, and, moreover, the last restriction, reducing to the inequality ~(c~ - / h ) < r/2, guarantees the conditional convergence of the integral at ~ . Example 20. We consider the integral
eo
I x =-1 sin lf~-x sin -U-~ 1 cl x = J3. 0
Here f(x)=sinV'x,
j'7(x)=slnx-'/2,
r=l,
and, in accordance with Example 19,
A=D=[3=C=dl=~-~I, R=4, Y?~4 -~, B=C=A-~_D=O, a,=b,=l/2, N=N-~-I/'-~. The value of the given integral can be easily written according to the formula J3 = a - ~ ( ~ ) , where I3,__(~) is obtained from (4.56). The integral is an analytic function of the argument b = a/16o~. The conditions for its convergence 1288
can be obtained f r o m 2 ~ (Section 7), f r o m the convergence conditions in the case 3a since here E = E -- 0, A = 2 > 0 and A _- - 2 < 0, while conditions (7.2) are satisfied. The integral J3 converges if a r g o = a r g o = 0 , 2Re ( 2 ~ - - 2 / 2 - - 1 ] 2 ) < 1, 2t~e (--2o~--2/2--1/2) < 1, i.e., for
]Reoq
~>0, re>O,
Example 21. We consider the integral
~
x ~-1 sin V - ~ sin lf-~--xdx~-J4.
(8.7)
0
Here f ( x ) = f ( x ) = s i n V ' x , r = 1 , while the other parameters are obtained f r o m Example 19. The integral (8.7) is not an analytic f u n c t i o n but a piecewise analytic one. In the given case, E = E --- 0, A = ZX = 2 > 0. Making use o f the formulas (7.2) and the case 4a f r o m the c o n v e r g e n c e conditions o f 2 ~ (Section7), we find the conditions for its convergence: a r g ~ = a r g o = O, - - 2 R e ( 4 ~ - - 2 / 2 - - 2 / 2 ) > O, Re ( ~ + 1 ) > O, and we also express condition (4.33). A f t e r simplification, all these conditions reduce to the following: --l
m>~r>0
(or
o>io~>0),
and, moreover, for 91# = 91(1/2 + 1/2 - 2c~ - 1) > 0 the value a -- w is assumed. The last restriction is necessary since for o = w the conditional c o n v e r g e n c e o f the integral at oo is lost and the inequality 91c~ < 1/2 has to be strengthened to 91c~ < 0. Example 22. One can consider examples of integrals, whose integrands have exponential order at infinity: o~
0
0
fo - 1
(8.8)
oo
x "-I (1 --~x)~,-le-~dx, 0
x ~-1 s i n . . ~ e - , , ~ d x . 0
For these integrals we have r = A = R = A/= 1,/~ = C = / ) = a 1 = 0, while the parameters o f the remaining functions f(x) are such that the c o n v e r g e n c e conditions o f the integrals are obtained f r o m the formulas (7.2) and the corresponding conditions 5a f r o m the c o n v e r g e n c e conditions in 2 ~ (Section 7). A f t e r a change o f variables, the integrals (8.8) reduce to the integrals 2.5.36.2, 2.3.6.1, 2.3.6.10, 2.5.38.1 f r o m [162]. The values given in these formulas and the convergence conditions can be obtained with the aid of the fundamental theorem. Example 23. The most complex and varied situation o f the convergence conditions is contained in 6a and 6b in 2 ~ of Section 7 We consider the integral oo
x=_~e_~e_O~dx = o
r (~) (~ + ~)~' "
(8.9)
For it
r:= A----~4=R=f~= N = N=- I, B=C=D:]3=C=l):al:al=O, [3= - ~ ,
z=~-ko,
~=lc~lcoslarg~l+[colcoslargo[,
1289
the conditions (7.2) assume the form ~
> 0, while the conditions 6a-6b reduce to the following:
[argol <~/2, [arg(1-q-o/o~[ 0 (a•a ~ = 0 ,
(8.10) Re cz< 1 npn ~,~=/=0), ~ / 2 < ]arg g] <3z~/2. Obviously, )~e = ~R(er+ w) while condition h e > 0 leads to the exponential decrease at oo of the integrand (although e - ~ increases) and, therefore, also to the convergence of this integral at oo. If )~e = 0, then we have the equality e-l,r+~o)x ~ e~r ~ cos Cx-q- i sin oq~x,
where ~b = i(a + w) is a real quantity and, moreover, ~b ~ 0 if As ~ 0. For the convergence at infinity of integrals x - ~cos
dx
, obtained from (8.9), it is necessary that the additional condition ~ a < t, reflected in (8.10), be
0
satisfied. In conclusion we note that other examples for the use of Theorem 7.1 can be found in the sections "Integrals of general form" in [162-164]. LITERATURE CITED 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.
1290
N. Ya. Avdeev, "On the rational integration in closed form of certain binomial integrals," Uchen. Zap. Rostov.n/D. Ped. Inst., No. 2, 21-29 (1953). V.F. Agapitov, "Integration of elliptic functions in closed form," Uchen. Zap. Rostov.-n/D. Ped. Inst., Fiz.- Mat. Fak., No. 6, 30-44 (1961). V.F. Agapitov, "Integration of elliptic functions in closed form," Uchen. Zap. Kabardino-Balkarsk. Univ., No. 16, 146-151 (1962). M . M . Agrest and M. Z. Maksimov, "Theory of Incomplete Cylindrical Functions and Their Applications [in Russian], Atomizdat, Moscow (1965). V.S. Adamchik and O. I. Marichev, "On the representations of functions of hypergeometric type in logarithmic cases,* Vestsi Akad. Nauk BSSR, Ser. Fiz.- Mat. Nauk, No. 5, 29-35 (1983). N.N. Alekseev, "A property of integrals of algebraic irrational functions, expressed by certain logarithms," Mat. Sb., 1, 173-186 (1866). N . N . Alekseev, "Integration of differentials, containing the square root of a fourth-degree polynomial, and of differentials, containing the cubic root of third-degree polynomial," Mat. Sb., 1, 187-212 (1866). A . A . Andreev and A. A. Kilbas, "On the solutions of an inhomogeneous hypergeometric equation and the calculation of integrals," Dokl. Akad. Nauk BSSR, 27, No. 6, 493-496 (1983). E.I. fon Beier, "On the difference integration of rational fractions with the aid of algebraic functions, when this is possible," Mat. Sb., 4, 297-364 (1870); 5, 64-124, 145-178 (1870). H. Bateman and A. Erd~lyi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York (1953). H. Bateman and A. Erd61yi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York (1953). H. Bateman and A. Erd61yi, Higher Transcendental Functions, Vol. III, McGraw-Hill, New York (1955). H. Bateman and A. Erd61yi, Tables of Integral Transforms, Vol. I, McGraw-Hill, New York (1954). H. Bateman and A. Erd61yi, Tables of Integral Transforms, Vol. II, McGraw-Hill, New York (1954). H. Bateman and A. Erd61yi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York (1953). P.V. Belousov and O. B. Sidonskii, "The group of triangular matrices and parabolic cylindrical functions," Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 3-7 (1978). O.S. Berlyand, R. I. Gavrilova, A. P. Prudnikov, "On functions satisfying the differential equation y " + 2xy" + 2 x y -- 0," Inzh.-Fiz. Zh., 3, No. 3, 103-107 (1960). R . M . Breneva, "Integral representations of hyper-Bessel functions," Trudy Irkutsk. Politekhn. Inst., No. 73, 128-131 (1971). V.S. Blinov, "On a certain class of improper integrals in filtration theory problems," Izv. Vyssh. Uchebn. Zaved. Mat., No. 2, 33-41 (1971). Yu. A. Borshch, "Values of certain integrals," Ukr. Mat. Zh., 36, No. 5,653-655 (1984). Yu. A. Brychkov, Kh.-Yu. Gleske (H.-J. Glaeske), and O. I. Marichev, "Factorization of integral transformations of convolution type," Itogi Nauki Tekh., Ser. Mat. Anal., 21, 3-41 (1983).
22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.
Yu. A. Brychkov and A. P. Prudnikov, Integral Transforms of Generalized Functions [in Russian], Nauka, Moscow (1977). Yu. A. Brychkov and A. P. Prudnikov, "On certain formulas of operational calculus," Inzh.-Fiz. Zh., 41, No. 4, 727-729 (1981). Yu. A. Brychkov and A. P. Prudnikov, "Integral transforms of generalized functions," Itogi Nauki Tekh., Ser. Mat. Anal., 20, 78-115 (1982). Yu. A. Brychkov and A. P. Prudnikov, "On certain formulas of operational calculus of two variables," Inzh.-Fiz. Zh., 44, No. 5, 814-818 (1983). Yu. A. Brychkov, A. P. Prudnikov, and V. S. Shishov, "Operational calculus," Itogi Nauki Tekh., Ser. Mat. Anal., 16, 99-148 (1979). N.V. Bugaev, "General methods for the evaluation of numerical integrals with respect to divisors. A natural classification of integers and discontinuous functions," Mat. Sb., 14, No. 1, 1-44 (1888). N.V. Bugaev, "General transformations of numerical integrals with respect to divisors," Mat. Sb., 14, No. 2, 169-i96 (1888). N.V. Bugaev, "The expression of elliptic integrals in closed form," Mat. Sb., 16, No. 1,259-281 (1891). N.V. Bugaev, "Definite numerical integrals with respect to divisors," Mat. Sb., 17, No. 4, 720-758 (1893). N.V. Bugaev, "Definite numerical integrals with respect to divisors of mixed characters," Mat. Sb., 18, No. 1, 1-54 (1896). N.V. Bugaev, "Connection between numerical integrals with respect to divisors and numerical integrals with respect to natural numbers," Mat. Sb., 21, No. 2, 335-350 (1900). N.V. Bugaev, "Some general relations in the theory of multiple integrals," Mat. Sb., 24, No. I, I16-138 (1903). Yu. V. Vaisleib, "On certain integrals and series for incomplete cylindrical functions," Izv. Vyssh. Uchebn. Zaved. Mat., No. 12, 22-27 (1973). N. Ya. Vilenkin, "The matrix elements of irreducible unitary representations of a group of Lobachevskii space motions and the generalized Fock-Mehler transforms," Dokl. Akad. Nauk SSSR, 118, No. 2, 219-222 (1958). N. Ya. Vilenkin, "Continual addition theorems for the hypergeometric function," Mat. Sb., 65 (107), No. 1,28-46 (1964). N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, Amer. Math. Soc., Providence (1968). N. Ya. Vilenkin, "Calculation of an integral containing Bessel functions," Mat. Zametki, 30, No. 2, 185-186
(1981). 39.
40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52.
P.F. Volkovich, "On the evaluation of definite integrals of the form ~x+%-vX~dx ," (Redkollegiya Zh. Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk), Minsk (1974). Manuscript dep~osited at VINITI, February 17, 1974, No. 394-74 Dep. V.A. Volokhin, "An exact method for calculating integrals with a moving singularity and its application," Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 21-30 (1981). u Gabovich, "Tables of some new definite integrals," Sb. Nauchn. Tr. Est. S.-Kh. Akad., No. 25, 147-170 (1983). F.D. Gakhov, Boundary Value Problems (3rd edition, revised and augmented) [in Russian], Nauka, Moscow (1977). F.D. Gakhov and Yu. I. Cherskii, Equations of Convolution Type [in Russian], Nauka, Moscow (1978). A.O. Gel'fond, Residues and Their Applications [in Russian], Nauka, Moscow (1966). I.S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971). Z.S. Grinshpun, "A remark regarding the connection between a definite and a contour integral," Nauchn. Tr. Karagandinsk. N.-I. Ugol'n. Inst. No. 24, 176-178 (1969). I.I. Guseinov, "Analytic computation of three-center integrals of attraction to the nucleus with orbitals of Slater type," Az. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauk, No. 2, 10-19 (1971). I.I. Guseinov and F. S. Sadykov, "On the computation of the overlap integrals of atomic orbitals," Az. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauk, No. 2, 73-83 (1971). A. Yu. Davidov, "On a general formula in the theory of definite integrals," Mat. Sb., 10, No. 1, 3-29 (1882). H.B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, New York (1957). V.A. Dzhrbashyan, "On integrals of Bessel functions," Izv. Akad. Nauk ArmSSR, Ser. Fiz.- Mat. Nauk., 18, No. 4, 3-20 (1965). M.M. Dzhrbashyan, "On the problem of the representation of analytic functions," Soobshch. Inst. Mat. Mekh. Akad. Nauk ArmSSR, No. 2, 3-40 (1948).
1291
53.
68.
M.M. Dzhrbashyan, "On a new integral transform and its application in the theory of entire functions," Izv. Akad. Nauk SSSR, Ser. Mat., 19, No. 2, 133-190 (1955). M.M. Dzhrbashyan, "Integral transforms with Volterra kernels," Izv. Akad. Nauk SSSR, Ser. Mat., 24, No. 3, 387-420 (1960). M.M. Dzhrbashyan, "On the integral representation of certain orthogonal systems," Dokl. Akad. Nauk ArmSSR, 35, No. 1, 13-19 (1962). M.M. Dzhrbashyan, Integral Transforms and Representation of Functions in the Complex Plane [in Russian], Nauka, Moscow (1966). M.M. Dzhrbashyan, "The representation and the closedness of certain orthogonal systems," Izv. AN ArmSSR, Ser. Mat., 14, No. 6, 446-493 (1979). D. Dimitrovski, "On a method for evaluating definite integrals of rational functions by sums of a finite number of terms," Bull. Soc. Math. Phys. Mac6doine 13, 21-32 (1962). V.A. Ditkin and A. P. Prudnikov, Operational Calculus in Two Variables and Its Applications, Pergamon Press, New York (1962). V.A. Ditkin and A. P. Prudnikov, "Operational calculus of Bessel operators" Zh. Vychisl. Mat. Mat. Fiz., 2, No. 6, 997-1018 (1962). V.A. Ditkin and A. P. Prudnikov, "On the theory of operational calculus, generated by Bessel's equation," Zh. Vychisl. Mat. Mat. Fiz., 3, No. 2, 223-238 (1963). V.A. Ditkin and A. P. Prudnikov, "On the operational calculus of functions of an integral-valued argument and some of its applications in discrete analysis," Inzh.- Fiz. Zh., 7, No. 7, 101-115 (1964). V.A. Ditkin and A. P. Prudnikov, Formulaire pour Calcul Op6rationnel, Masson, Paris (1967). V.A. Ditkin and A. P. Prudnikov, "Integral transforms," in: Itogi Nauki. Mat. Analiz. 1966, VINITI, Akad. Nauk SSSR, Moscow (1967), pp. 7-82. V.A. Ditkin and A. P. Prudnikov, "Operational calculus of functions of two integral-valued variables and some of its applications," Inzh.- Fiz. Zh., 17, No. 4, 697-708 (1969). V . A . Ditkin and A. P. Prudnikov, "Operational calculus of certain differential operators," in: Problems in Applied Mathematics and Mechanics [in Russian], Nauka, Moscow (1971), pp. 75-85. V.A. Ditkin and A. P. Prudnikov, "Integral Transforms and Operational Calculus [in Russian], Nauka, Moscow (1974). V.A. Ditkin and A. P. Prudnikov, Operational Calculus [in Russian], Vysshaya Shkola, Moscow (1975).
69.
I.P. Dolbin, "On the expression in logarithms of the integral
54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67.
70. 71. 72. 73. 74. 75.
dx
I 1 / x * + p x ~+ 7
," Mat. Sb., 18, No. 1, 108-120
(1896). I.P. Dolbin, "A new method of integration in logarithms," Mat. Sb., 18, No. 1, 150-160 (1896). I.P. Dolbin, "On the reduction of Abelian integrals, depending on two-term algebraic equations," Mat. Sb., 18, No. 4, 647-688 (1896). G. Donov, "Application of an integral identity," in: Mat. Mat. Obraz. Dokl. na 10-ta Prolet. Konf. na Syyuza na Mat. v B'lgariya, Sl'nchev Bryag, 1981, Sofia (1981), pp. 353-356. D.F. Egorov, "Some information on the theory of integrals with respect to divisors," Mat. Sb., 16, No. 1,236-255 (1891). Yu. A. Erukhimovich and Yu. V. Pimenov, "The evaluation of a definite integral containing a Bessel function," Zh. Vychisl. Mat. Mat. Fiz., 4, No. 3, 596-599 (1964). N.N. Zinin, "On the problem of the reduction of a certain multiple integral," Mat. Sb., 14, No. 1, 549-552
(1888). 76. 77. 78. 79.
t292
N.N. Zinin, "On the Ostrogradskii formulas in the theory of multiple integrals and on their applications," Mat. Sb., 15, No. 4, 645-682 (1891). N.N. Zinin, Various methods for the reduction of multiple integrals and the principal applications of these methods. Warsaw (1982). N.A. Ivanov, "Three pseudoelliptic integrals," in: Physico--Mathematical Sciences [in Russian], Yaroslavl (1973), pp. 120-121. N . M . II'enkov, "On certain erroneous formulas of integral transformations," Differents. Uravn., 4, No. 12, 2275-2277 (1968).
80. 8 I. 82. 83. 84. 85. 86. 87.
L.V. lsaeva, "On certain properties of the Kontorovich--Lebedev integral transform," Uch. Zap. Mat. Kafedr. Tul'sk. Gos. Ped. Inst., No. 3, 82-86 (1970). N.N. Kazarinova, "The evaluation of an integral of the square of the Legendre function," Zap. Leningr. Gorn. Inst., 48, No. 3, 81-82 (1968). M. Kh. Kamilov, "On the mean value of a certain double sum," Dokl. Akad. Nauk Tadzh. SSR, 11, No. 2, 3-6 (1968). M . B . Kapilevich, "On confluent hypergeometric Horn functions," Differents. Uravn., 2, No. 9, 1239-1254 (1966). M.B. Kapilevich, "On certain properties of Humbert's hypergeometric functions," Studia Sci. Math. Hungar., 3, No. 1-3, 81-91 (1968). V.I. Kval'vasser, "On the evaluation of certain improper integrals by operational method," Sb. Nauchn. Tr. Kuibyshevsk. Industr. Inst., No. 8, 277-281 (1959). M. Kozarov and K. Mladenov, "Solution of certain elliptic integrals," Fiz.-Mat. Spis. B"lgar. Akad. Nauk, 18, No. 1, 30-33 (1975). Ts. C. Koprinski, "An algebraic method for finding the inverse Laplace transforms of the operator functions e-~'/~L
vi+~ 88. 89.
90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108.
e--te I/ p
and
pJ+1 I/-p- '" Godishnik Vissh. Tekhn. Uchebn. Zaved. Mat., 8, No. 1, 195-206 (1972).
Ts. C. Koprinski, "An algebraic method for finding the inverse Laplace transforms of the operator functions e-z;Z~ vj., Godishnik Vissh. Tekhn. Uchebn. Zaved. Mat., 8, No. 1, 179-194 (1972). Ts. C. Koprinski and Kh. B. Abadzhiev, "A direct method for finding the inverse Laplace transforms of the operator functions e-~;~i+~) e -v~'(p+~), etc.," Godishnik Vissh. Tekhn. Uchebn. Zaved. Mat., 8, No. 1, 159178 (1972(1973)). ~ P~ G. Ya. Korenman and Kh. Tsookhuu, "Recurrent relations for the generalized matrix elements of the problem of two Coulomb centers," Yader. Fiz., 36, No. 4, 874-877 (1982). A.N. Korkin, "On a certain definite integral," Mat. Sb., 10, No. 1,571-572 (1882). V . E . Kornilov, "The evaluation of multiple integrals of the Riemann function with the aid of continued fractions," Izv. Tomsk. Politekhn. Inst., 249, 50-52 (1973). V . E . Kornilov, "The application of continued fractions to the evaluation of elliptic integrals," Izv. Tomsk. Politekhn. Inst., 226, I03-107 (1976). V . E . Kornilov, "The application of the theory of continued fractions to the evaluation of certain types of integrals," Izv. Tomsk. Politekhn. Inst., 226, 116-122 (1976). Yu. M. Krikunov, "On a certain generalization of the hypergeometric integral," Tr. Sere. Kraev. Zadacham No. 10, 90--94 (1973). N.N. Lebedev, "Certain integral transforms for products of spherical functions," Dokl. Akad. Nauk SSSR, 73, No. 3,449-451 (1950). N . N . Lebedev, "On the expansion of an arbitrary function in an integral with respect to the squares of MacDonald functions with imaginary index," Sib. Mat. Zh., 3, No. 2, 213-222 (1962). N.N. Lebedev, Special Functions and Their Applications, Prentice-Hall, Englewood Cliffs (1965). N.N. Lebedev, "On the expansion of an arbitrary function in an integral with respect to the squares of Legendre functions with complex index," Differents. Uravn., 3, No. 3, 422-435 (1967). N . N . Lebedev and I. P. Skal'skaya, "On a certain expansion of an arbitrary function in terms of spherical functions," Prikl. Mat. Mekh., 30, No. 2, 252-258 (1966). N . N . Lebedev and I. P. Skal'skaya, "Certain integral transforms related with the Kontorovich-Lebedev transform," in: Problems of Mathematical Physics [in Russian], Nauka, Leningrad (1976), pp. 68-79. A.B. Letnikov, "Investigations related to the theory of integrals of the form ~ (x--u)p-'f (u)du ," Mat. Sb., 7, No. 1, 5-205 (1874). ~ A.B. Letnikov, "On various expressions of spherical functions with an arbitrary index and their expansion into series," Mat. Sb., 10, No. 1,383-475 (1882). A.B. Letnikov, "On definite integrals containing functions that satisfy the hypergeometric equation," Mat. Sb., 11, No 2, 327-414 (1883). A.B. Letnikov, "On the reduction of multiple integrals," Mat. Sb., 14, No. 1,303-328 (1888). A.I. Liventsov, "On certain definite integrals," Mat. Sb., 9, No. I, 565-568 (1978). Y.L. Luke, Mathematical Functions and Their Approximations, Academic Press, New York (1975). I . M . Makarov and B. M. Menskii, Tables for Inverse Laplace Transforms and Inverse Z-Transforms. The Rational--Fractional Mapping [in Russian], Vysshaya Shkola, Moscow (1978). I293
109. 110. 111. 112. 113.
114. 115. 116. 117. 118. 119.
120.
121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135.
1294
S.T. Maklovich, "Investigation of integrals containing Bessel and elementary functions," Uch. Zap. Kishinev. Univ., 82, 75-81 (1965). S . T . Maklovich and Yu. N. Kozulin, "Certain transformations of integrals of a special form, containing exponential and Bessel functions," Uch. Zap. Kishinev. Univ., 69, 14-18 (1964). S . T . Maklovich and Yu. N. Kozulin, "The investigation of certain improper integrals containing Bessel functions," Uch. Zap. Kishinev. Univ., 75, 18-20 (1964). O.I. Marichev, "Two Volterra equations with Horn functions," Dokl. Akad. Nauk SSSR, 204, No. 3, 546-549 (1972). O.I. Marichev, "Certain integral equations of the Mellin convolution type, containing special functions in the kernels," (Redkollegiya Zh. Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk), Minsk (1976). Manuscript deposited at VINITI, May 12, 1976, No. 1640-76 Dep. O. I. Marichev, "Neumann and Dirichlet weight problems in the half-plane for the generalized Euler-Poisson-Darboux equation," Vestsi Akad. Nauk BSSR Ser. Fiz.-Mat. Nauk 1976, No. 4, 128-131 (1976). O.I. Marichev, "Singular boundary value problems for a generalized biaxially symmetric Helmholtz equation," Dokl. Akad. Nauk SSSR, 230, No. 3, 523-526 (1976). O.I. Marichev, "A Method of Calculating Integrals of Special Functions (Theory and Tables of Formulas) [in Russian], Nauka Tehknika, Minsk (1978). O.I. Marichev, "Integral operators with special functions in the kernels that generalize integration operators of complex order," Vesci Akad. Nauk BSSR Ser. Fiz.-Mat. Nauk, No. 2, 38-44 (1978). O.I. Marichev, "A method for calculating integrals of hypergeometric functions," Dokl. Akad. Nauk BSSR 25, No. 7, 590-593 (1981). O.I. Marichev, "On the evaluation of integral transforms of hypergeometric functions," in: Generalized Functions and Their Applications in Mathematical Physics (Proc. Internat. Conf., Moscow, Nov. 24-28, 1980), Akad. Nauk SSSR, Vychisl. Tsentr, Moscow (1981), pp. 323-331. O.I. Marichev, "On the representation of Meijer's G-function in the neighborhood of a singular unit," in: Abstracts of the Reports of the International Conference on Complex Analysis and Applications (Varna, Sept. 20-27, 1981) (1982), p. 49. O.I. Marichev, "On conditions for the invertibility of the Mellin--Barnes integrals," Dokl. Akad. Nauk BSSR 26, No. 3,205-208 (1982). O.I. Marichev, "The asymptotic behavior of functions of hypergeometric type," Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 4, 18-25 (1983). O.I. Marichev and Vu Kim Tuan, "The definition of a general G-function of two variables, its special cases, and differential equations," Differents. Uravn., 19, No. 10, 1797-1799 (1983). V.I. Martynov, "Evaluation of a definite class of integrals, used in the calculation of pipeline reliability," in: Methods and Means of Mathematical Modeling, Alma-Ata (1979), pp. 67-72. V.D. Martynchuk, "Two integrals of the modified Bessel function," Trudy Frunz. Politekh. Inst., No. 65, 40-46 (1974). V.V. Karpenko, E. T. Kolesova, and Yu. S. Yakovleva (eds.), Mathematical Tables (3rd edition), Leningrad (1978). N.A. Meller, "On a certain operational method for the evaluation of definite integrals," Zh. Vychisl. Mat. Mat. Fiz., 1, No. 4, 590-606 (1961). N.A. Meller, "The application of operational calculus to the evaluation of certain integrals," Vychisl. Mat., 7, 170-180 (1961). N.A. Meller, "On certain applications of operational calculus to analysis problems," Zh. Vychisl. Mat. Mat. Fiz., 3, No. 1, 71-78 (1963). N.I. Muskhelishvili, Singular Integral Equations [in Russian], Nauka, Moscow (1968). Zh. Naurzbaev, "Certain integrals that contain Bessel functions," Izv. Akad. Nauk Kaz. SSR Ser. Fiz.-Mat., No. 1, 69-72 (1972). Zh. Naurzbaev and V. F. Tarasov, "Physical integrals with Kummer functions, and the symmetry of Appell functions," Izv. Akad. Nauk Kaz. SSR Ser. Fiz.-Mat., No. 4, 29-36 (1974). P.A. Nekrasov, "The application of general differentiation to the problem of the reduction of multiple integrals (in connection with the integration of Laplace's equation)," Mat. Sb., 14, No. 1,410-426 (1888). P.A. Nekrasov, "On the reduction of multiple integrals," Mat. Sb., 16, No. 1, 81-88 (1891). P.A. Nekrasov, "Regarding N. N. Zinin's work: "Various methods for the reduction of multiple integrals", Mat. Sb., 16, No. 1,823-826 (1891).
136. 137. 138. 139.
140. 141. 142. 143. 144. 145. 146. i47. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158.
159. 160. 161. 162. 163. 164. 165.
A . F . Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics [in Russian], Nauka, Moscow (1978). F. Oberhettinger, Fourier Transforms of Distributions and Their Inverses, Academic Press, New York (1973). F.W. J~ Olver, Introduction to Asymptotics and Special Functions, Academic Press, New York (1974). V.P. Olshanskii and V. K. Osadchenko, "On two-dimensional Fourier integrals containing Bessel functions," in: Theoretical and Applied Questions of Differential Equations and Algebra [in Russian], pp. Naukova Dumka, Kiev (1978), pp. 188-195. V.M. Osipov, "On relations of convolution type between Legendre and Chebyshev polynomials," Izv. Tomsk. Politekhn. Inst., 191, 127-132 (1969). N.A. Ostapenko, "On certain definite integrals of Bessel functions," Vestn. Moskov. Univ., Ser. I Mat. Mekh., No. 2, 14-I6 (1979). A.U. Paivin, "The evaluation of an n-fold improper integral," Uch. Zap. Sterlitamaksk. Gos. Ped. Inst., No. 5, 42-46 (1961). L . V . Pestun, "On a certain method for the evaluation of Kontorovich--Lebedev integrals," Uch. Zap. Tul'sko Gos. Ped. Inst., Mat., 26-33 (1968). A.P. Polyakov, "On the integration of the differential binomial in the general form," Mat. Sb., 26, No. 1, 37-50 (1906). 13. S. Popov, "Formules d'int6grales d6finies des polynomes de Legendre et des fonctions de Legendre associ~es," Fac. Philos. Univ. Skopje. Sect. Sci. Natl. Annuaire, 1I, 7-16 (1958). G. Ya. Popov, "Certain properties of classical polynomials and their application to contact problems," Prikl. Mat. Mekh., 27, No. 5, 821-832 (1963). G. Ya. Popov, "Certain properties of classical polynomials and their application to contact problems," Prikl. Mat. Mekh., 28, No. 3, 442-451 (1964). G. Ya. Popov, "On the application of Jacobi polynomials to the solution of integral equations," Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 77-85 (1966). G. Ya. Popov, "The plane contact problem of elasticity theory taking into account adhesion or friction forecs," Prikl. Mat. Mekh., 30, No. 3, 551-563 (1966). G. Ya. Popov, "Some new relations for Jacobi polynomials," Sib. Mat. Zh., 8, No. 6, 1399-1404 (1967). G. Ya. Popov, "The indentation of a stamp into a linearly-deformable foundation, taking into account friction forces," Prikl. Mat. Mekh., 31, No. 2, 337-343 (1967). G. Ya. Popov, "On a remarkable property of Jacobi polynomials," Ukr. Mat. Zh., 20, No. 4, 540-547 (1968). G. Ya. Popov, "On the method of orthogonal polynomials in contact problems of the theory of elasticity," Prikl. Mat. Mekh., 33, No. 3, 518-531 (1969). G. Ya. Popov, "Some new integral relations for classical polynomials," in: Applied Mathematics and Programming, No. 13 [in Russian], Shtiintsa, Kishinev (1975), pp. 117-129. G. Ya. Popov, Concentration of Elastic Stresses Near Stamps, Cuts, Thin Inclusions, and Reinforcements [in Russian], Nauka, Moscow (1982). V. 13. Poruchikov, "On a certain formula of operational calculus," Vestnik Moskov. Univ., Ser. I Mat. Mekh., No. 5, 103-104 (1968). A.P. Prudnikov, "On functions satisfying the differential equation x2y~"+3xy"+y'+x*y=o //Dokl. Akad. Nauk SSSR, 144, No. 1, 56-57 (1962). A . P . Prudnikov, "Operational calculus of functions of two integer-valued variables and its applications to discrete analysis," in: IV Internat. Kongr. tiber Anwendungen der Mathematik in den Ingenieurwissenschaften. 13erichte, Weimar (1967). A.P. Prudnikov, "On bilinear expansions, containing Legendre polynomials," Dokl. Akad. Nauk BSSR, 12, No. 2, I19-Jt22 (1968). A.P. Prudnikov, "On the theory of operational calculus," Dokl. Akad. Nauk BSSR, 13, No. 3, 222-224 (1969). Ao P. Prudnikov, "On the theory of operational calculus," in: Problems of Heat and Mass Transfer~ Collection of Articles Dedicated to A. V. Lykov on his Sixtieth Birthday [in Russian], Nauka, Moscow (1970). A.P. Pr~t~dnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series [in Russian], Nauka, Moscow (1981). A.P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Special Functions [in Russian], Nauka, Moscow (I983). A . P . Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Supplementary Chapters [in Russian], Nauka, Moscow (1986). G . I . Pykhteev, "On an exact method for the evaluation of certain integrals with Cauchy type kernel," Dokl. Akad. Nauk SSSR, 140, No. 3, 536-539 (1961).
1295
166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 18 I. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198.
1296
E. Ya. Riekstynysh (E. Riekstins), Asymptotic Expansion of Integrals. Vol. 1 [in Russian], Zinatne, Riga (1974). E. Ya. Riekstynysh (E. Riekstins), Asymptotic Expansion of Integrals. Vol. 2 [in Russian], Zinatne, Riga (1977). E. Ya. Riekstynysh (E. Riekstins), Asymptotic Expansion of Integrals. Vol. 3 [in Russian], Zinatne, Riga (1981). V.B. Romanovskii, "Recurrence formulas for the evaluation of certain elliptic integrals, containing trigonometric functions of multiple arcs," Sb. Tr. Leningr. Elektrotekhn. Inst. Svyazi, No. I, 3-8 (1956). V.S. Ryko, "Representations of the group of motions of the pseudo-Euclidean plane and Hankel functions," Uch. Zap. Vologodsk. Gos. Ped. Inst., 30, 119-134 (1966). V.S. Ryko, The Mellin transform for the hypergeometric function," in: Materialy 26 Konf. Mat. Kaf. Ped-tov Urala [in Russian], Kirov (1968), pp. 23-24. V.S. Ryko, The Mellin transform for the complete hypergeometric function of order s," Uch. Zap. Leningr. Gos. Ped. Inst., 478, 86-90 (1970). V.S. Ryko, "The use of a certain connection between integral transforms for the calculation of integrals, Mat. Zametki, 15, No. 1, 129-137 (1974). V.S. Ryko, "Certain theorems on integral transforms," Mat. Zametki, 18, No. 6, 825-830 (1975). V.S. Ryko, "Certain compositions of integral transforms," (Redkollegiya Zh. Sib. Mat. Zh.), Novosibirsk (1979). Manuscript deposited at VINITI, January 19, 1979, No. 199-79 Dep. V.S. Ryko, "Finite sums and Fourier transforms," Vologod. Gos. Ped. Inst., Vologda (1983). Manuscript deposited at VINITI, June 24, 1983, No. 3456-83 Dep. V.S. Ryko, "Discrete Fourier transforms (theory and table of formulas)," Vologod. Gos. Ped. Inst., Vologda (1984). Manuscript deposited at VINITI, June 6, 1984, No. 3716-84 Dep. G.S. Salekhov, L. M. Muratov, and V. E. Pospeev, Evaluation of Series and of Improper Integrals [in Russian], Kazan. Univ., Kazan' (1973). S.G. Samko, Hypersingular Integrals and Their Applications [in Russian], Rostov. Gos. Univ., Rostov-on-Don (1984). L.J. Slater, Confluent Hypergeometric Functions, Cambridge Univ. Press, London (1960). M.M. Smirnov, "On a Volterra equation with a hypergeometric function in the kernel," Vestnik Leningrad. Univ. Mat. Mekh. Astronom., No. 13, Vyp. 3, 117-119 (1981). M.L. Smolyanskii, Tables of Indefinite Integrals [in Russian], Nauka, Moscow (1967). N. Ya. Sonin, "On the reduction of a certain multiple integral," Mat. Sb., 14, No. 1, 527-536 (1888). N. Ya. Sonin, On a formula of reduction of multiple integrals. Izv. Varsh. Univ. (1889). N. Ya. Sonin, Investigations of Cylinder Functions and Special Polynomials [in Russian], Gostekhizdat, Moscow (1954). I.G. Aramanovich, R. S. Guter, L. A. Lyusternik, et al., Mathematical Analysis. Differentiation and Integration [in Russian], Fizmatgiz, Moscow (1961). M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Natl. Bureau of Standards, Washington (1964). V.F. Tarasov and S. M. Chanyshev, "On the symmetries of Appell's function," Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat., No. 6, 55-59 (1970). A.A. Temlyakov, "Integral representations of functions of two complex variables," Dokl. Akad. Nauk SSSR, 124, No. 1, 38-41 (1959). A.F. Timofeev, Integration of Functions [in Russian], GITTL, Moscow (1948). E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford (1948). A.M. Trakhtman and V. A. Trakhtman, "Table of Hilbert transforms," Radiotekhnika, 25, No. 3, 85-89 (1970). G.G. Tribunyan, "Evaluation of certain indefinite integrals of cylindrical and power functions," Erevan. Gos. Univ. Uchen. Zap. Estestv. Nauki, No. 3 (124), 17-26 (1973). E.T. Whittaker and D. N. Watson, A Course of Modern Analysis, Part 1 [Russian translation], Fizmatgiz, Moscow (1962). E.T. Whittaker and D. N. Watson, A Course of Modern Analysis, Part 2 [Russian translation], Fizmatgiz, Moscow (1963). Yu. F. Fitippov, A method for the evaluation of indefinite integrals, containing transcendental functions. Inst. Radiofiz. i Elektron. Akad. Nauk Ukr. SSR. Preprint No. 86 (1977). Yu. F. Filippov, "On the calculation of indefinite integrals containing some transcendental functions," Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 3, 176-179 (1979). Yu. F. Filippov, "On the calculation of indefinite integrals containing certain special functions," Mat. Zametki, 29, No. 2, 197-200 (1981).
199. 200.
201. 202. 203. 204. 205. 206. 207. 208. 209.
210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222.
223.
224. 225.
226. 227.
Yu. F. Filippov, Tables of Indefinite Integrals of Higher Transcendental Functions [in Russian], Vishcha Shkola, Kharkov (1983). G . M . Fikhtengol'ts, A Course of Differential and Integral Calculus, Vols. 1-3 [in Russian], Nauka, Moscow (1966). P.I. Khadzhi, "Certain integrals containing the probability function and confluent hypergeometric functions," Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekhn. Mat. Nauk, No. 2, 40-47 (1969). P.I. Khadzhi, "Certain integrals containing the probability function and hypergeometric functions," Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekhn. Mat. Nauk, No. 1, 49-62 (1970). P.I. Khadzhi, The Probability Function (Integrals, Series, and Some Generalizations) [in Russian], Institute of Applied Physics, Academy of Sciences of the Moldavian SSR, Kishinev (1971). P.I. Khadzhi, "The Laplace transform for expressions containing the probability function," Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekhn. Mat. Nauk, No. 2, 78-80 (1973). P. I. Khadzhi, "Certain integrals containing the probability function," Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekhn. Mat. Nauk, No. 2, 86-88 (1975). P.I. Khadzhi, "Integrals containing the Fresnel functions S(x) and C(x)," Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekhn. Mat. Nauk, No. 3, 48-60 (1975). P.I. K hadzhi, "Integrals containing the probability function of complicated arguments," Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekhn. Mat. Nauk, No. 1, 80-84 (1976). G . D . Khan'zhova, "On the evaluation of proper double integrals, occurring in thermoelasticity problems," Vychisl. Fiz., No. I, 85-89 (1977). G.D. Khan'zhova, "Evaluation of certain improper double integrals, containing Bessel functions and occurring in three-dimensional thermoelasticity problems," in: Applied Elasticity Theory [in Russian], Saratov (1980), pp. 115-121. I.I. Hirshman and D. V. Widder, The Convolution Transform, Princeton Univ. Press, Princeton (1955). Loo-Keng Hua, "Some definite integrals," Acta Math. Sinica, 6, No. 2, 302-312 (1956). P.L. Chebyshev, "On the integration of the simplest differentials, containing cubic roots," Mat. Sb., 2, No. 2, 71-78 (1867). I . V . Chiplis and K. M. Eriksonas, "The interconnection between radial integrals and the hypergeometric function," Lit. Fiz. Sb., 8, No. 1-2, 5-8 (1968). I.V. Chiplis and F. V. Chumakov, "An Abel type equation on a composite contour," Vestsi Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk, No. 1, 55-61 (1971). F.V. Chumakov, "Solution in closed form of certain integral equations with logarithmic kernel on a composite contour," Vestnik Beloruss. Gos. Univ. Ser. I, No. 2, 5-9 (1972). P.A. Shiff, "On certain relations in the theory of definite integrals," Mat. Sb., 17, No. 4, 607-679 (1893). V. Shkodrov, "On an integral, whose integrand is the product of associated Legendre functions," C. R. Acad. Bulgare Sci., 24, No. 10, 1293-1295 (1971). V. Shkodrov, "On certain integrals, whose integrands are related to spherical functions," Izv. Sekts. Astron. Bolg. AN, 16, 117-t23 (1973). M . R . Shura-Bura, "The evaluation of an integral containing product of Besse! functions," Dokl. Akad. Nauk SSSR, 73, No. 5, 901-903 (1950). V.N. Shchelkachev, "The development of the indirect method for the derivation of formulas for the evaluation of certain improper integrals of Bessel functions," Prikl. Mekh., 4, No. 8, 109-113 (1968). A.M. Efros and A. M. Danilevskii, Operational Calculus and Contour Integrals [in Russian], GNTIU, Khar'kov (1937). S.I. Yurchenko, "Integral transforms in applications to integral evaluation and series summation," in: Mathematics and Some of Its Applications in Theoretical and Applied Sciences, No. 4 [in Russian], Rostov-on-Don (1970), pp. 33-.44. S.I. Yurchenko, "Integral transforms in applications to integral evaluation and series summation," in: Mathematics and Some of Its Applications in Theoretical and Applied Sciences, [in Russian], Rostov-on-Don (1972), pp. 1118. W.R. Abbott, "Evaluation of an integral of a Bessel function," J. Math. and Phys., 28, 192-194 (1949). N. Abdul-Halim and W. A. AI-Salam, "Double Euler transformations of certain hypergeometric functions," Duke Math. jr., 30, No. 1, 51-62 (1963). R . F . A . Abiodun and B. L. Sharma, "A definite integral and application in the production of heat in a cylinder," An. Univ. Bucuresti Mat.-Mec., 21, No. 2, 7-14 (1972). I. Adawi and M. L. Glasser, "Evaluation of some transport integrals," J. Appl. Phys., 37, No. 1,364-366 (1966).
1297
228. 229. 230. 231. 232. 233. 234. 235.
236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256. 257.
1298
S.N. Agal, "A double integral involving the H-function," Vijnana Parishad Anusandhan Patrika, 24, No. 3, 261-264 (1981). I. Agrawal and R. K. Saxena, "Integrals involving Bessel functions," Rev. Univ. Nac. Tucum~n, A19, 245-254 (1969). I. Agrawal and R. K. Saxena, "An infinite integral involving Meijer's G-function," Riv. Mat. Univ. Parma, 1, 15-21 (1972). R.D. Agarwal, "Some inversion formulae for generalized Laplace transform," Proc. Natl. Inst. Sci. India, A35, Suppl. No. 1, 48-56 (1969). R.D. Agarwal, "On Meijer transform," Portugal. Math., 28, No. 2, 77-81 (1969). R . P . Agarwal, "An extension of Meijer's G-function," Proc. Natl. Inst. Sci. India, A31, No. 6, 536-546 (1965(1966)). R.P. Agarwal, Generalized Hypergeometric Series, Asia Publishing House, New York - Bombay (1963). R.P. Agarwal, "A note on evaluation of the integral ~e-ktlo r~(0 dt //," Proc. Edinburgh Math. Soc., 14, No. I, h 85-86 (1964). R . P . Agarwal, "On certain transformation formulae and Meijer's G-function of two variables," Indian J. Pure Appl. Math., 1, No. 4, 537-551 (1970). I. Aggarwala and A. N. Goyal, "On some integrals involving generalized Lommel, Maitland and A -functions," Indian J. Pure Appl. Math., 4, No. 9, 798-805 (1973). C. Agostinelli, "Sopra alcuni integrali delle funzioni cilindriche," Boll. Un. Mat. Ital., 4, No. 1, 25-28 (1942). B.M. Agrawal, "Application of A and E operators to evaluate certain integrals," Proc. Cambridge Philos. Soc., 64, No. 1, 99-104 (1968). R . K . Agrawal, "A multiple integral involving the H-function of two variables," Pure Appl. Math. Sci., 12, No. 1-2, 121-126 (1980). E.L. Albasiny, R. J. Bell, and J. R. Cooper, "Integrals of triple products of associated Legendre functions," Proc. Phys. Soc., 84, No. 2, 336-838 (1964). J.R. Albricht, Integrals of products of Airy functions," J. Phys. A, 10, No. 4, 485-490 (1977). W. A1-Salam, W. R. Allaway, and R. Askey, "Sieved ultraspherical polynomials," Trans. Amer. Math. Sot., 284, No. 1, 39-55 (1984). L.H. de Amin and S. L. Kalla, "Integrals that involve products of generalized hypergeometric functions and the H-function of two variables," Rev. Univ. Nac. Tucuman, A23, 131-141 (1973). P. Anandani, "Some integrals involving products of Meijer's G-function and H-function," Proc. Indian Acad. Sci., A67, No. 6, 312-32I (1968). P. Anandani, "Summation of some series of products of H-functions," Proc. Natl. Inst. Sci. India, A34, No. 5, 216-223 (1968). P. Anandani, "On some integrals involving generalized Legendre's associated functions and H-functions," Proc. Natl. Acad. Sci. India, A39, 341-348 (1969). P. Anandani, "Some integral involving generalized Legendre associated functions and the H-function," Proc. Natl. Acad. Sci. India, A39, 127-136 (1969). P. Anandani, "Some integrals involving products of generalized Legendre's associated functions and the Hfunction," J. Sci. Engrg. Res., 13, No. 2, 274-279 (1969). P. Anandani, "Some integrals involving H-functions," Labdev J. Sci. Tech., AT, No. 2, 62-66 (1969). P. Anandani, "Some integrals involving associated Legendre functions of first kind and the H-function," J. Natur. Sci. and Math., 10, 97-104 (1970). P. Anandani, "Some integrals involving Jacobi polynomials and H-function," Labdev J. Sci. Tech., AS, No. 3, 145-149 (1970). P. Anandani, "Some integrals involving H-functions of generalized arguments," Math. Education, A4, 32-38 (1970). P. Anandani, "An expansion formula for the H-function involving generalized Legendre associated functions," Portugal. Math., 30, No. 3-4, 173-180 (1971). P. Anandani, "Some integrals involving H-function," Rend. Circ. Mat. Palermo, 20, No. 1, 70-82 (1971). P. Anandani, "Some integrals involving associated Legendre functions and the H-function," Univ. Nac. Tucum~in Rev., A21, No. 1-2, 33-41 (1971). P. Anandani, "Integration of products of generalized Legendre functions and the H-function with respect to parameters," Labdev J. Sci. Tech., A9, No. 1, 13-19 (1971).
258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 288. 289.
P. Anandani, "Some integrals involving H-function," Rend. Circ. Mat. Palermo, 20, No. 1, 70-82 (197t). P. Anandani, "Some contour integrals involving generalized Legendre functions and the H-function," Kyungpook Math. J., 12, 103-114 (1972). P. Anandani, "Some integrals involving H-function and Jacobi polynomials," Bull. College Sci. (Baghdad), 12-13 (1972/1973), 303-313. P. Anandani, "Integrals involving products of generalized Legendre functions and the H-function," Kyungpook Math. J., 13, No. 1, 21-25 (1973). P. Anandani, "On some results involving generalized Legendre's associated functions and the H-functions," Ganita, 24, No. 1, 41-48 (1973). P. Anandani, "Some integrals involving the H-function and generalized Legendre functions," Bull. Soc. Math. Phys. Mac6doine 24, 33-38 (1973). P. Anandani and N. P. Singh, "Integration of generalized H-function of two variables with respect to the parameters," Vijnana Parishad Anusandhan Patrika, 19, No. 3, 221-226 (1976). P. Anandani and N. P. Singh, "Integration of generalized H-function of two variables with respect to parameters. II," J. Natur. Sci. Math., 18, No. 2, 33-42 (1978). P. Anandani and H. S. P. Srivastava, "On Mellin transform of product involving Fox's H-function and a generalized function of two variables," Comment. Math. Univ. St. Paul., 21, No. 2, 35-42 (1972(1973)). Th. Angeluta, "On a class of integrals," Inst. Politehn. Cluj, Lucrari Sti., 21-28 (1959). M. E. F. de Anguio and S. L. Kalla, "La transformada de Laplaca del producto de dos functiones H de Fox," Rev. Univ. Nac. Tucumfin, A22, No. 1-2, 171-175 (1972). M. E. F. de Anguio and S. L. Kalla, "Sobre integracion con respecto a parametros," Rev. Univ. Nac. Tucum~in, A23, 103-110 (1973). M. E. F. de Anguio, A. M. M. de Gomez Lopez, and S. L. Kalla, "Integrals that involve the H-function of two variables," Acta Mexicana Ci. Tecn., 6, 30-41 (1972). A. Apelblat, "Repeating use of integral transform - a new method for evaluation of some infinite integrals," IMA J. Appl. Math., 27, No. 4, 481-496 (1981). A. Apelblat, Table of Definite and Infinite Integrals, Elsevier, Amsterdam (1983). P. Appell and J. Kampe de F6riet, Fonctions Hyperg6om6triques et Hypersp~riques; Polynomes d'Hermite, Gauthier--Villars, Paris (1926). N. Arley, "On a Dirichlet integral," Mat. Tidsskr., 49-51 (1939). K. L. Arora and S. K. Kulshreshtha, "An infinite integral involving Meijer G-function," Proc. Amer. Math. Soc., 26, No. I, 121-125 (1970). K. L. Arora and S. K. Kulshreshtha, "Double contour integrals involving associated Legendre functions and Meijer's G-function," Mathematica (Cluj), 17, No. 2, 145- 152 (1975). S. C. Arya, "Inversion theorem for a generalized Stieltjes transform," Riv. Mat. Univ. Parma, 9, 139-148 (1958). S. C. Arya, "Some theorems connected with a generalized Stieltjes transform," Bull. Calcutta Math. Soc., 51, No. 1, 39-47 (1959). A. S. Asghar, G. K. Goyal, and A. N. Goyal, "Double integration of H(x, y)," Vijnana Parishad Anusandhan Patrika, 25, No. 1, 49-58 (1982). A. A. Ashour, "On some formulae for integrals of associated Legendre functions," Quart, J. Mech. Appl. Math., 17, No. 4, 513-523 (1964). R. Askey, "Mehler's integral for P,~(cos O)," Amer. Math. Monthly, 76, No. 9, 1046-1049 (1969). R. Askey, "Ramanujan's extensions of the gamma and beta functions," Amer. Math. Monthly, 87, No. 5,346-359 (1980). R. Askey, "Some basic hypergeometric extensions of integrals of Selberg and Andrews," SIAM J. Math. Anal., l l , No. 6, 938-951 (1980). R. Askey, "An integral of products of Legendre functions and a Clebsch--Gordan sum," Lett. Math. Phys., 6, No. 4, 299-302 (1982). R. Askey, "Two integrals of Ramanujan," Proc. Amer. Math. Soc., 85, No. 2, 192-194 (1982). R. Askey, "An elementary evaluation of a beta type integral," Indian J. Pure Appl. Math., 14, No. 7, 892-895 (1983). R. Askey and J. Fitch, "Integral representations for Jacobi polynomials and some applications," J. Math. Anal. Appl., 26, No. 2, 411-437 (1969). R. Askey and B. Razban, "An integral for Jacobi polynomials," Simon Stevin, 46, No. 4, 165-169 (1972(1973)). A. Aulin and C.-E. Fr6berg, "Evaluation of an elementary integral," Nord. Mat. Tidskr., 21, No. 2-3, 67-72 (1973).
1299
290. 291. 292. 293. 294. 295. 296. 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318. 319. 320. 321.
1300
R. Azor, J. Gillis, and J. D. Victor, "Combinatorial applications of Hermite polynomials," SIAM J. Math. Anal., 13, No. 5, 879-890 (1982). S.E. Babb, Jr. and J. W. Cafky, "Operational evaluation of certain infinite Bessel function integrals," Math. Comp., 33, No. 147, 1033-1039 (1979). T . D . H . Baber and L. Mirsky, "Note on certain integrals involving Hermite's polynomials," Philos. Mag., 35, 533-537 (1944). W.N. Bailey, "Some definite integrals allied to an integral of Jacobi," Proc. London Math. Soc. 30, No. 6, 415-421 (1929). W.N. Bailey, "Some integrals of Kapteyn's type involving Bessel functions," Proc. London Math. Soc. 30, No. 6, 422-424 (1929). W.N. Bailey, "Some definite integrals involving Bessel functions," Proc. London Math. Soc. 31, No. 3,200-208 (1930). W.N. Bailey, "A generalization of an integral due to Ramanujan," J. London Math. Soc., 5, 200-202 (1930). W . N . Bailey, "Some classes of functions which are their own reciprocals in the Fourier-Bessel integral transform," J. London Math. Soc., 5, 258-265 (1930). W.N. Bailey, "Some definite integrals involving Legendre functions," Proc. Cambridge Philos. Soc., 26,475-479 (1930). W.N. Bailey, "Some series and integrals involving associated Legendre functions. I; II," Proc. Cambridge Philos. Soc., 27, 184-189; 381-386 (1931). W.N. Bailey, "A note on an integral due to Ramanujan," J. London Math. Soc., 6, 216-217 (1931). W.N. Bailey, "Relations between some definite integrals involving self-reciprocal functions," J. London Math. Sot., 7, 82-87 (1932). W.N. Bailey, "Some transformations of generalized hypergeometric series, and contour integrals of Barnes's type," Quart. J. Math. Oxford, 3, No. 11, 168-182 (1932). W.N. Bailey, "Some infinite integrals involving Bessel functions," Proc. London Math. Soc. 40, No. 1, 37-48 (1936). W.N. Bailey, Generalized Hypergeometric Series, Cambridge Univ. Press, Cambridge (1935). W.N. Bailey, "Some infinite integrals involving Bessel functions. II," J. London Math. Soc., I1, No. 1, 16-20 (1936). W.N. Bailey, "An integral representation for the product of two Whittaker functions," Quart. J. Math. Oxford, 8, No. 29, 51-53 (1937). W.N. Bailey, "An integral representation for the product of two Hermite polynomials," J. London Math. Soc., 13, 202-203 (1938). W.N. Bailey, "Some integral formulae involving associated Legendre functions," J. London Math. Sot., 13, No. 3, 167-169 (1938). W. No Bailey, "Some integrals involving Bessel functions," Quart. J. Math. Oxford, 9, 141-147 (1938). W.N. Bailey, "On the product of two Laguerre polynomials," Quart. J. Math. Oxford, 10, 60-66 (1939). W.N. Bailey, "On the product of two associated Legendre functions," Quart. J. Math. Oxford, 11, 30-35 (1940). W.N. Bailey, "On the double-integral representation of Appell's function F4," Quart. J. Math. Oxford, 12, No. 45, 12-14 (1941). W.N. Bailey, "Some integrals involving Hermite polynomials," J. London Math. Soc., 23, No. 4, 291-297 (1948). W.N. Bailey, "A double integral," J. London Math. Soc., 23, No. 3, 235-237 (1948). B. Bajic, "Note on an improper integral," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 19, No. 3-4, 207-211 (1975/1977). S.D. Bajpai, "Some integrals involving MacRobert's E-function and Meijer~s G-function," Proc. Natl. Acad. Sci. India, A36, No. 4, 793-802 (1966). S.D. Bajpai, "Some integrals involving Gauss's hypergeometric function and Meijer's G-function," Proc. Cambridge Philos. Sot., 63, No. 4, 1049-1053 (1967). S.D. Bajpai, "An integral involving Meijer's G-function and Jacobi polynomials," J. Sci. and Eng. Res., 11, No. 1, 113-115 (1967). S.D. Bajpai, "Integration of some E-functions with respect to their parameters," Proc. Natl. Acad. Sci. India, A37, No. 1, 71-75 (1967). S.D. Bajpai, "Some results involving Meijer's G-function and exponential functiona," Rev. Fac. Cienc. Univ. Lisboa, A12, No. 2, 225-232 (1968/69). S.D. Bajpai, "An expansion formula for Fox's H-function," Proc. Cambridge Philos. Soc., 65, No. 3,683- 685 (1969).
322. 323. 324. 325. 326. 327. 328. 329. 330. 331. 332. 333. 334. 335. 336. 337. 338. 339. 340. 341. 342. 343. 344. 345. 346. 347. 348. 349. 350. 351.
S. D. Bajpai, "Fourier series of generalized hypergeometric functions," Proc. Cambridge Philos. Soc., 65, No. 3, 703-707 (1969). S. D. Bajpai, "An integral involving Fox's H-function and Whittaker functions," Proc. Cambridge Philos. Soc., 65, No. 3, 709-712 (1969). S. D. Bajpai, "An integral involving Meijer's G-function and associated Legendre function," Ricerca (Napoli), 20, settembre-dicembre, 7-13 (1969). S. D. Bajpai, "An integral involving Fox's H-function and heat conduction," Math. Ed., 3, 1-4 (1969). S. D. Bajpai, "On some results involving Fox's H-function and Jacobi polynomials," Proc. Cambridge Philos. Soc., 65, No. 3, 697-701 (1969). S. D. Bajpai, "A contour integral involving G-function and Whittaker function," Indian J. Mech. Math., 7, 67-70 (1969) S. D. Bajpai, "An integral involving Fox's H-function and heat conduction," Math. Ed., 3, 1-4 (1969). S. D. Bajpai, "An expansion formula for Fox's H-function involving Bessel functions," Labdev J. Sci. Tech., A7, No. 1, 18-20 (1969). S. D. Bajpai, "A finite integral involving a confluent hypergeometric function and Meijer's G-function," Portugal. Math., 28, No. 1, 55-61 (1969). S. D. Bajpai, "Two expansion formulae for Meijer's G- function," Univ. Lisboa Revista Fac. Ci., A13, No. 1, 65-70 (1969(1970)). S. D. Bajpai, "An integral involving Fox's H-function and its application," Univ. Lisboa Revista Fac. Ci., A13, No. 1, 109-114 (1969(1970)). S. D. Bajpai, "Some results involving Fox's H-function and Bessel function," Proc. Indian Acad. Sci., A72, No. 1, 42-46 (1970). S. D. Bajpai, "Some expansion formulae for Fox's H-function involving exponential functions," Proc. Cambridge Philos. Soc., 67, No. 1, 87-92 (1970). S. D. Bajpai, "Some formulae involving confluent hypergeometric functions and Meijer's G-function," Mat. Vesnik, 7, No. 4, 441-445 (1970). S. D. Eajpai, "Some contour integrals involving generalized hypergeometric function," Def. Sci. J., 20, No. 2, 111-116 (1970). S. D. Bajpai, "A contour integral involving Legendre polynomial and Meijer's G-function," Proc. Indian Acad. Sci., A71, No. 5, 209-214 (1970). S. D. Bajpai, "Some results involving Fox's H-function," Portugal. Math., 30, No. 1-2, 45-52 (1971). S. D. Bajpai, "A contour integral involving modified Bessel function and Fox's H-function," Riv. Mat. Univ. Parma, 2, 109-113 (1973). S. D. Bajpai, "Expansion formulae for the products of Meijer's G-function and Bessel functions," Portugal. Math., 33, N o 1-2, 35-41 (1974). N. L. Balazs, H. C. Pauli, and O. B. Dabbousi, "Tables of Weyl fractional integrals for the Airy function," Math. Comp., 33, No. 145, 353-358 (1979). D. P. Banerjee, "On some new integral relations between Bessel and Legendre functions of unrestricted degree," J. Indian Math. Soc. 4, No. 1, 25-28 (1940). D. P. Banerjee, "On certain integrals and expansions containing Bessel and Legendre's associated functions," Proc. Natl. Acad. Sci. India, A10, 89-92 (1940). D. P. Banerjee, "On certain integrals and expansions containing Bessel and Legendre's associated functions," Proc. Natl. Acad. Sci. India, A10, 89-92 (1940). D. P. Banerjee, "On infinite integrals containing parabolic cylinder functions," Proc. Benares Math. Sot., 3, 13-15 (1941). D. P. Banerjee, "On some infinite integrals," Proc. Benares Math. Soc., 4, 1-2 (1943). D. P. Banerjee, "On some results involving "associated Legendre's" functions," Boll. Un. Mat. Ital., 16, No. 3, 218-220 (1961). D. P. Banerjee, "On the integrals containing Bessel's polynomials," Proc. Natl. Acad. Sci. India, A34, No. 3,293296 (1964). P. K. Banerji and R. K. Saxena, "Integrals involving Fox's H-function," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 15, No. 3, 263-269 (1971(1973)). P. K. Banerji and R. K. Saxena, "On some results involving products of H-functions," An. Sti. Univ. "A1. I. Cuza" Iasi Sect. I a Mat., 19, No. 1, 175-178 (1973). P. K. Banerji and R. K. Saxena, "Contour integral involving Legendre polynomial and Fox's H-function," Univ. Nac. Tucum~n Rev., A23, 193-198 (1973/74).
1301
352.
371.
R. Barakat, "On a class of integrals related to those of Raabe and Laplace occurring in the theory of water waves," J. Math. and Phys., 40, No. 3, 244-248 (1961). E.W. Barnes, "A new development of the theory of the hypergeometric functions," Proc. London Math. Soc. 6, No. 2, 141-177 (1908). M.P. Barnett and C. A. Coulson, "The evaluation of integrals occurring in the theory of molecular structure. I, II," Philos. Trans. Roy. Soc. London, A43,221-249 (1951). G.E. Barr, "A note on integrals involving parabolic cylinder functions," SIAM J. Appl. Math., 16, No. 1, 71-74 (1968). G.E. Barr, "The integration of generalized hypergeometric functions," Proc. Cambridge Philos. Soc., 65, No. 3, 591-595 (1969). P.-A. Barrucand, "Transformation de Stieltjes at calcul aux diff6rences finies," C. R. Acad. Sci. Paris, 234, No. 1, 37-39 (1952). P.-A. Barrucand, "Sur certaines int6grales elliptiques et hyperelliptiques et sur la transformation cubique," C. R. Acad. Sci. Paris, S6r. A-B, 262, No. 4, A215-A218 (1966). B. Bassetti, E. Montaldi, and M. Raciti, "A simple proof of a transformation formula for elliptic integrals," J. Math. Phys., 24, No. 5, 1058-1059 (1983). H. Bateman, "An extension of Schuster's integral," Proc. Natl. Acad. Sci. U.S.A., 32, No. 2, 70-72 (1946). H. Bateman, "Some definite integrals occurring in Havelock's work on the wave resistance of ships," Math. Mag., 23, 1-4 (1949). H. Bateman and S. O. Rice, "Integrals involving Legendre functions," Am. J. Math., 60, No. 2, 297-308 (1938). N . E . F . de Battig, "A theorem on the Meijer transform," Math. Notae, 24, 33-38 (1974/75). N.E.F. de Battig and S. L. Kalla, "On certain infinite integrals involving generalized hypergeometric functions," Rev. Univ. Nac. Tucum~in, A21, No. 1-2, 227-230 (1971). N . E . F . de Battig and S. L. Kalla, "Certain results on the generalized hypergeometric function H of two variables," Rev. Univ. Nac. Tucum~n, A21, No. 1-2, 257-269 (1971). N . E . F . de Battig and S. L. Kalla, "On certain finite integrals involving the hypergeometric H function of two variables," Acta Mexicana Ci. Tecn., 5, No. 2, 142-148 (1971). N.E.F. de Battig and S. L. Kalla, "Some results involving generalized hypergeometric function of two variables," Rev. Ci. Mat. Univ. Louren~o Marques, A2, 47-53 (1971). R. E, Beard, "An integral related to the confluent hypergeometric function," J. Inst. Actuar., 86, No. 3, 296307 (1960). V. Belevitch and J. Boersma, On Stieltjes integral transforms involving P-functions. Techn. Hogesch. Eindhoven. Onderafdel. Wisk. Rept. No. 02 (1981). V. Belevitch and J. Boersma, "On Stieltjes integral transforms involving F-functions," Math. Comp., 38, No. 157, 223-226 (1982). D.P. Banerjee, "Generalised Meijer transforms," J. London Math. Soc., 36,433-435 (1961).
372.
T.C. Benton, "Concerning
353. 354. 355. 356. 357. 358. 359. 360. 361. 362. 363. 364. 365. 366. 367. 368. 369. 370.
oo
.!'e-atI~(bt) l.c(ct)t~-~'ctt
," SIAM J. Math. Anal, 6, No. 5, 761-765 (1975).
0
373.
B.C. Berndt and M. L. Glasser, "A new class of Bessel function integrals," Aequationes Math., 16, No. 1-2, 183186 (1977). 374. M . G . Beumer, "Some special integrals," Amer. Math. Monthly, 68, No. 7, 645-647 (1961). 375. L . K . Bhagchandani and S. L. Kalla, "Some results involving generalized hypergeometric polynomial and Jacobi polynomial," Rev. Univ. Nac. Tucuman, A21, No. 1-2, 155- 159 (1971). 376. L. K. Bhagchandani and K. N. Mehra, "Some results involving generalized Meijer function and Jacobi polynomials," Rev. Univ. Nac. Tucum~in, A20, 167-174 (1970). 377. P.L. Bhatnagar, "Lommel type integrals involving products of three Bessel functions," Comment. Math. Univ. St. Paul., 22, No. 1, 1-11 (1973). 378. R.C. Bhatt, "Certain integrals involving the products of hypergeometric functions," Matematiche, 21, No. 1,6-10 (1966). 379. V.M. Bhise, "Certain rules and recurrence relations for Meijer--Laplace transform," Proc. Natl. Acad. Sci. India, A32, No. 4, 389-404 (1962). 380. V.M. Bhise, "Certain properties of Meijer--Laplace transform," Compositio Math., 18, No. 1-2, 1-6 (1966). 381. B.R. Bhonsle, "On two theorems of operational calculus," Bull. Calcutta Math. Soc., 48, No. 2, 95-102 (1956). 382. B. R. Bhonsle, "Some infinite integrals involving the product of Whittaker functions and generalized hypergeometric functions," Bull. Calcutta Math. Soc., 49, No. 2, 83-88 (1957).
1302
396.
B. R. 13honsle, "Some integrals involving associated Legendre functions," Bull. Calcutta Math. Soc., 49, No. 2, 89-93 (1957). B. R. Bhonsle, "On some results involving Legendre polynomials," Ganita, 8, No. 1, 9-16 (1957). B. R. ]3honsle, "On a property of generalised Laplace's transformation," Bull. Calcutta Math. Soc., 50, No. 1, 6-8 (1958). B. R. Bhonsle, "On some results involving Jacobi polynomials," J. Indian Math. Soc., 26, No. 3-4, 187-190 (1962). B. R. Bhonsle, "Multiple transformation of certain hypergeometric functions," Ganita, 25, No. 2, 1-2 (1974). B. R. Bhonsle and C. B. L. Varma, "On some integrals involving Legendre function, associated Legendre function and Jacobi polynomials," Bull. Calcutta Math. Soc., 48, No. 2, 103-108 (1956). K. N. Bhowmick, "Some integrals involving a generalized Struve function," Vijnana Parishad Anusandhan Patrika, 5, No. 4, 193-200 (1962). K. N. Bhowmick, "Some integrals involving a generalized Struve function," J. Sci. Res. Banaras Hindu Univ., 13, 244-251 (1962/63). D. Bierens de Haan, Nouvelles Tables d'lnt6grales D6finies, Amsterdam (1867). [Reprinted by Hafner, New York (1957).] J. L. Blue, "A Legendre polynomial integral," Math. Comp., 33, No. 146, 739-741 (1979). R. P. Boas, Jr. and L. Schoenfeld, "Indefinite integration by residues," SIAM Rev., $, No. 2, 173-183 (1966). P. Bock, "Ober einige Integrale aus der Theorie der Besselschen, Whittakerschen und verwandter Funktionen," Nieuw. Arch. Wisk., 20, No. 2, 163-170 (t940). J. Boersma, "On certain multiple integrals occurring in a waveguide scattering problem," SIAM J. Math. Anal., 9, No. 2, 377-393 (1978). G. Petit Bois, Tables of Indefinite Integrals, Dover, New York (1961).
397.
R. A. Bonham, "On some properties of the integrals
383. 384. 385. 386. 387. 388. 389. 390. 391. 392. 393. 394. 395.
1
SPv, (t) sin x t d t
1
and Ii'P~n+, (t) cos x t d t
," J. Math. and
Phys., 45, No. 3, 331-334 (1966). S. L. Bora, "An infinite integral involving product of hypergeometric functions," Vijnana Parishad Anusandhan Patrika, 11, 97-101 (1968). 399. S. L. Bora, "An infinite integral involving generalized function of two variables," Vijnana Parishad Anusandhan Patrika, 13, 95-100 (1970). 400. S. L. Bora and R. K. Saxena, "Integrals involving product of Bessel functions and generalized hypergeometric functions," Publ. Inst. Math., 11, 23-28 (1971). 401. S. L. Bora, R. K. Saxena, and S. L. Kalla, "An expansion formula for Fox's H-function of two variables," Rev. Univ. Nac. Tucumfin, A22, No. 1-2, 43-48 (1972). 402. B. N. Bose, "On certain integrals involving Legendre and Bessel functions," Bull. Calcutta Math. Soc., 36, No. 3, 125-.132 (1944). 403. B. N. Bose, "On some integrals involving Bessel functions)' Bull. Calcutta Math. Sot., 37, No. 2, 77-80 (1945). 404. B. N. Bose, "On certain integrals involving Legendre and ultraspherical polynomials," Ganita, 6, No. 1-2, 27-37 (1955). 405. N. N. Bose, "On some integrals involving E-functions," Philos. Mag., 39, 824-826 (1948). 406. N. N. ]Bose, "On some integrals involving the hypergeometric function 2Fa(a, b; c; -x)," Math. Z., 54, No. 2, 160-167 (1951). 407. N. N. Bose, "On integral representations of MacRobert's E-function," Bull. Calcutta Math. Soc., 46, No. 2, 97-101 (1954). 4O8. S. K. Bose, "Integrals involving Legendre and Bessel functions," Bull. Calcutta Math. Sot., 38, No. 4, 181-184 (1946). 409. S. K. Bose, "On certain integrals involving Legendre and Bessel functions," Bull. Calcutta Math. Soc., 38, No. 4, 177-180 (1946). 410. S. K. Bose and A. N. Mehra, "On Meijer transform of two variables," Ganita, 9, No. 1, 43-64 (1958). 411. J. Bouman, "On some integrals containing the product of two Bessel functions of order zero or one," Nieuw. Arch. Wisk., 16, No. 3, 186-193 (1968). 412. C. J. Bouwkamp, "On the evaluation of certain integrals occurring in the theory of the freely vibrating circular disc ancl related problems," Nederl. Akad. Wetensch., Proc. 52, No. 7, 987-994 (1949). 413. C. J. Bouwkamp, "On integrals occurring in the theory of diffraction of electromagnetic waves by a circular disc," Nederl. Akad. Wetensch., Proc. 53, No. 5, 654-661 (1950). 398.
1303
414. 415. 416. 417. 418. 419. 420. 421. 422. 423. 424. 425. 426. 427. 428. 429. 430. 431. 432. 433. 434. 435. 436. 437. 438. 439. 440. 441. 442. 443. 444. 445. 446. 447.
1304
B.L.J. Braaksma, "Asymptotic expansions and analytic continuations for a class of Barnes-integrals," Compositio Math., 15, No. 3, 239-341 (1964). M . K . Brachman, "Note on an integral of Ramanujan," J. Math. and Phys., 33, No. 4, 374-375 (1954). R . O . Brennan and J. L. Mulligan, "Two-center heteronuclear hybrid Coulomb-exchange integrals," J. Chem. Phys., 20, 1635-1644 (1952). U. Brosa, "Two types of integrals containing two hyperbolic sine functions in the denominator of the integrand," Simon Stevin, 54, No. 3-4, 213-221 (1980). H. Buchholz, "Uneigentliche lntegrale mit parabolischen Funktionen i~ber einen der beiden Parameter," Math. Z., 52, No. 4, 355-383 (1949). H. Buchholz, "Ein besonderes uneigentliches Integral i~ber das Produkt zweier regul~irer Coulombscher Wellenfunktionen," Z. Angew. Math. Mech., 38, No. 3, 115- 120 (1958). I.W. Busbridge, "The evaluation of certain integrals involving products of Hermite polynomials," J. London Math. Soc., 14, No. 2, 93-97 (1939). I.W. Busbridge, "Some integrals involving Hermite polynomials," J. London Math. Soc., 23, No. 2, 135-141 (1948). I.W. Busbridge, "On the integro-exponential function and the evaluation of some integrals involving it," Quart. J. Math. Oxford Series, 1, No. 3, 176-184 (1950). R.G. Buschman, "An integral involving two Legendre functions," Amer. Math. Monthly, 69, No. 5,394 (1962). R . G . Buschman, "Integrals of hypergeometric functions," Math. Z., 89, No. 1, 74-76 (1965). R . G . Buschman, "H-functions of N variables," Ranchi Univ. Math. J., 10, 81-88 (1979). R . G . Buschman, "H-function transformation chains," J. Indian Acad. Math., 3, No. 2, 1-5 (1981). R . G . Buschman, O. P. Gupta, and P. N. Rathie, "Integrals involving generalizations of the hypergeometric function," Univ. Nac. Tucum~n Rev., A23, 89-94 (1973). P.F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin (1954). L. Carlitz, "Some integral equations satisfied by theta functions," Boll. Un. Mat. Ital., 14, No. 4, 489-492 (1959). L. Carlitz, "Note on the integral of the product of several Bernoulli polynomials," J. London Math. Soc., 34, No. 3, 361-363 (1959). L. Carlitz, "Some integrals containing products of Legendre polynomials," Arch. Math., 12, No. 5, 334-340 (1961). L. Carlitz, "An integral for the product of two Laguerre polynomials," Boll. Un. Mat. Ital., 17, No. 1, 25-28 (1962). L. Carlitz, "Some integral formulas for the complete elliptic integrals of the first and second kind," Proc. Amer. Math. Sot., 13, No. 6, 913-917 (1962). B.C. Carlson, "Lauricella's hypergeometric function FD," J. Math. Anal. Appl., 7, No. 3,452-470 (1963). B.C. Carlson, "Elliptic integrals of the first kind," SIAM J. Math. Anal., g, No. 2, 231-242 (1977). B.C. Carlson, "Short proofs of three theorems on elliptic integrals," SIAM J. Math. Anal., 9, No. 3, 524- 528 (1978). B.C. Carlson, "The Laplace transform of a product of Bessel functions," SIAM J. Math. Anal., 11, No. 3,428-435 (1980). R.D. CarmichaeI, "On a general class of integrals of the form fcp(t)g(xq-t)dt [t," Trans. Amer. Math. Soc., 20, 0 313-322 (1919). W.B. Caton and E. Hille, "Laguerre polynomials and Laplace integrals," Duke Math. J., 12, No. 2, 217-242 (1945). A.M. Chak, "A generalization of Whittaker's integral," Ann. Univ. Lyon, A18, 27-33 (1955). N. Chako, "On certain integrals involving occurring in diffraction theory," Prakt. Akad. Afin., 38, 68-74 (1963). N. Chako, "On the evaluation of certain integrals and their application to diffraction theory," Acta Phys. Polo, 24, No. 5, 611-620 (1963). N . K . Chakravarti, "Operational calculus with two variables," Ann. Soc. Sci. Bruxelles, 67, Ser. 1, No. 3, 203217 (1953). N.K. Chakravarty, "On symbolic calculus of two variables," Bull. Calcutta Math. Soc., 47, No. 4,239-247 (1955). N . K . Chakravarty, "On symbolic calculus of two variables," Acta Math., 93, No. 1-2, 1-14 (1955). R . C . Singh Chandel, "On some multiple hypergeometric functions related to Lauricella functions," Jnanabha, Sect. A, No. 3, 119-136 (1973). D. Chandra, "On the Hankel transformation of generalized hypergeometric functions," Bull. Calcutta Math. Soc., 43, No. 1, 13-16 (1951).
448. 449. 450. 451. 452. 453. 454. 455. 456. 457. 458. 459. 460. 461. 462. 463. 464. 465. 466. 467. 468. 469. 470. 471. 472. 473. 474. 475. 476. 477. 478. 479. 480.
S. K. Chatterjea, "Some definite integrals," Bull. Coll. Sci. Baghdad, 5, 14-18 (1960). S. K. Chatterjea, "Some formulae of symbolic calculus for the complete elliptic integrals of the first and second kind," Boll. Un. Mat. Ital., 15, No. 4, 471-478 (1960). S. K. Chatterjea, "A note on Legendre polynomials," Rend. Sem. Mat. Univ. Padova, 30, No. 2, 232-236 (1960). S. K. Chatterjea~ "On a series of Carlitz involving ultraspherical polynomials," Rend. Sem. Mat. Univ. Padova, 31, No. 2, 294-300 (1961). S. K. Chatterjea, "On a formula of A1 Salam," Boll. Un. Mat. Ital., 16, No. 4, 425-427 (1961). S. K. Chatterjea, "An integral representation for the product of two generalized Bessel polynomials," Boll. Un. Mat. Ital., 18, No. 4, 377-381 (1963). A. K. Chatterjee, "Some properties of WA-transform," J. Sci. Res. Banaras Hindu Univ., 13, No. 1, 192-200 (1962/63). A. K. Chatterjee, "On WA-transforms of two variables," J. Sci. Res. Banaras Hindu Univ., 13, No. 1, 28-32 (1962/63). R. Chatterjee, "A rule in operational calculus," Math. Student, 35, No. 1-4, 141-145 (1967(1969)). S. K. Chatterjee, "On certain definite integrals involving Legendre's polynomials," Rend. Sem. Mat. Univ. Padova, 27, No. 1, 144-148 (1957). H. D. Chaubey and R. S. Pathak, "Finite and convolution Hardy transformations," Indian J. Pure Appl. Math., 7, No. 7, 757-768 (1976). J. Chaudhuri, "A note on definite integrals involving the derivatives of hypergeometric polynomials," Rend. Sere. Mat. Univ. Padova, 32, 214-220 (1962). J. Chaudhury, "Some special integrals," Amer. Math. Monthly, 74, No. 5, 545-548 (1967). T. W. Chaundy, "Integrals expressing products of Bessel's functions," Quart. J. Math. Oxford, 2, 144-154 (1931). T. W. Chaundy, "An integral for Appell's hypergeometric function F(4)," Ganita, 5, No. 2, 231-235 (1954/55). V. B. L. Chaurasia, "An integral involving Kamp6 de Feriet function, the H-function and Chebyshev polynomial of the first kind," Vijnana Parishad Anusandhan Patrika, 18, 297-301 (1975). V. B. L. Chaurasia, "Some results involving a generalized function of two variables," Vijnana Parishad Anusandhan Patrika, 19, No. 2, 97-103 (1976). V. B. L. Chaurasia, "On some integrals involving Kamp6 de F6riet function and the H-function," Vijnana Parishad Anusandhan Patrika, 19, No. 2, 163-167 (1976). D. K. Cheng, "Solution of an integral," Elec. Eng., 75, No. 7, 673 (1956). S. P. Chhabra and F. Singh, "An integral involving the product of a G-function and a generalized hypergeometric function," Proc. Cambridge Philos. Soc., 65, No. 2, 479- 482 (1969). T. T. Chia, "On a simple unified method of deriving recurrence relations among elliptic integrals," Int. J. Math. Ed. Scio Tech., 13, No. 3, 341-345 (1982). M. P. Chobisa, "Some integrals involving generalized function. I," Vijnana Parishad Anusandhan Patrika, 16, 213-222 (1973). M. P. Chobisa, "Expansion formulae for generalised H- function of two variables involving Jacobi polynomials," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 21, No. 3-4, 263-269 (1977). J. P. Coleman, "Evaluation of a class of integrals by summing Legendre series," J. Phys. B, 39 No. 11, 1413-1416 (1970). J. P. Coleman, "Evaluation of a class of integrals by summing Legendre series. II. Integrands containing spherical harmonics," J. Phys. B, 5, No. 12, 2155-2167 (1972). W. D. Collins, "Some integrals involving Legendre functions," Proc. Edinburgh Math. Soc., 11, No. 3, 161-165 (1958). S. Colombo, "Sur quelques nouvelles correspondances symboliques," Bull. Sci. Math., 67, 104-108 (1943). S. Colombo, "Sur quelques correspondances symboliques," C. R. Acad. Sci. Paris, 216, 368-369 (1943). S. Colorabo, Les Transformation de Mellin et de Hankel. Application ~ la Physique Math~matique, CNRS, Paris (1959). S. Colombo and J. Lavoine, Transformation de Laplace et de Mellin. Formulaires. Mode d'Utilisation, GauthierVillars, Paris (1972). L. Comtet, "Fonctions g6n6ratrices et calcul de certaines int6grales," Univ. 13eograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 181-196, 77-87 (1967). B. W. Conolly, "Two integrals involving modified Bessel functions of the second kind," Proc. Glasgow Math. Assoc., 2, No. 3, 147-148 (1955). P. C. Consul, "On some integrals in operational calculus," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 12, No. 4, 35-42'. (I968(1969)).
1305
481. 482. 483. 484. 485. 486. 487. 488. 489. 490. 491. 492. 493. 494. 495. 496. 497. 498. 499. 500. 501. 502. 503. 504. 505. 506. 507. 508. 509. 510. 511. 1306
J. C. Cooke, "Some properties of Legendre functions," Proc. Cambridge Philos. Soc., 49, Part 1, No. 1, 162-164 (1953). J. C. Cooke, "Note on some integrals of Bessel functions with respect to their order," Monatsh. Math., 58, No. 1, 1-4 (1954). J. C. Cooke, "Some relations between Bessel and Legendre functions," Monatsh. Math., 60, No. 4,322-328 (1956). E. T. Copson, "The operational calculus and the evaluation of Kapteyn integrals," Proc. London Math. Soc. 33, No. 2, 145-153 (1932). E. T. Copson, "On an infinite integral connected with the theory of Bessel functions," Proc. Cambridge Philos. Sot., 37, No. 1, 102-104 (1941). G. Coulmy, "M~thode de calcul des int~grales de Lommel g6n6ralis~es," Ann. T~16commun., 9, No. 11,305-312 (I954). B. Crstici and Gh. Tudor, "Une formule de composition semi-groupale avec application au calcul de certaines int6grales impropres," Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 210-228, 55-60 (1968). L. A. Crum and J. A. Heinen, "Simultaneous reduction and expansion of multidimensional Laplace transform kernels," SIAM J. Appl. Math., 26, No. 4, 753-771 (1974). I. D. Currie, "Regions of the n-sphere and related integrals," Proc. Edinburgh Math. Soc., 21, No. 3, 129-133 (1978). R. S. Dahiya, "On generalized Hankel-transform," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 8, No. 1-2, 23-27 (1964). R. S. Dahiya, "A theorem in operational calculus," Mitt. Verein. Schweiz. Versicherungsmath., 64, No. I, 175-181 (1964). R. S. Dahiya, "A theorem in unilateral operational calculus," Portugal. Math., 26, No. 3, 309-317 (1967). R. S. Dahiya, "A theorem on n-dimensional Laplace transformations," Istanbul Oniv. Fen. Fak. Mecm., A32, 27-31 (1967(1971)). R. S. Dahiya, "A theorem on the Laplace transform of two variables," Bol. Acad. Ci. Fis. (Venezuela), 29, No. 82, 72-78 (1969). R. S. Dahiya, "A rule in m-dimensional bilateral operational calculus," An. Sti. Univ. Iasi Sect. la, 15, No. 2, 403-405 (1969). R. S. Dahiya, "On n-dimensional Laplace transformati on ," Bqgar. Akad. Nauk. Otdel. Mat. Fiz. Nauk. Izv. Mat. Inst., 12, 39-44 (1970). R. S. Dahiya, "Multiple integrals and the transformations involving H-functions and Tchebichef polynomials," Acta Mexicana Cienc. Tecn., 5, 192-197 (1971). R. S. Dahiya, "On integral representation of Fox's H-function for evaluating double integrals," An. Fac. CiOnc. Univ. Porto, 54, 363-367 (1971). R. S. Dahiya and B. Singh, "On Meijer's G-function," Proc. Indian Acad. Sci., A74, No. 4, 167-171 (1971). R. So Dahiya, "Multiple integrals and the expansions of the generalized function ~o,,, .... o~,,Z(x) //," Rend. Mat., 4, No. 2, 213-222 (1971). R. S. Dahiya, "On integral representation involving Meijer's G-function," Proc. Japan. Acad., 47,365-367 (1971). R. S. Dahiya, "On double integrals involving Meijer's G-function," Kyungpook Math. J., 11, 57-64 (1971). R. S. Dahiya, "On integral representation of Fox's H-function for evaluating double integrals," An. Fac. Ci. Univ. Porto, 54, No. 3-4, 363-367 (1971). R. S. Dahiya, "Meijer-Laplace transform of two variables," An. Sti. Univ. Iasi Sect. la, 17, No. 2, 339-347 (1971). R. S. Dahiya, "On an integral relation involving Fox's H-function," Univ. Lisboa Revista Fac. Ci., A14, 105-111 (1971(1972)). R. S. Dahiya, "On the application of transforms for computation of integrals involving Legendre's function," Indian J. Pure Appl. Math., 3, No. 5, 656-662 (1972). R. S. Dahiya, "Some expansion formulae for o~,.... .,~,~(x) involving exponential functions and trigonometrical functions," Proc. Indian Acad. Sci., A75, No. 5, 199-208 (1972). R. S. Dahiya, "Application of gamma functions to evaluate certain integrals," Bull. Math. Soc. Sci. Math. R. So Roumanie, 17, No. 2, 141-144 (1973 (1975)). R. S. Dahiya, "On evaluation of certain integrals by integral transforms," Tamkang J. Math., 5, No. 2, 161-166 (1974). R. S. Dahiya, "Note on the integration of the Lommel function," Bol. Acad. Ci. Fis. Mat. Natur. (Venezuela), 34, No. 101, 117-120 (1974). R. S. Dahiya, "On generalized Stieltjes transform," Math. Balkanica, 5, 69-72 (1975).
523.
R. S. Dahiya, "Two dimensional operational calculus," Tamkang J. Math., 6, No. 2, 215-217 (1975). R. S. Dahiya, "Computation of two-dimensional Laplace transforms," Rend. Mat., 8, No. 3, 805-813 (1975). R. S. Dahiya, "Multiple integral relations involving G-functions," Nederl. Akad. Wetensch. Proc. SeE A, 78, No. 3, 254-258 (1975). R. S. Dahiya, "Hankel transform of general order," Nederl. Akad. Wetensch. Proc. Ser. A, 78, No. 1, 87-92 (1975); Indag. Math., 37, No. 1, 87-92 (1975). R. S. Dahiya, "Computation of integrals involving gamma and error functions," Math. Notae, 27, 11-14 (1979)80). R. S. Dahiya and B. Singh, "On Meijer's G-function," Proc. Indian Acad. Sci., A74, No. 4, 167-171 (1971). R. S. Dahiya and B. Singh, "On Fox's H-function," Indian J. Pure Appl. Math., 3, No. 3, 493-495 (1972). R. S. Dahiya and B. Singh, "Integral transforms of Bessel product functions and their integrals," An. Univ. Timisoara Ser. Sti. Mat., 10, No. 1, 47-52 (1972). R. S. Dahiya and B. Singh, "On Hankel transformation involving hypergeometric functions," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 15, No. 3,271-275 (1971(1973)). R. S. Dahiya and B. Singh, "On some results involving generalized hypergeometric polynomials," Portugal. Math., 33, No. I-2, 101-107 (I974). S. G. Davison and M. L. Glasser, "Laplace transforms of Airy functions," J. Phys. A, 15, No. 9, L463-L465 (1982). S. R. Deans, "A unified Radon inversion formula," J. Math. Phys., 19, No. I l, 2346-2349 (1978).
524.
(" sinrax R. Deaux and M. Delcourte, "Calcul des int6grales (m. n ) ~ - - 7 - ctx., m e t n entiers positifs, m >__n," Mathesis,
512. 513. 514. 515. 516. 517. 518. 519. 520. 521. 522.
0
525. 526. 527. 528. 529. 530. 531. 532. 533. 534. 535. 536. 537. 538. 539. 540. 541. 542. 543.
66, No. 1-3, 16-22 (1957). L. Debnath, "On the Hermite transform," Mat. Vesnik, 1, No. 4, 285-292 (1964). L. Debnath and J. G. Thomas, Jr., "On finite Laplace transformation with applications," Z. Angew. Math. Mech., 56, No. 12, 559-563 (1976). P. Delerue, "Sur l'application du calcul symbolique a deux variables au calcul d'int6grales simples," C. R. Acad. Sci. Paris, 238, No. 17, 1686-1688 (1954). D. B. DeLury, Values and Integrals of the Orthogonal Polynomials up to n = 26, Univ. of Toronto Press, Toronto (1950). M. Demiralp and N. A. Baykara, "Analytic evaluation of certain zeroth order coulombic hyperangular interaction integrals," J. Math. Phys., 22, No. 11,242%2432 (1981). R. Y. ]Denis, "Certain integrals involving G-function of two variables," Ganita, 21, No. 2, 1-10 (1970). R. Y. Denis, "An integral involving generalized hypergeometric function," Math. Student, 40A, 7%81 (1972). R. Y. Denis, "On certain infinite integrals involving generalized hypergeometric function," Bul. Inst. Politehn. Iasi, 18, No. 1-2, Part I, 61-64 (1972). V. L. Deshpande, "An integral involving the Lauricella function F•," Vijnana Parishad Anusandhan Patrika, 15, 197-204 (1972). J. Detrich and R. W. Conn, "Analytic evaluation of an important integral in collision theory," J. Math. Phys., 18, No. 12, 2348-2351 (1977). E. Deutsch, "Evaluation of certain integrals involving Bessel functions," Proc. Edinburgh Math. Soc., 13, No. 4, 285-290 (1963). S. C. Dhar, "On certain functions which are self-reciprocal in the Hankel transform," J. London Math. Sot., 14, No. I, 30-32 (1939). S. C. Dhar, "Integral representations of Whittaker and Weber functions," J. Indian Math. Soc. 6, No. 4, 181-185 (1942). G. K. Dhawan, "On integrals involving classical polynomials," Proc. Cambridge Philos. Sot., 64, No. 2, 417-420 (1968). G. K. Dhawan, "Integrals involving classical polynomials," Proc. Cambridge Philos. Soc., 67, No. 3, 607-611 (1970). A. R. DiDonato, "Recurrence relations for the indefinite integrals of the associated Legendre functions," Math. Comp., 38, No. 158, 547-551 (1982). D. S. Dimitrovski, "The application of residue theory to the evaluation of certain integrals," Mat. Bibliot., No. 22, 61-70 (1962). D. S. Dimitrovski, "Sur quetques formules relatives ~ des intOgrales impropres," God. Prir.-Mat. Fak. Un-t Skopje, 15, 27-42 (1964). D. S. D~mitrovski, "Note sur les int6grales trigonometriques," Bil. Drusht. Mat. Fiz. SRM, No. 424, 91-94 (1973). 1307
oo
~p (~)=(p!)-i ( so &-n+ 1)-, ~/s ," Appl. Sci. Res., B6, No. 4, 225-239 b
544.
R. B. Dingle, "The Fermi--Dirac integrals (1957).
545.
R. B. Dingle, "The Bose--Einstein integrals Bp (q)=(p!)-i i' 8P (ca-n--l) -1 as ," Appl. Sci. Res., B6, No. 4, 240-244 (1957).
oo
546.
A . K . Dixit, "On some integral relations involving the general H-function of several complex variables," Indian J. Pure Appl. Math., 12, No. 8, 977-983 (1981). 547. A.L. Dixon and W. L. Ferrar, "Infinite integrals in the theory of Bessel functions," Quart. J. Math. Oxford, 1, No. 2, 122-145 (1930). 548. A.L. Dixon and W. L. Ferrar, "A direct proof of Nicholson's integral," Quart. J. Math. Oxford, 1, No. 3,236-238 (1930). 549. A . L . Dixon and W. L. Ferrar, "A class of discontinuous integrals," Quart. J. Math. Oxford, 7, No. 26, 81-96 (1936). 550. Do Tan Si, "Representation of special functions by differintegral and hyperdifferential operators," SIAM J. Math. Anal., 9, No. 6, 1068-1075 (1978). 551. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer, New York (1974). 552. G. Doetsch, Handbuch der Laplace-Transformation. I--III, Birkh~mser, Basel (1950-56). 553. G. Doetsch, Tabellen zur Laplace-Transformation, Springer, Berlin (1947). 554. J.A. Donaldson, "Integral representations of the extended Airy integral type for the modified Bessel function," J. Math. and Phys., 46, No. 1, 111-114 (1967). 555. J. D/Srr, "Untersuchung einiger Integrale mit Bessel-Funktionen, die ftir die Elastizit~tstheorie yon Bedeutung sind," Z. Angew. Math. Phys., 4, No. 2, 122-127 (1953). 556. J. D6rr, "Unbestimmte Integrale i~ber Produkte yon Besselfuntionen mit Exponentialfunktionen," Wiss. Z. Tech. Hochsch. Dresden, 2, No. 3, 353-354 (1952/53). 557. S. N. Dube, "On some finite integrals involving generalised hypergeometric functions," Vijnana Parishad Anusandhan Patrika, 16, No. 1, 17-20 (1973). 558. F. Dubois, "Beitrag zur Berechnung yon Integralen mit gebrochenen Potenzen," Mitt. Naturforsch. Ges. SChaffhausen, 28, 275-283 (1963-67). 559. B.P. Duggal, "Self-reciprocal functions: some remarks," Math. Student, 46, No. 2-4, 263-266 (1978(1982)). 560. L. Durand, "Nicholson-type integrals for products of Gegenbauer functions and related topics," in: Theory and Applications of Spectral Functions, Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York (1975), pp. 353-374. 561. G. Eason, B. Noble, I. N. Sneddon, "On certain integrals of Lipschitz - Hankel type involving products of Bessel functions," Philos. Trans. Roy. Soc. London, A247, No. 935, 529-551 (1955). 562. J. Edwards, A Treatise on the Integral Calculus. Vol. 2, Chelsea, New York (1954). 563. H. D. Eigner, "Zur geschlossenen Auswertung einiger bei regelungstechnischen Problemen auftretender Integrale," Z. Angew. Math. Math., 48, No. 7,491-492 (1968). 564. A . H . England, "Love's integral and other relations between solutions to mixed boundary-value problems in potential theory," J. Austral. Math. Sot., B22, No. 3, 353-367 (1981). 565. L.F. Epstein and J. H. Hubbell, "Evaluation of a generalized elliptic-type integral," J. Res. Natl. Bur. Standards, 67B, No. 1, 1-17 (1963). 566. A. Erd61yi, "r0ber eine Integraldarstellung der W~r~-Funktionen und ihre Darstellung durch die Funktionen des parabolischen Zylinders," Math. Ann., 113, 347-356 (1937). 567. A. Erd~lyi, "l~Iber ein Integraldarstellung der M ~ - F u n k t i o n e n und ihre asymptotische Darstellung fi~r grosse Werte von Re k," Math. Ann., 113, 357-362 (1937). 568. A. Erd61yi, "Einige Integralformeln fur Whittakersche Funktionen," Nederl. Akad. Wetensch., Proc. 41, 481-486 (1938). 569. A. Erd61yi, "Integral representations for Whittaker functions," Proc. Benares Math. Soc., 1, 39-53 (1939). 570. A. Erd61yi, "Two infinite integrals," Proc. Edinburgh Math. Soc., 6, No. 2, 94-104 (1939). 57 I. A. Erd61yi, "Integraldarstellungen fur Produkte Whittakerschen Funktionen," Nieuw. Arch. Wisk., 20, No. 1, 1-38 (1939). 572. A. Erd61yi, "Transformations of hypergeometric integrals by means of fractional integration by parts," Quart. J. Math. Oxford, 10, No. 39, 176-189 (1939). 1308
573.
A. Erd61yi, "Integration of the differential equations of Appell's function F4," Quart. J. Math. Oxford, 12, No. 46, 68'.-77 (1941). 574. A. Erd61yi, "Note on Heine's integral representation of associated Legendre functions," Philos. Mag., 32, 351352 (1941). 575. A. Erd61yi, W. Magnus, F. Oberhettinger, and F. G. Tricomi (editors), Tables of Integral Transforms, Vols. I, II, McGraw-Hill, New York (1954). 576. R. Esposito, "Indefinite integral of a confluent hypergeometric function," Electron. Letters, 2, No. 12, 438-439 (1966). 577. M.T. Eweida, "Infinite integrals involving Bessel polynomials," Rev. Univ. Nac. Tucum~in, A13, No. 1-2, 132135 (I960). 578, H. Exton, Multiple Hypergeometric Functions and Applications, Ellis Horwood, Chichester (1976). 579. H. Exton, Handbook of Hypergeometric Integrals. Theory, Applications, Tables, Computer Programs, Ellis Horwood, Chichester (1978). 580. H. Exton, "A note on a discontinuous hypergeometric integral," Indian J. Pure Appl. Math., 12, No. 1, 84-87 (1981). 581. H. Extort, q-Hypergeometric Functions and Applications, Ellis Horwood, Chichester (1983). 582. J.A. Faucher, "Some integrals occurring in the theory of rubber viscosity," J. Appl. Phys., 34, No. 1,237 (1963). 583. E. Feldheim, "D6veloppements en s6rie de polynOmes d'Hermite et de Laguerre ~ l'aide des transformations de Gauss et de Hankel. I - III," Nederl. Akad. Wetensch., Proc. 43, 224-248, 379-386 (1940). 584. E. Feldheim, "Expansions and integral transforms for products of Laguerre and Hermite polynomials," Quart. J. Matlh. Oxford, 11, 18-29 (1940). 585. E. Feldheim, "Alcuni risultati sulle funzioni di Whittaker e del cilindro parabolico," Atti Accad. Set. Torino CI. Sci. Fis. Mat. Natl., 76, 541-555 (1941). 586. E. Feldheim, "Relations entre les polynomes de Jacobi, Laguerre et Hermite," Acta Math., 75, 117-138 (1943). 587. L.B. Felsen, "Some definite integrals involving conical functions," J. Math. and Phys., 35, No. 2, 177-178 (1956). 588. F.M. Fern~indez, A. Mes6n, and E. A. Castro, "Hypervirial calculation of integrals involving Bessel functions," J. Math. Phys., 23, No. 2, 254-255 (1982). 589. H . E . Fettis, "Lommel-type integrals involving three Bessel functions," J. Math. and Phys., 36, No. 1, 88-95 (1957). oo
590.
H.E. Fettis, "More on the calculation of the integral
In (b) ~ - -
2 ~ (sin x-V' ,l \ ~ ] cos bxdx," Math. Comp., 21, No. 100, 0
591. 592. 593. 594. 595. 596. 597. 598. 599. 600. 601. 602. 603.
727-730 (1967). H.E. Fettis, "Generalization of a Bessel function integral," SIAM Rev., 10, No. 2, 214-215 (1968). H.E. Fettis, "A new method for computing toroidal harmonics," Math. Comp., 24, No. 111,667-670 (1970). H . E . Fettis, "New relations between two types of Bessel function integrals," SIAM J. Math. Anal., 8, No. 6, 978-982 (1977). H.E. Fettis, "On some trigonometric integrals," Math. Comp., 35, No. 152, 1325-1329 (1980). H.E. Fettis, "Extension of a result of Ainsworth and Liu," J. Franklin Inst., 316, No. 2, 191-192 (1983). J. Fiala, "A note on the integrals involving product of Hermite's polynomials," Casopis Pest. Mat., 91, No. 2, 217-22(t (1966). E. Filter and E. O. Steinborn, "The three-dimensional convolution of reduced Bessel functions and other functions of physical interest," J. Math. Phys., 19, No. I, 79-84 (1978). F . A . J . Ford, "On certain indefinite integrals involving Bessel functions," J. Math. and Phys., 37, No. 2, 157-161 (1958). C. Fox, "The asymptotic expansion of generalized hypergeometric functions," Proc. London Math. Soc. 27, No. 5, 389-400 (1928). C. Fox, "The G and H functions as symmetrical Fourier kernels," Trans. Amer. Math. Soc., 98, No. 3, 395-429 (1961). D.M. Fradkin, "A class of double integrals involving Gaussian and trigonometric factors," J. Res. Natl. Bur. Standards, 84, No. 4, 319-326 (1979). G. Gallavotti and C. Marchioro, "On the calculation of an integral," J. Math. Anal. Appl., 44, No. 3, 661-675 (1973). M. Garg, "On double integral transforms," Indian J. Pure Appl. Math., 13, No. 4, 440-445 (1982).
1309
604. 605. 606. 607. 608. 609. 610. 611. 612. 613. 614. 615. 616. 617. 618.
O. P. Garg, "On some finite double integrals involving H-function of two variables," Univ. Nac. Tucum~in Rev., A25, No. 1-2, 125-130 (1975). O. P. Garg, "On certain integral relations involving the H-function of two variables and their applications," Vijnana Parishad Anusandhan Patrika, 18, No. 4, 325-332 (1975). O. P. Garg, "Certain integral relations involving H-function of two variables," Kyungpook Math. J., 16, No. 2, 199-207 (1976). O. P. Garg and R. S. Kothari, "Some integral relations for the H-function of two variables with application," Vijnana Parishad Anusandhan Patrika, 22, No. 3, 199-205 (1979). O. P. Garg, "Some formulae involving Legendre functions and Meijer G-functions of n variables," Vijnana Parishad Anusandhan Patrika, 18, No. 3, 179-185 (1975). R. S. Garg, "On multidimensional Mellin convolutions and H-function transformations," Indian J. Pure Appl. Math., 13, No. 1, 30-38 (1982). L. Gatteschi, "On some orthogonal polynomial integrals," Math. Comp., 35, No. 152, 1291-1298 (1980). L. Gautier and C. Bardin, Calcul d'int6grales de quelques fonction de Bessel. Rapp. CEA, 6 2927 (1965). W. Gautschi, "On the preceding paper "A Legendre polynomial integral' by James L. Blue," Math. Comp., 33, No. 146, 742-743 (1979). M. Geller and E. W. Ng, "A table of integrals of the exponential integral," J. Res. Natl. Bur. Standards, B73, Ne. 3, 191-210 (1969). D. L. George, "Numerical values of some integrals involving Bessel functions," Prec. Edinburgh Math. Soc., 13, No. 1, 87-113 (1962). J. Gillis, "Integrals of products of Laguerre polynomials," SIAM J. Math. Anal., 6, No. 2, 318-339 (1975). J. Gillis and M. Shimshoni, "Triple product integrals of Laguerre functions," Math. Comp., 16, No. 77, 50-62 (1962). G. Gjellestad, "Note on the definite integral over products of three Legendre functions," Prec. Natl. Acad. Sci. U.S.A., 41, No. 11,954-956 (1955). H.-J. Glaeske and O. I. Maricev, "The Laguerre transform of some elementary functions," Z. Anal. Anwendungen, 3, No. 3, 237-244 (1984). 1
619.
620. 621. 622. 623. 624. 625. 626. 627. 628. 629. 630.
631.
M. L. Glasser, "A note on the integral
[ s~'(l--s)" i sin x s d
I as
with an application to Schlomilch series," J. Math.
and Phys., 43, No. 2, 158-162 (1964). M. L. Glasser, "Some recursive formulas for evaluation of a class of definite integrals," Amer. Math. Monthly, 71, No. 1, 75-76 (1964). M. L. Glasser, "Evaluation of some integrals involving the ~b-function," Math. Comp., 20, No. 94,332-333 (1966). M. L. Glasser, "Some integrals of the arctangent function," Math. Comp., 22, No. 102, 445-447 (1968). M. L. Glasser, "Evaluation of some transport integrals. III," J, Appl. Phys., 40, No. I, 326-327 (1969). M. L. Glasser, "An elliptic integral identity," Math. Comp., 25, No. 115, 533-534 (1971). M. L. Glasser, "A Watson sum for a cubic lattice," Jo Math. Phys., 13, No. 8, 1145-1146 (1972). M. L. Glasser, "Generalization of a definite integral of Ramanujan," J. Indian Math. Soc., 37, No. 1-4,351-353 (1973(1974)). M. L. Glasser, "Some Bessel function integrals," Kyungpook Math. J., 13, 171-174 (1973). M. L. Glasser, "Some definite integrals of the product of two Bessel functions of the second kind: (order zero)," Math. Comp., 28, No. 126, 613-615 (1974). M. L. Glasser, "Evaluation of a class of definite integrals," Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 498-541, 49-50 (1975). M. L. Glasser, "Definite integrals of the complete elliptic integral K," J. Res. Natl. Bur. Standards, 80B, No. 2, 313-323 (1976). M. L. Glasser, "A note on the integral
~ t 2~-1 (I + t~)1-~-~ Jv (x ~/1 + t~) dt ," Math. Comp., 33, No. 146, 792-793 0
632. 633. 634.
1310
(1979). M. L. Glasser, "A remarkable property of definite integrals," Math. Comp., 40, No. 162, 561-563 (1983). M. L. Glasser, "On some integrals arising in mathematical physics," J. Comput. Appl. Math., 10, No. 3,293-299 (1984). M. L. Glasser and M. S. Klamkin, "Some integrals of squares of Bessel functions," Utilitas Math., 12, 315-316 (1977).
635. 636. 637. 638. 639. 640. 641. 642. 643. 644. 645. 646. 647. 648. 649. 650. 651. 652. 653. 654. 655. 656. 657. 658. 659. 660. 661. 662. 663. 664. 665. 666. 667. 668.
M. L. Glasser and V. E. Wood," A closed form evaluation of the elliptic integral," Math. Comp., 25, No. 115, 535-536 (1971). D. C. Gokhroo, "On some infinite integrals," Proc. Natl. Acad. Sci. India, A35, No. 2, 121-126 (1965). D. C. Gokhroo, "Certain integral representations for modified Bessel function of second kind," Proc. Natl. Acad. Sci. India, A35, No. 2, 227-233 (1965). D. C. Gokhroo, "Certain relationships between various transforms," Proc. Natl. Acad. Sci. India, A35, No. 2, 247-256 (1965). D. C. Gokhroo, "On some infinite integrals. II," Proc. Natl. Acad. Sci. India, A36, No. 2, 386-388 (1966). D. C. Gokhroo, "A definite integral involving Meijer's G-function," Proc. Natl. Acad. Sci. India, A36, No. 4, 841-842 (1966). D. C. Gokhroo, "Infinite integrals involving Meijer's G-function," Portugal. Math., 26, No. 1-2, 169-174 (1967). D. C. Gokhroo, "The Laplace transform of the product of Meijer's G-functions," Univ. Nac. Tucum~n Rev., A20, 59-62 (1970). P. C. Golas, "Integration with respect to parameters," Vijnana Parishad Anusandhan Patrika, 11, 71-76 (1968). S. Goldstein, "Operational representations of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder function," Proc. London Math. Soc. 34, No. 2, 103-125 (1932). A. M. M. de Gomez Lopez and S. L. Kalla, "Integrales que involucran la funcion de Fox," Rev. Univ. Nac. Tucumfin, A22, No. 1-2, 165-170 (1972). M. O. Gonz~ilez, "Application of the method of the Laplace transform to the evaluation of certain integrals containing nonelementary transendental functions," Rev. Un. Mat. Argentina, 19, No. 3, 146-150 (1960). R. L. Goodstein, "On the evaluation of Planck's integral," Edinburgh Math. Notes, 37, 17-20 (1949). A. N. Goyal, "Some infinite series of H-functions," Math. Student, 37, No. 1-4, 179-183 (1969). A. N. Goyal and K. K. Chaturvedi, "Integrals involving Fox H-function," Univ. Studies Math., 1, 7-13 (1971). G. K. Goyal, "Some theorems on Hankel transform," Proc. Natl. Acad. Sci. India, A34, No. 4, 459-462 (1964). G. K. Goyal, "Some relations between Hankel transforms and Meijer's Bessel function transform," Proc. Natl. Acad. Sci. India, A36, No. 1, 9-15 (1966). G. K. Goyal, "Some relation between Hankel and Meijer transforms," Proc. Natl. Acad. Sci. India, A37, No. 1, 60- 66 (1967). G. K. Goyal, "A finite integral involving H-function," Proc. Natl. Acad. Sci. India, A39, 201-203 (I979). S. P. Goyal, "On some finite integrals involving generalized G-function," Proc. Natl. Acad. Sci. India, A40, No. 2, 219-228 (1970). S. P. Goyal, "On some finite integrals involving Fox's H-function," Proc. Indian Acad. Sci., A74, 25-33 (1971). S. P. Goyal, "On chains for Meijer's G-function transform," Rev. Univ. Nac. Tucumfin, A22, 17-30 (1972). S. P. Goyal, "The H-function of two variables," Kyungpook Math. J., 15, 117-131 (1975). S. P. Goyal, "On double integrals involving the H-function," Indian J. Math., 19, No. 2, 119-123 (1977). S. P. Goyal, "Multiple integral transformations of the H-function of two variables and their applications," Pure Appl. Math. Sci., 7, No. 1-2, 19-28 (1978). S. P. Goyal, "Integrals involving the H-function of two variables," Vijnana Parishad Anusandhan Patrika, 22, No. 1, 33-40 (1979). S. P. Goyal and S. L. Mathur, "Some finite integrals involving generalized function of two variables," Indian J. Pure Appl. Math., 5, No. 4, 343-352 (1974). S. P. Goyal, "Some finite integrals for the H-function of two variables," Univ. Studies Math. India, 76, No. 5, 13-22 (1975). S. P. Goyal and S. L. Mathur, "Some finite integrals involving generalized function of two variables. II," Indian J. Pure Appl. Math., 7, No. 1, 76-85 (1976). S. P. Goyal and S. L. Mathur, "On integrals involving the H-function of two variables," Indian J. Pure Appl. Math., 7, No. 3, 347-358 (1976). S. K. Vasishta and S. P. Goyal, "Multiple integrals involving the H-function of two variables," Proc. Indian Acad. Sci., A83, 41-49 (1976). S. P. Goyal, "Integrals involving spheroidal, Mathieu, and H-function of two variables," Vijnana Parishad Anusandhan Patrika, 22, 333-338 (1979). H. M. Srivastava, S. P. Goyal, and R. K. Agrawal, "Some multiple integral relations for the H-function of several variables," Bull. Inst. Math. Acad. Sinica, 9, No. 2, 261-277 (1981). S. P. Goyal and S. L. Mathur, "Some finite integrals involving generalized function of two variables," Indian J. Pure Appl. Math., 5, No. 4, 333-342 (1974).
1311
669. 670. 671. 672. 673. 674. 675. 676. 677. 678. 679. 680. 681. 682. 683. 684. 685. 686.
687. 688. 689. 690. 691. 692. 693. 694. 695. 696. 697. 698. 699. 700. 701.
1312
S. P. Goyal and S. L. Mathur, "On integration of the H-function with respect to parameters," Rev. Univ. Nac. Tucum~n, A24, 103-111 (1974). S. P. Goyal, and S. L. Mathur, "On the integration of the generalized hypergeometric function with respect to parameters," Vijnana Parishad Anusandhan Patrika, 18, No. 2, 133-137 (1975). S. P. Goyal and S. L. Mathur, "On integrals involving the H-function of two variables," Indian J. Pure Appl. Math., 7, No. 3, 347-358 (1976). S. P. Goyal and S. L. Mathur, "Some finite integrals involving generalized function of two variables. II," Indian J. Pure Appl. Math,, 7, No. 1, 76-85 (1976). S. P. Goyal and S. L. Mathur, "On integrals involving the H-function of two variables," Indian J. Pure Appl. Math., 7, No. 3, 347-358 (1976). S. P. Goyal and S. K. Vasishta, "Integrals involving the products of the H-function of two variables," Vijnana Parishad Anusandhan Patrika, 18,221-230 (1975). J. A. Grant and O. G. Ludwig, "Note on the integrals of products of associated Legendre functions," Comput. J., 6, No. 4, 356-357 (1964). H. L. Gray and T. A. Atchison, "The generalized G-transform," Math. Comp., 22, No. 103, 595-605 (1968). D. F. Gregory, "On the evaluation of a definite multiple integral," Cambridge Math. J., 2, 215-223 (1941). W. Gr6bner and N. Hofreiter, Integraltafel. Teil I. Unbestimmte Integrale, Springer; Wien (1975). W. GrSbner and N. Hofreiter, Integraltafel. Teil II. Bestimmte Integrale, Springer, Wien (1958). C. C. Grosjean, "On a set of transformation formulae for certain types of integrals involving periodic and algebraic functions," Bull. Soc. Math. Belg., 16, No. 3, 271-318 (1964). C. C. Grosjean, "Some new integrals arising from mathematical physics. I," Simon Stevin, 40, No. 2, 49-72 (1966-67). C. C. Grosjean, "Some new integrals arising from mathematical physics. II," Simon Stevin, 41, No. 3,219- 251 (1967-68). C. C. Grosjean, "Some new integrals arising from mathematical physics. III," Simon Stevin, 43, No. 1, 3-46 (1969). C. C. Grosjean, "Some new integrals arising from mathematical physics. IV," Simon Stevin, 45, No. 3-4, (1971(1972)). C. C. Grosjean, "Note on a remark of R. Askey and B. Razban concerning an interesting integral involving the Legendre polynomials," Simon Stevin, 46, No. 4, 171-173 (1972-1973). C. C. Grosjean, F. Broeckx, and M. J. Goovaerts, "Some new transformation formulae for certain types of integrals with a product of a periodic and a non-periodic function as integrand," Bull. Soc. Math. Belg., 25, No. 4, 359-388 (1973). H. C. Gulati, "An expansion formula for the product of two G-functions," Rev. Fac. Cienc. Univ. Lisboa, A13, No. 1, 125-129 (1969-70). H. Gulati, "Some contour integrals involving G-function of two variables," Def. Sci. J., 21, No. 1, 39-42 (1971). H. C. Gupta, "Some infinite integrals," Proc. Benares Math. Soc., 4, 45-50 (1943). H. C. Gupta, "Operational calculus and the evaluation of a certain class of definite integrals," Proc. Benares Math. Soc., 5, 1-16 (1943). H. C. Gupta, "Operational calculus and infinite integrals," Proc. Natl. Acad. Sci. India, A13, 225-231 (1943). H. C. Gupta, "A theorem on operational calculus," J. Indian Math. Soc. 9, No. 1, 61-65 (1945). H. C. Gupta, "On operational calculus," Proc. Natl. Inst. Sci. India, 14, 131-156 (1948). K. C. Gupta, "Certain integral representations for the Meijer transform," Proc. Natl. Acad. Sci. India, A34, 541548 (1964). K. C. Gupta, "On generalized Hankel and Meijer's Bessel function transforms," Proc. Natl. Acad. Sci. India, A35, No. 1, 105-112 (1965). K. C. Gupta, "Integrals involving the H-function," Proc. Natl. Acad. Sci. India, A36, 504-509 (1966). K. C. Gupta, "On integration of G-function with respect to parameters," Proc. Natl. Acad. Sci. India, A36, No. 1, 193-198 (1966). K. C. Gupta, "Integrals involving Legendre functions," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 13, No. 3, 299-303 (1969(1971)). K. C. Gupta, "Some theorems on integral transforms," Riv. Mat. Univ. Parma, 2, 1-14 (1976). K. C. Gupta and O. L. Koul, "An integral involving the H-function," Math. Student, 45, No. 3, 33-38 (1977(1979)). K. C. Gupta and S. P. Goyal, "Integrals involving spheroidal, Mathieu and H-functions of two variables," Vijnana Parishad Anusandhan Patrika, 22, No. 4, 333-338 (1979).
702. 703. 704. 705. 706. 707. 708. 709. 710~ 711. 712. 713. 714o 715. 716. 717o
K. C. Gupta and S. Handa, "A new double integral for Fox's H-function," Vijnana Parishad Anusandhan Patrika, 20, 337-341 (1977). K. C. Gupta and P. K. Mital, "Integrals involving a generalized function of two variables," Indian J. Pure Appl. Math., 5, No. 5, 430-437 (1974). K. C. Gupta and S. S. Mittal, "On Gauss's hypergeometric transform," Proc. Natl. Acad. Sci. India, A37, No. I, 49-55 (1967). K. C. Gupta and G. S. Olkha, "Integrals involving products of generalized hypergeometric functions and Fox's H-function," Rev. Univ. Nae. Tucum~in, A19, 205-212 (1969). K. C. Gupta and A. Srivastava, "On integrals involving generalized hypergeometric functions," Indian Jo Pure Appl. Math., 2, No. 3, 495-500 (1971). K. C. Gupta and A. Srivastava, "On finite integrals involving products of generalized hypergeometric functions," Rev. Univ. Nac. Tucum~n, A21, No. 1-2, 123-130 (1971). R. K. Gupta and S. D. Gupta, "Some operational properties of generalized Legendre transform and their applications. II," Indian J. Pure Appl. Math., 8, No. 5, 589-601 (1977). R. K. Gupta and S. D. Misra, "Infinite Mathieu transform," Indian J. Pure Appl. Math., 8, No. 12, 1431-1444 (1977)o R. K. Gupta and S. D. Sharma, "Some infinite integrals involving spheroidal function and Fox's H-function," Inanabha, A6, 121-127 (1976). S. C. Gupta, "Integrals involving products of G-function," Proc. Natl. Acad. Sci. India, A39, 193-200 (1969). S. C. Gupta, "On some integrals involving the H-function of two variables," Rev. Univ. Nac. Tucumfin, A25, No. 1-2, 13-21 (1975). S. L. Gupta, "Certain definite integrals involving generalised Bessel functions," Ganita, 17, No. 1, 1-6 (1966). S. L. Gupta, "Integrals involving Bessel coefficients of two variables," Math. Student, 35, No. I-4, 107-113 (1967/1969). S. L. Gupta, "Integrals of Schl~fli's form involving generalized Bessel coefficients," Indian J. Pure Appl. Math., 1, No. 3, 430-432 (1970). S. L. Gupta, "Results involving Hermite polynomials of two variables," Proc. Natl. Acad. Sci. India, A40, No. 2, 232-23;4 (1970). V. K. Gurtu, "Generalisation of an integral involving elliptic function," Rend. Circ. Mat. Palermo, 16, No. 3, 257-258 (1967). oo
718.
J. Guy and J. Tillieu, "Calcul des int6grales de la forme
Cm= .I ~'~ 0"~--1)l/2e-azd~" (m entier)," J. Phys. 1
725.
Radium, 16, No. 10, 801-802 (1955). J. Haag, "Sur le calcul de certaines int6grales au moyen de la fonction r," Bull. Sci. Math., 65, 181-185 (1941). J. Haeusler, "Eine Darstellung des unvollst[indigen Schwarz--Christoffelschen Abbildungsintegrals," Z. Angew. Math. Math., 46, No. 8, 551 (1966). W. Hahn, "Beitrfige zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen qDifferenzengleichung. Das q-Analogon der Laplace-Transformation," Math. Nachr., 2, 340-379 (I949). A. M. Hamza, "Integrals involving Bessel polynomials," Riv. Mat. Univ. Parma, 1, 41-46 (1972). H. Hancock, Elliptic Integrals, Dover, New York (1958). E. Hansen, "On some sums and integrals involving Bessel functions," Amer. Math. Monthly, 73, No. 2, 143-150 (1966). G. H. Hardy, "Some formulae in the theory of Bessel functions," Proc. London Math. Soc. 23, lxi-lxiii (1925).
726.
G. H. Hardy, "The integral
719. 720. 721. 722. 723. 724.
oo
(' s i n x
~ --~-- dx," Math. Gaz. 55, No. 392, 152-158 (1971). 0
727. 728. 729. 730. 731.
H. Haruki, "A famous definite integral," Math. Notae, 24, 23-25 (1974/75). H. Haruki and S. Haruki, "Euler's integrals," Amer. Math. Monthly, 90, No. 7, 464-466 (1983). A. Hattori and T. Kimura, "On the Euler integral representation of hypergeometric functions of several variables," J. Math. Soc. Japan, 26, No. 1, 1-16 (1974). H. J. Haubold and R. W. John, "On the evaluation of an integral connected with the thermonuclear reaction rate in closed form," Astronom. Nachr., 299, No. 5, 225-232 (1978). A. H. Heatley, Some integrals, differential equations, and series related to the modified Bessel function of the first kind. Univ. Toronto Studies, Math. Series, No. 7 (1939).
1313
732. 733.
734. 735. 736. 737. 738. 739. 740. 741. 742. 743. 744. 745. 746. 747. 748. 749. 750. 751. 752. 753. 754. 755. 756. 757. 758. 759. 760. 761. 762. 763. 764. 765. 766. 1314
D.J. Henderson, S. G. Davison, and M. L. Glasser, "Indefinite integrals of products of Bessel functions," Utilitas Math., 5, 227-237 (1974). P. Henrici, Zur Funktionentheorieder Wellengleichung. Mit Anwendungen auf spezielle Reihen und Integrale mit Besselschen, Whittakerschen and Mathieuschen Funktionen. Comment. Math. Helv., 27, 235-293 (1953(1954)). P. Henrici, "On the representation of a cer~tain integral involving Bessel functions by hypergeometric series," J. Math. and Phys., 36, No. 2, 151-156 (1957). R.B. Hetnarski, "On inverting the Laplace transform connected with the error function," Zastos. Mat., 7, No. 4, 399-405 (1964). T.J. Higgins, "Note on an integral of Bierens de Haan," Bull. Amer. Math. Soc., 47, No. 4, 286-287 (1941). A.T. de Hoop, "On integrals occurring in the variational formulation of diffraction problems," Nederl. Akad. Wetensch. Proc. Ser. B, 58, No. 325-330 (1955). C.W. Horton, "On the extension of some Lommel integrals to Struve functions with an application to acoustic radiation," J. Math. Phys., 29, 31-37 (1950). H.-Y. Hsu, "On Sonine's integral formula and its generalization," Bull. Amer. Math. SOt., 55, No. 4, 370-378 (1949). P. Humbert, "Sur une formule de M. Nielsen," Ann. Soc. Sei. Bruxelles, S6r. I, 60, 61-63 (1940). P. Humbert, "Sur les fonctions K de Bessel," Mathematica, Timisoara, 17, 59-64 (1941). P. Humbert, "Une nouveUe correspondance symbolique," C. R. Acad. Sci. Paris, 218, No. 1-5, 99-100 (1944). P. Humbert, "Nouvelles correspondances symboliques," Bull. Sci. Math., 69, 121-129 (1945). P. Humbert, "Images des fonctions de Mathieu," C. R. Acad. Sci. Paris, 225, No. 17, 715-716 (1947). P. Humbert, "Fonction de Bessel at calcul symbolique," Ann. Soc. Sci. Bruxelles, S6r. I, 64, 55-61 (1950). P. Humbert and L. Poli, "Sur certaines transcendantes li6es au calcul symbolique," Bull. Sci. Math., 68, 204-214 (1944). G. Iwata, "Evaluation of the Watson integral of a face-centered lattice," Natur. Sci. Rep. Ochanomizu Univ., 20, No. 2, 13-18 (1969). A.D. Jackson and L. C. Maximon, "Integrals of products of Bessel functions," SIAM J. Math. Anal., 3, No. 3, 446-460 (1972). F . H . Jackson, "Basic integration," Quart. J. Math. Oxford, 2, 1-16 (1951). E. Jacobsthal and H. Wergeland, "Ober ein Integral aus der Akustik," Norske Vid. Setsk. Skr. (Trondheim), No. 3, 1-18 (I950). J.C. Jaeger, "On the repeated integrals of Bessel functions," Quart. Appl. Math., 4, No. 3, 302-305 (1946). J.C. Jaeger, "Repeated integrals of Bessel functions and the theory of transients in filter circuits," J. Math. and Phys., 27,210-219 (1948). H . H . Jaffe, "Some overlap integrals involving d-orbitals," J. Chem. Phys., 21,258-263 (1953). M . K . Jain, "On Meijer transform," Acta Math., 93, No. 1-2, 121-168 (1955). N.C. Jain, "A theorem on Laplace transform of two variables," Labdev J. Sci. Tech., A6, No. 4, 216-219 (1968). N.C. Jain, "A relation between Meijer--Laplace and Hankel transforms of two variables," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 13, No. 4, 439-445 (1969(1970)). N.C. Jain, "A relation between Laplace and Hankel transform of two variables," Indian J. Pure Appl. Math., 1, No. 3, 415-418 (1970). N.C. Jain, "Integrals that contain hypergeometric functions and the H function," Repub. Venezuela Bol. Aead. Ci. Fis. Mat. Natur., 31, No. 90, 95-102 (1971). N.C. Jain, "An integral involving the generalised function of two variables," Rev. Roumaine Math. Pures Appl., 16, No. 6, 865-872 (1971). N.C. Jain, "Integrals that contain hypergeometric functions and the H-function," Repub. Venezuela Bol. Acad. Ci. Fis. Mat. Natur., 31, No. 90, 95-102 (1971). R . N . Jain, "Some double integral transformations of certain hypergeometric functions," Math. Jap., 10, 17-26 (1965). U . C . Jain, "On an integral involving the H-function," J. Austral. Math. Sot., 8, No. 2, 373-376 (1968). J.P. Jaiswal, "On Meijer transform. IV," Ganita, 6, No. 1-2, 75-91 (1956). R.S. Johari, "A theorem on the Hankel transform," Vijnana Parishad Anusandhan Patrika, 16, No. 1, 13-16 (1973). D.W. Jepsen, E. F. Haugh, and J. O. Hirschfelder, "The integral of the associated Legendre function," Proc. Natl. Acad. Sci. U.S.A., 41, No. 9, 645-647 (1955). B.K. Joshi, "An integral equation involving Whittaker's function," Math. Student, 41, No. 3-4, 407-408 (1973).
767. 768. 769. 770. 771. 772. 773. 774, 775. 776. 777. 778. 779. 780. 781. 782. 783. 784. 785. 786. 787. 788. 789. 790. 791. 792. 793. 794. 795. 796. 797. 798.
C. M. Joshi, "Some integrals involving a generalized Struve function," Vijnana Parishad Anusandhan Patrika, 10, 137-145 (1967). H. W. Joy, "Integrals of products of associated Legendre functions," J. Chem. Phys., 37, No. 12, 3018-3019 (1962). R. N. Kalia, "An application of a theorem on H-transform," An. Univ. Timisoara Ser. Sti. Mat., 9, No. 2, 165-169 (1971).. S. L. Kalla, "Some theorems on fractional integration," Proc. Natl. Acad. Sci. India, A36, No. 4, I007-1012 (1966). S. L. Kalla, "Infinite integrals involving product of Bessel and hypergeometric functions," Vijnana Parishad Anusandhan Patrika, 9, No. 4, 165-170 (1966). S. L. Kalla, "Finite integrals involving generalized hypergeometric function in several variables," Vijnana Parishad Anusandhan Patrika, 10, 99-106 (1967). S. L. Kalla, "Some infinite integrals involving generalized hypergeometric functions ~b2 and FG,"Proc. Natl. Acad. Sci. India, A37, No. 2, 195-200 (1967). S. L. Kalla, "Finite integrals involving product of Bessel functions," Proc. Natl. Acad. Sci. India, A38, 229- 233 (1968). S. L. Kalla, "Some finite integrals involving generalized hypergeometric functions," An. Fac. Ci. Univ. Porto, 52, No. 1-4, 151-161 (1969). S. L. Kalla, "Infinite integrals involving Fox's H-function and confluent hypergeometric functions," Proc. Natl. Acad. Sci. India, A39, 3-6 (1969). S. L. Kalla, "Some finite integral involving product of Bessel functions," Vijnana Parishad Anusandhan Patrika, 13, 10t-105 (1970). S. L. Kalla, "An integral involving Meijer's G-function and generalized function of two variables," Univ. Nac. Tucuman Rev., A22, No. 1-2, 57-61 (1972). S. L. Kalla, "Some finite integrals involving R-function," Portugal. Mat., 31, No. 1-2, 31-40 (1972). S. L. Kalla, "A generalization of Sonine--Mehler integral," Univ. Nac. Tucuman Rev., A23, 111-112 (1973). S. L. Kalla, "Some results on Jacobi polynomials," Tamkang J. Math., 15, No. 2, 149-156 (1984). S. L. Kalla, "Integrals involving orthogonal polynomials," in: Proc. Internat. Conf. on Complex Analysis and Appl., Sofia (1974), pp. 263-271. S. L. Kalla and S. Conde, "On a Legendre polynomial integral," Tamkang J. Math., 13, No. 1, 49-52 (1982). S. L. Kalla and S. Conde, "Integrals of generalized Laguerre polynomials," Serdica, 9, No. 2, 230-234 (1983). S. L. Kalla, S. Conde, and V. L. Luke, "Integrals of Jacobi functions," Math. Comp., 38, No. 157,207-214 (1982). S. L. Kalla, S. P. Goyal, and R. K. AgrawaL "On multiple integral transformations," Math. Notae, 28, 15-27 (1980(1981)). S. L. Kalla and P. C. Munot, "An expansion formula for the generalized Fox function of two variables," Repub. Venezuela Bol. Acad. Ci. Fis. Mat. natur., 30, No. 86, 37-43 (1970). S. L. Kalla and P. C. Munot, "Some theorems on Laplace and Varma transforms," Rec. Ci. Mat. Univ. Louren~o Marques, A2, 27-37 (1971). V. K. Kapoor, "On a generalized Stieltjes transform," Proc. Cambridge Philos. Soc., 64, No. 2, 407-412 (1968). V. K. Kapoor and S. Masood, "On a generalized L--H transform," Proc. Cambridge Philos. Soc., 64, No. 2, 3994O6 (1968). P. W. Karlsson, "Integral representations of Euler's type for certain generalized Horn functions," Nederl. Akad. Wetensch. Proc. Ser. A, 85, No. 3, 289-293 (1982). S. Katsura and K. Nishihara, Tables of Integral Products of Bessel Functions. II. Department of Applied Physics, T~3hoku Univ. (1969). C. L. Kaul, "Generalized hypergeometric function and heat production in a semi-infinite eylinder," Indian J. Pure Appl. Math., 3, No. 3, 504-512 (1972). C. L. Kaul, "Fourier series of a generalized function of two variables," Proc. Indian Acad. Sci., A75, No. 1, 2938 (1972). C. L. Kaul, "Integrals involving a generalized function of two variables," Indian J. Pure Appl. Math., 4, No. 4, 364-373 (1973). R. G. Keats, "A note on: Dilogarithms and associated functions by L. Lewin," Austral. Math. Soe. Gaz., 7, No. 2, 59-60 (1980). A. D. Kerr, "An indirect method for evaluating certain infinite integrals," Z. Angew. Math. Phys., 29, No. 3, 380- 386 (1978). K. S. Khichi, "Integral involving Kamp6 de Feriet's function," J. Math. Tokushima Univ., 1, 43-49 (1967).
1315
799.
J . E . Kilpatrick, S. Katsura, and Y. Inoue, Tables of integrals of products of Bessel functions. Rice Univ. Houston, Texas and Tt)hoku Univ., Japan (1966). 800. J . E . Kilpatrick, S. Katsura, and Y. Inoue, "Calculations of integrals of products of Bessel functions," Math. Comp., 21, No. 99, 407-412 (1967). 801. D. Kirkham, "Evaluation of f ctgxsin2mxln (sinx/sina)dx , etc.," Proc. Iowa Acad. Sci., 68,416-426 (1961). 802. M.S. Klamkin, "Extensions of Dirichlet's multiple integral," SIAM J. Math. Anal., 2, No. 3, 467-469 (1971). 803. M.S. Klamkin, "On some multiple integrals," J. Math. Anal. Appl., 54, No. 2, 476-479 (1976). 804. J. Klatil, "Die Bestimmung des Originals eines bestimmten Laplaceschen Bildpunktes," Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt, 21, No. 5, 515-520 (1979). 805. H.L.Knudsen, "On the calculation of some definite integrals in antenna theory," Appl. Sci. Res., B3, 51-68 (1952). 806. K.S. K61big, "On the value of a logarithmic-trigonometric integral," BIT, 11, No. 1, 21-28 (1971). I
807.
K.S. KSlbig, "Closed expressions for
S t-1 l~
t logp (l--t) at ," Math. Comp., 39, No. 160, 647-654 (1982).
0 ~/2
808.
K.S. K01big, "On the integral
809.
K.S. KSlbig, "On the integral
I log~cosxlogPsinxdx ," Math. Comp., 40, No. 162, 565-570 (1983). b "f e-"tt v-1 log~ tdt ," Math. Comp., 41, No. 163, 171-182 (1983). 0
810. E.T. Kornhauser, "Further extension of Schuster's integral," Quart. Appl. Math., 19, No. 2, 153-155 (1961). 811. L. Koschmieder, "Integrale mit hypergeometrischen Integranden," Acta Math., 79, No. 3-4, 241-254 (1947). 812. L. Koschmieder, "Integrals with hypergeometric integrands. II," Rev. Univ. Nac. Tucum~n, A9, No. 1, 63-78 (1952). 813. C . L . Koul, "On certain integral relations and their applications," Proc. Indian Acad. Sci., A79, No. 2, 56-66 (1974). 814. C.L. Koul and R. K. Raina, "On certain double integrals," Proc. Indian Acad. Sci., A84, No. 6, 235-243 (1976). oo
815.
V. Kourganoff, "Sur les int6grales
t" e-UXx~Kn (x) d x b
816.
V. Kourganoff, "Sur les int6grales
817. 818.
M. Krakowski, "On certain improper integrals," Zast. Mat., 12, No. 2, 187-194 (1971). L. Kuipers, "Generalized Legendre's associated functions (integral theorems, recurrence formulas)," Monatsh. Math., 63, No. 1, 24-31 (1959). L. Kullmann, "The integral of the product of three associated Legendre functions," Alkalmaz. Mat. Lapok, 7, No. 1-2, 159-165 (1981). S.K. Kulshreshtha, "Some theorems on Varma transform of first kind," Collect. Math., 17, No. 1, 75-83 (1965). S.K. Kulshreshtha, "Theorems on Mk,m-transform and integrals involving genealized hypergeometric functions," Proc. Natl. Acad. Sci. India, A36, No. 1, 179-184 (1966). S.K. Kulshreshtha, "On an integral transform," Proc. Natl. Acad. Sci. India, A36, No. 1,203-208 (1966). S.K. Kulshreshtha, "A theorem on M~m-transform," Proc. Natl. Acad. Sci. India, A36, No. 2, 225-229 (1966). S.K. Kulshreshtha, "Theorems on Whittaker transform and infinite integrals involving Bessel's functions," Proc. Natl. Acad. Sci. India, A36, No. 2, 230-234 (1966). S.K. Kulshreshtha, "Some properties of M ~ - t r a n s f o r m , " Proc. Natl. Acad. Sci. India, A37, No. 1, 11-16 (1967). R. Kumar, "Some recurrence relations of the generalised Hankel transform. II," Ganita, 6, 39-53 (1955). R. Kumar, "Some theorems connected with generalised Hankel-transform," Riv. Mat. Univ. Parma, 7, No. 3-5, 321- 332 (1956). R. Kumar, "On generalized Hankel transform. I; II," Bull. Calcutta Math. Soc., 49, No. 2, 105-111; 113-118 (1957). R. Kumar, "Some integral representations involving generalised Hankel transform," Riv. Mat. Univ. Parma, 9, 113-123 (1958).
,"
C. R. Acad. Sci. Paris, 225,430-431 (1947).
oo
819. 820. 821. 822. 823. 824. 825. 826. 827. 828. 829.
830.
J. Lagrange, "Calcul des int~grales
t e-pXxSKn (ax) Km(bx)dx ," C. R. Acad. Sci. Paris, 225, 451-453 (1947).
I
co ~ sin mx
m=] x----w - dx, 0
Mathesis, 66, No. 10, 363-369 (1957).
1316
co [i c o s m x
Jm =3 ~ d x O
, m entier positif, a quelconque,"
~/2
831.
J. Lagrange, "Sur des int6grales
I= 1
[f ( x ) - - f (2x)lctgxctx ," Mathesis, 67, No. 1-3, 8-10, (1958). oo
832.
J. Lagrange, "Calcul des int6grales
lm~
I
1--cos
mx
x~
," Mathesis, 67, No. 4-6, 122-124 (1958).
f)
833.
J. Lagrange, "Sur les integrales 1~=
co f sin m X
~
f(x)ax,
n entier positif, f ( x + ~r) = +f(x)," Mathesis, 68, No. 1 - 3,
--oo
834. 835. 836. 837. 838. 839. 840.
841.
842. 843. 844. 845. 846. 847. 848. 849. 850. 851. 852. 853. 854. 855. 856. 857. 858. 859.
42-46 (Jt959). S.K. Lakshmana Rao, "On the evaluation of Dirichlet's integral," Amer. Math. Monthly, 61, No. 6, 411-413 (1954). Ch. Lal., "An integral involving Kamp6 de F6riet function," Math. Notae, 24, 19-22 (1974/1975). M. L. Laursen and K. Mita, "Some integrals involving associated Legendre functions and Gegenbauer polynomials," J. Phys. A, 14, No. 5, 1065-1068 (1981). J . L . Lavoie, T. J. Osier, and R. Tremblay, "Fractional derivatives and special functions," SIAM Rev., 18, No. 2, 240-:).68 (1976). J. Lavoine, "Sur les transform6es de Laplace de certaines distributions," C. R. Acad. Sci. Paris, 242, No. 6, 717-719 (1956). J. Lavo~ne, "Sur le passage de l'image de g(t) ~ celle de g(it) dans la transformation de Laplace," C. R. Acad. Sci. Paris, 244, No. 8, 991-993 (1957). J. Lavoine, Calcul symbolique. Distributions et pseudo-functions avec une table de nouvelles transformees de Laplace, CNRS, Paris (1959). J. Lavoine, "Transform6es de Fourier inverse de e -i2r~toVq'-rg--~ et de
e-i2~t~
q~m-p~-Fp~-Fp2,
fonctions singuli6res de l'61ectrodinamique," C. R. Acad. Sci. Paris, 250, No. 13, 2318-2320 (1960). N.N. I_,axmi, "On some integrals involving Gegenbauer polynomials," Ricerca, 25-27 (1968). P.A. Lee, "On integrals involving parabolic cylinder functions," J. Math. Phys., 46, No. 2, 215-219 (1967). L. Lewin, Dilogarithms and Associated Functions, Macdonald, London (1958). R.L. Lewis, "On finite integrals involving trigonometric, Bessel, and Legendre functions," Math. Comp., 23, No. 106, 259-273 (1969). C.F. Lindman, Examen des Nouvelles Tables d'Int6grales d6finies de M. Bierens de Haan, Stockholm (1891); reprinted: Stechert, New York (1944). W.C. Lindsey, "Infinite integrals containing Bessel function products," J. Soc. Industr. Appl. Math., 12, No. 2, 458-464 (1964). P. Linz and T. E. Kropp, "A note on the computation of integrals involving products of trigonometric and Bessel functions," Math. Comp., 27, No. 124, 871-872 (1973). R.D. Lord, "Some integrals involving Hermite polynomials," J. London Math. Soc., 24, 101-112 (1949). R.D. Lord, "Integrals of products of Laguerre polynomials," Math. Comp., 14, No. 72, 375-376 (1960). J.S. Lowndes, "Integrals involving Bessel and Legendre functions," Proc. Edinburgh Math. Soc., 14, No. 4, 269-272 (1965). R.P. Lucic, "Sur une classe des int6grales d6finies," Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 132-142, 25-28 (1965). R.P. Lucic, "An improper integral," Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 200-209, 27-28 (1967). Y.L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York (1962). Y.L. Luke, The Special Functions and Their Approximations, Vols. I and II, Academic Press, New York (1969). M. Lutzky, "Evaluation of some integrals by contour integration," Am. Math. Monthly, 77, No. t0, 1080-1082 (1970). T.M. MacRobert, "On an integral due to Ramanujan, and some ideas suggested by it," Proc. Edinburgh Math. Soc., 2, No. 1, 26-32 (1930). T.M. MacRobert, "The Mehler--Dirichlet integral and some other Legendre function formulae," Philos. Mag., 14,632-656 (1932). T.M. MacRobert, "Some integrals, with respect to their degrees, of associate Legendre functions," Proc. Roy. Soc. Edinburgh, 54, 135-144 (1933-34).
1317
860. 861. 862. 863. 864. 865. 866. 867. 868. 869. 870. 871. 872. 873. 874. 875. 876. 877. 878. 879. 880. 881. 882. 883. 884. 885. 886. 887. 888. 889. 890. 891. 892.
1318
T.M. MacRobert, "Some series and integrals involving the associated Legendre functions, regarded as functions of their degrees," Proc. Roy. Soc, Edinburgh, 55, 85-90 (1934-35). T.M. MacRobert, "Some formulae for the associated Legendre functions of the second kind; with corresponding formulae for the Bessel functions," Proc. Roy. Soc. Edinburgh, 57, 19-25 (1936-37). T.M. MacRobert, "Some series and integrals for the associated Legendre functions of the first kind, regarded as functions of their orders," Philos. Mag., 24, 223-227 (1937). T.M. MacRobert, "Some integrals involving Legendre and Bessel functions," Quart. J. Math. Oxford, 11, 95-100 (1940). T . M . MacRobert, "Some integrals involving E-functions and confluent hypergeometric functions," Quart. J. Math. Oxford, 13, No. 50, 65-68 (1942). T.M. MacRobert, "Some integrals involving Legendre and Bessel functions," Quart. J. Math. Oxford, 11, 95-100 (1940). T . M . MacRobert, "Some integrals involving E-functions and confluent hypergeometric functions," Quart. J. Math. Oxford, 13, No. 50, 65-68 (1942). T.M. MacRobert, "Some applications of contour integration," Philos. Mag., 38, 45-51 (1947). T.M. MacRobert, "An integral involving an E-function and an associated Legendre function of the first kind," Proc. Glasgow Math. Assoc., I, 111-114 (1953). T . M . MacRobert, "Integral of an E-function expressed as a sum of two E-functions," Proc. Glasgow Math. Assoc., 1, 118 (1953). T.M. MacRobert, "Some integrals involving E-functions," Proc. Glasgow Math. Assoc., 1, 190-191 (1953). T.M. MacRobert, "Integrals involving a modified Bessel function of the second kind and an E-function," Proc. Glasgow Math. Assoc., 2, No. 2, 93-96 (1954). T.M. MacRobert, "Integrals involving E-functions and associated Legendre functions," Proc. Glasgow Math. Assoc., 2, No. 3, 127-128 (1955). T.M. MacRobert, "Integrals involving products of modified Bessel functions of the second kind," Proc. Glasgow Math. Assoc., 2, No. 3, 129-131 (1955). T.M. MacRobert, "Some Bessel function integrals," Proc. Glasgow Math. Assoc., 2, No. 4, 183-184 (1956). T.M. MacRobert, "Integrals allied to Airy's integrals," Proc. Glasgow Math. Assoc., 3, No. 2, 91-93 (1957). T.M. MacRobert, "Integrals involving hypergeometric functions and E-functions," Proc. Glasgow Math. Assoc., 3, No. 4, 196-198 (1958). T.M. MacRobert, "Integrals involving E-functions," Math. Z., 69, No. 3, 234-236 (1958). T.M. MacRobert, "Integrals of products of E-functions," Math. Ann., 137, No. 5,412-416 (1959). T.M. MacRobert, "Integration of E-functions with respect to their parameters," Proc. Glasgow Math. Assoc., 4, No. 2, 84-87 (1959). T . M . MacRobert, "Beta-function formulae and integrals involving E-functions," Math. Ann., 142, No. 5, 450-452 (1961). T.M. MacRobert, "Integrals involving Gegenbauer functions and E-functions," Math. Ann., 144, No. 4,299-301 (1961). T.M. MacRobert, "Barnes integrals as a sum of E-functions," Math. Ann., 147, No. 3, 240-243 (1962). T.M. MacRobert, "Integrals involving E-functions," Proc. Glasgow Math. Assoc., 6, No. 1, 31-33 (1963). W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin (1966). R . R . Mahajan and R. K. Saxena, "Some finite integrals involving the generalized function of two variables. I," Math. Balkanica, No. 7, 245-252 (1977). R . R . Mahajan and R. K. Saxena, "Evaluation of finite integrals involving the M-function of two variables by using the E operator," Repub. Venezuela Bol. Acad. Cienc. Fis. Mat. Natur. 39, No. 117, 25-44 (1979). M . L . Maheshwari, "Computation of integrals involving Laguerre polynomials," Rev. Roumaine Math. Pures Appl., 15, No. 7, 1019-1025 (1970). M.L. Maheshwari, "On certain theorems in the transform calculus," Repub. Venezuela Bol. Acad. Ci. Fis. Mat. Natur., 31, No. 93, 47-51 (1971). M.L. Maheshwari, "On certain properties of Hankel transform," Portugal. Math., 33, No. 1-2, 19-26 (1974). H.B. Maloo, "Some theorems in operational calculus," Proc. Natl. Acad. Sci. India, A36, No. 1, 89-96 (1966). H.B. Maloo, "Integrals involving Bessel functions and G-function," Vijnana Parishad Anusandhan Patrika, 8, 37-42 (1965). H.B. Maloo, "Integrals involving products of hypergeometric function," Proc. Natl. Acad. Sci. India, A36, No. 1, 185-188 (1966).
893. 894. 895. 896. 897. 898. 899. 900. 901. 902. 903. 904. 905. 906. 907. 908. 909. 910. 911. 912. 913. 914. 915. 916. 917. 918. 919. 920. 921. 922. 923. 924.
H. B. Maloo, "Some theorems in operational calculus. II," Proc. Natl. Acad. Sci. India, A36, No. 4,843-848 (1966). H. B. Maloo, "Integrals involving products of Bessel function and Meijer's G-function. I," Monatsh. Math., 70, No. 2, 127-133 (1966). H. B. Maloo, "Integrals involving products of Bessel function and Meijer's G-function. II," Monatsh. Math., 70, No, 4, 349-356 (1966). H. B. Maloo, "Infinite integrals involving hypergeometric functions," Portugal. Math., 26, No. 1-2, 109-113 (1967). H. B. Maloo, "Integrals involving Bessel and Legendre functions," Portugal. Math., 26, No. 1-2, 201-206 (1967). H. B. Maloo, "Integrals involving products of Legendre functions," Portugal. Math., 26, No. 3-4,253-258 (1967). H. B. Maloo, "Integrals involving products of Bessel functions," Rev. Univ. Nac. Tucum~n, A17, No. 1-2, 37-46 (1967). H. B. Maloo, "An integral involving products of Bessel function and Meijer's G-function. III," Vijnana Parishad Anusandhan Patrika, 10, 25-36 (1967). H. B. Maloo, "Infinite integrals involving Legendre functions," Vijnana Parishad Anusandhan Patrika, 10, 113120 (1967). I. Mannari and H. Kageyama, "A note on extended Watson integrals," Progr. Theoret. Phys. Suppl. (Extra number), 269-279 (1968). i. Mannari and T. Kawabe," Extended Watson integral for an anisotropic simple cubic lattice. II," Rep. Res. Lab. Surface Sci. Okayama Univ., 3, No. 5, 257-263 (1971). K. Mano, "A remark on the Green's function for the face-centered cubic lattices," J. Math. Phys., 15, No. 12, 2175- 2176 (1974). H. L. Manocha, "Integral expressions for Appell's functions F 1 and F2," Riv. Mat. Univ. Parma, 8, 235-242 (1967). H. L. Manocha, "Integral representations for Appelrs functions of two variables," Rev. Univ. Nac. Tucum~n, A17, No. 1-2, 63-65 (1967). K. V. Mardia, "An important integral and applications in partial fractions," Math. Student, 29, No. 1-2, 15-20 (1961). O. I. Marichev, Handbook of Integral Transforms of Higher Transcendental Functions, Ellis Horwood, Chichester; Wiley, New York (1983). O. I. Marichev and Vu Kim Tuan, "The problems of definitions and symbols of G- and H-functions of several variables," Rev. T6cn. Ingr. Univ. Zulia, 6, Edition Especial, 144-151 (1983). B. Martic~ "The Eulerian integrals of the first and second kind that are associated with various functions," Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat. Nauka, 45, No. 12, 149-154 (1973). B. Martic, "On Eulerian integrals of the first and second kind associated with multiple hypergeometric series, N Mat. Vesnik, 10, No. 2, 123-126 (1973). B, Martic, "Some results involving a generalized Kamp6 de F6riet function," Publ. Inst. Math. (Beograd), 15, 101-104 (1973). S. Masood, "Generalized Laplace transforms and self-reciprocal functions," Ganita, 13, No. 2, 51-73 (1962). V. Massidda, "Analytical calculation of a class of integrals containing exponential and trigonometric functions," Math. Comp., 41, No. 164, 555-557 (1983). A. M. Mathai, "An expansion of Meijer's G-function in the logarithmic case with applications," Math. Nachr., 48~ 129-139 (1971). A. M. Mathai and R. K. Saxena, "Extensions of an Euler's integral through statistical techniques," Math. Nachr., 51, No. 1, 1-10 (1971). A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Math., No. 348, Springer, Berlin (1973). A. M./Viathai and R. K, Saxena, The H-function with Applications in Statistics and Other Disciplines, Wiley, New York (1978). A. B. Mathur, "Some results involving Legendre's and F 4- functions," Riv. Mat. Univ. Parma, 10, 101 - 109 (1969). A. B. Mathur, "Integral involving H-functions," Math. Student, 41, No. 1-2, 162-166 (1973). B. L. Mathur, "Integration of certain products involving a generalized H-function," Vijnana Parishad Anusandhan Patrika, 19, No. 3, 227-231 (1976). B. L. Mathur, "Bivariate Laplace transforms for some H-functions," J. Indian Inst. Sci., 60, No. 6, 79-84 (1978). B. L. Mathur, "Integration of certain H-functions of two variables with respect to their parameters," Pure Appl. Math. Sci., 10, No. 1-2, 27-31 (1979). S. N. Mathur, "Integrals involving H-function," Rev. Univ. Nac. Tucuman, A20, 145-148 (1970).
1319
925. 926. 927. 928. 929. 930. 931. 932.
Y. Matsuoka, "Note on some definite integral in D. Bierens de Haan's table," Arch. Math., 17, No. 3, 262-263 (1966). G. Mavrigian, "Evaluations of the tire contour integral by elliptic integrals," Rubber Chem. Technol., 40, No. 3, 961-967 (1967). E. Mavrommatis, "Evaluation of some integrals encountered in calculations in many-fermion systems," J. Inst. Math. Appl., 22, No. 3, 255-260 (1978). L.C. Maximon, "On the evaluation of indefinite integrals involving the special functions: application of method," Quart. Appl. Math., 13, No. 1, 84-93 (1955). L.C. Maximon, "On the representation of indefinite integrals containing Bessel functions by simple Neumann series," Proc. Amer. Math. Soc., 7, No. 6, 1054-1062 (1956). L.C. Maximon and G. W. Morgan, "On the evaluation of indefinite integrals involving the special functions: development of method," Quart. Appl. Math., 13, No. 1, 79-83 (1955). N.W. McLachlan, "A general theorem in Laplace transforms," Math. Gaz., 30, 85-87 (1946). N.W. McLachlan, Bessel Functions for Engineers, Oxford Univ. Press, London (1955). o~
933.
R . G . Medhurst and J. H. Roberts, "Evaluation of the integral s,, (b) =.-U ~ ~----U-/ sJrabxax ," Math. Comp., 19, 0
934. 935. 936. 937. 938. 939. 940. 941. 942. 943. 944. 945. 946. 947. 948. 949. 950. 951.
952. 953.
1320
No. 89, 113-117 (1965). A.N. Mehra, "On Meijer transform of two variables," Bull. Calcutta Math. Soc., 48, No. 2, 83-94 (1956). A.N. Mehra, "On certain definite integrals involving Fox's H-function," Rev. Univ. Nac. Tucum~in, A21, No. 1-2, 43-47 (1971). K . N . Mehra and L. K. Bhagchandani, "Some results involving hypergeometric functions of two and three variables," Univ. Lisboa Revista Fac. Ci., A13, No. 1, 71-81 (1969/70). C . S . Meijer, "Einige Integraldarstellungen for Whittakersche und Besselsche Funktionen," Nederl. Akad. Wetensch., Proc. 37, 805-812 (1934). C.S. Meijer, "Einige Integraldarstellungen for Produkte von Whittakerschen Funktionen," Quart. J. Math. Oxford, 6, 241-248 (1935). C.S. Meijer, "Integraldarstellungen fiir Lommelsche und Struvesche Funktionen," Nederl. Akad. Wetensch., Proc. 35, 628-634, 744-749 (1935). C.S. Meijer, "Einige Integraldarstellungen aus der Besselschen und Whittakerschen Funktionen," Nederl. Akad. Wetensch., Proc. 39, 394-403, 519-527 (1936). C.S. Meijer, "Ober Whittakersche bezw. Besselsche Funktionen und deren Produkte," Nieuw. Arch. Wisk., 18, No. 4, 10-39 (1936). C.S. Meijer, "Integraldarstellungen far Struvesche und Besselsche Funktionen," Compos. Math., 6, 348-367 (1939). C.S. Meijer, "Ober Besselsche, Struvesche und Lommelsche Funktionen. I, II," Nederl. Akad. Wetensch., Proc. 43, 198-210, 366-378 (1940). C.S. Meijer, "l~lber eine Erweiterung der Laplace-Transformation. I, II," Nederl. Akad. Wetensch., Proc. 43, 599-608, 702-711 (1940). C.S. Meijer, "Neue Integraldarstellungen for Whittakersche Funktionen. I--V," Nederl. Akad. Wetensch., Proe. 44, 81-92, 186-194, 298-307, 442-451,590-598 (1941). C.S. Meijer, "Integraldarstellungen ftir Whittakerschen Funktionen und Ihre Produkte. I, II," Nederl. Akad. Wetensch., Proc. 44, 435-441, 599-605 (1941). m:n C.S. Meijer, "Muliplikationstheorem for die Funktion Gp,q (z) , Nederl. Akad. Wetensch., Proc. 44, 10621070 (1941). C.S. Meijer, "Eine neue Erweiterung der Laplace-Transformation. I, II," Nederl. Akad. Wetensch., Proc. 44, 727-737, 831-839 (1941). C.S. Meijer, "On the G-function. I--VIII," Nederl. Akad. Wetensch., Proc. 49, 227-237, 344-356, 457-469, 632-641, 765-772, 936-943, 1063--1072, 1165-1175 (1946). C.S. Meijer, "Neue Integraldarstellungen ftir Besselsche Funktionen," Compos. Math., 8, No. 1, 49-60 (1950). C.S. Meijer, "Expansion theorems for the G-function. I--XI," Nederl. Akad. Wetensch. Proc. Ser. A, 55,369-379, 483-487 (1952); 56, No. 1, 43-49; No. 2, 187-193; No. 4,349-357 (1953); 57, No. 1, 77-82, 83-91; No. 3,273-279 (1954); 58, No. 2, 243-251; No. 3, 309-314 (1955); 59, No. 1, 70-82 (1956). C.S. Meijer, "Expansions of the generalized hypergeometric function," Simon Stevin, 31, No. 3, 117-139 (1957). S. Melamed and H. Kaufman, "Evaluation of certain improper integrals by residues," Am. Math. Monthly, 72, No. 10, 1111-1112 (1965). l,
954. 955. 956. 957. 958. 959. 960. 961. 962. 963. 964. 965. 966. 967. 968. 969. 970. 971. 972. 973. 974. 975. 976. 977,
978. 979. 980. 981. 982. 983. 984.
H. Mellin, "Abriss einer einheitlichen Theorie der Gamma und der hypergeometrischen Funktionen," Math. Ann., 68, 305-337 (1910). M. A. Melvin and N. V. V. J. Swamy, "Evaluation of certain physically interesting integrals and hypergeometric sums," J. Math. Phys., 36, No. 2, 157-163 (1957). D. H. Menzel, "Generalized radial integrals with hydrogenic functions," Rev. Modern Phys., 36, No. 2, 613- 617 (1964). B. Meulenbeld and H. S. V. de Snoo, "Integrals involving generalized Legendre functions," J. Eng. Math., 1, No. 4, 285-291 (1967). W. Meyer zur Capellen, Integraltafeln: Sammlung Unbestimmter Integrale Elementarer Funktionen, Springer, (1950). G. F. Miller, "Evaluation of an integral containing Bessel functions," Proc. Cambridge Philos. Soe., 62, No. 3, 453-457 (1966). J. Miller,, "Formulas for integrals of products of associated Legendre or Laguerre functions," Math. Comp., 17, No. 81, 84-87 (1963). H. Minn, "A note on certain integrals related with the generalized hypergeometric function," J. Korean Math. Soc., 6, 51-54 (1969). S. C. Mitra, "On a certain new connection between Legendre functions and Whittaker's M-functions," Bull. Calcutta Math. Soco, 31, No. 4, 161-162 (1939). S. C. Mitra, "On certain infinite integrals involving Struve functions and parabolic cylinder functions," Pror Edinburgh Math. Sot., 7, No. 4, 171-173 (1946). D. S. Mitrinovic and Z. R. Pop-Stojanovic, "About integrals expressible in terms of hyperelliptir integrals," Glasnik Mat.-Fiz. Astron., 18, No. 4, 235- 239 (1963). P. K. Mittal and K. C. Gupta, "An integral involving generalized function of two variables," Proc. Indian Acad. Sci., A75, No. 3, 117-123 (1972). G. C. Modi, "Contour integrals involving generalized H-functions," Bull. Math. Soc. Sei. Math. R. S. Roumanie, 23, No. l, 65-70 (1979). B. Mohan "Self-reciprocal functions involving Laguerre polynomials," J. Indian Math. Soc. 3,268-270 (1939). B. Mohan. "On self-reciprocal functions," Quart. J. Math. Oxford, 10, No. 11,252-260 (1939). B. Mohan. "Some infinite integrals," J. Indian Math. Soc. 5, 123-127 (1941). B. Mohan. "Infinite integrals involving Struve's functions," Quart. J. Math. Oxford, 13, No. 49, 40-47 (1942). B. Mohan "A class of infinite integrals. II," J. Indian Math. Soc. 6, No. 1, 98-101 (1942). B. Mohaa "Infinite integrals involving Struve's functions. III," Bull. Calcutta Math. Sot., 34, No. 1, 55-59 (1942). B. Mohan "Infinite integrals involving Struve's functions. II," Proc. Natl. Acad. Sci. India, 12, 231-235 (1942). L. J. Mo]rdell, "Note on Kapteyn's and Bateman's integrals involving Bessel functions," J. London Math. Sor 5, 203-208 (1930). T. Morita and T. Horiguchi, "Formulas for the lattice Green's functions for the cubic lattices in terms of the complete elliptic integral," J. Phys. Soc. Japan, 30, No. 4, 957-964 (1971). T. Morita and T. Horiguchi, "Lattice Green's functions for the cubic lattices in terms of the complete elliptic integral," J. Math. Phys., 12, No. 6, 981-986 (1971). T. Morita and T. Horiguchi, "Calculation of the lattice Green's function for the bcc, fcc, and rectangular lattices," J. Math. Phys., 12, No. 6, 986-992 (1971). S. N. Mukherjee, "On some integral representations of the generalized Laplace transform. I," J. Sci. Res. Banaras Hindu Univ., 13, No. 1, 99-113 (1962/63). S. N. Mukherjee, "On some integrals involving Gegenbauer polynomials and associated Legendre polynomials," J. Sci. Res. Banaras Hindu Univ., 14, No. 1, 145-150 (1963/64). S. N. Mukherjee and Y. N. Prasad, "Some infinite integrals involving the products of H-functions," Math. Ed., AS, 5-12 (1971). S. N. Mukherjee and Y. N. Prasad, "Some finite integrals involving the products of H-functions," J. Sci. Res. Banaras Hindu Univ., 22, No. 2, I-9 (1971-1972). G. M. Muller, "On certain infinite integrals involving Bessel functions~" J. Math. and Phys., 34, No. 3, 179-181 (1955). P. C. Munot, "Some formulae involving generalized Fox's H-function of two variables," Portugal. Math., 31, No. 4, 203-213 (1972). P. C. Munot and S. L. Kalla, "Integrals involving products of Gauss's and Lauricella's hypergeometric functions," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 13, No. 3, 369-374 (1969/1970).
1321
985. 986. 987. 988. 989. 990. 991. 992. 993. 994. 995. 996. 997. 998. 999. 1000. 1001. 1002. 1003. 1004. 1005. 1006. 1007. 1008. 1009. 1010. 1011. 1012. 1013. 1014. 1015.
1322
P. C. Munot and S. L. Kalla, "On an extesion of generalized function of two variables," Rev. Univ. Nac.Tucuman, A21, No. 1-2, 67-84 (1971). P. C. Munot and B. L. Mathur, "On integration with respect to parameters," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 22, No. 2, 167-174 (1978). P. C. Munot and P. A. Padmanabham, "Integrals involving the generalized Lauricella function," Indian J. Pure Appl. Math., 12, No. 3, 388-392 (1981). T. Mural and G. Araki, "Calculation of heteronuclear molecular integrals," Progr. Theoret. Phys., 8, No. 6, 615-638 (1952). T. Mursi, "On the relation of the Airy and allied integrals to the Bessel functions," Proc. Math. Phys. Soc. Egypt, 3, 23-38 (1948). R. Miiller, "Spezielle Integrale mit Zylinder- und Kugelfunktionen," Z. Angew. Math. Mech., 35, No. 1-2, 62-64 (1955). R. MOiler, "Integrals and series involving Bessel functions. I," Bul. Inst. Politehn. Iasi, 13, No. 3-4, 43-45 (1967). K. S. Nagaraja, "A note on certain integrals," J. Math. Phys., 43, No. 1, 55-59 (1964). V. Namias, "The fractional order Fourier transform and its application to quantum mechanics," J. Inst. Math. Appl., 25, No. 3, 241-265 (1980). V. C. Nair, "The Mellin transform of the product of Fox's H function and Wright's generalized hypergeometric function," Univ. Studies Math., 2, 1-9 (1972). u C. Nair, "Integrals involving the H function where the integration is with respect to a parameter," Math. Student, 41, 195-198 (1973). V. C. Nair, "A theorem on the Laplace transform which helps to evaluate multiple integrals and to solve integral equations involving multiple integration," Indian J. Pure Appl. Math., 3, No. 6, 986-991 (1972). V. C. Nair, "Integrals involving Bessel functions of variable order," Vijnana Parishad Anusandhan Patrika, 17, 83-87 (1974). U. C. Nair and G. S. Mahajani, "Generalization of a certain definite integral," Math. Student, 13, 55-56 (1945). V. C. Nair and M. S. Samar, "An integral involving the product of three H functions," Math. Nachr., 49, No. 1-6 101-105 (1971). R. Narain, "Certain properties of generalized Laplace transform," Univ. Politec. Torino. Rend. Sem. Mat., 15, 311-328 (1955-56). R. Narain, "Certain properties of generalized Laplace transform involving Meijer's G-function," Math. Z., 68, No. 3, 272-281 (1957). Roop N. Kesarwani, "Fractional integration and function self-reciprocal in Hankel transforms," Portugal Math., 26, No. 4, 473-478 (1967). R. Narain, "Certain rules of generalized Laplace transform," Ganita, 8, No. 1, 25-35 (1957). R. Narain, "On a generalized Laplace transform," Math, Z., 69, No. 3,228-233 (1958). R. Nath, "On an integral involving the product of three H-functions," C. R. Acad. Bulgare Sci., 25, No. 9, 1167-1169 (1972). H. Navelet, "On the Hankel transform of a generalized Laguerre polynomial and on the convolution involving special Bessel functions," J. Math. Phys., 25, No. 6, 1718-1720 (1984). J. Navr~til and I. Ulehla, "Computation of some integrals involving Hermite polynomials," Apl. Mat., 8, No. 5, 385-391 (1963). E. H. Neville, "Indefinite integration by means of residues," Math. Student, 13, 16-25 (1945). J. N. Newman and W. Frank, "An integral containing the square of a Bessel function," Math. Comp., 17, No. 81, 64-70 (1963). E. W.-K. Ng, "Recursive formulae for the computation of certain integrals of Bessel functions," J. Math. and Phys., 46, No. 2, 223-224 (1967). E. W. Ng and M. Geller, "A table of integrals of the error function. II. Additions and corrections," J. Res. Natl. Bur. Standards, 75II, No. 3-4, 149-163 (1971). E. W.-K. Ng and M. Geller, "A table of integrals of the error functions," J. Res. Natl. Bur. Standards, 73B, No. 1, 1-20 (1969). E. W.-K. Ng and M. Geller, "On some indefinite integrals of confluent hypergeometric functions," J. Res. Natl. Bur. Standards, 7411, No. 2, 85-98 (1970). H. N. Nigam, "Integral involving Fox's H-function and integral function of two complex variables. I," Ganita, 21, No. 2, 71-78 (1970). H. N. Nigam, "Integral involving Fox's H-function and integral function of two complex variables. II, Bull. Calcutta Math. Soc., 64, No. 1, 1-5 (1972).
1016. H. N. Nigam, "Integrals involving Meijer's G-functions and integral function of two complex variables. II," Math. Student, A40, 179-185 (1972). 1017. H. N. Nigam, "Theorems on generalized Laplace transform of two variables. I," Rev. Mat. Hisp.-Amer., 35, No. 1-2, 31-44 (1975). 1018. K. Nishimoto, "Fractional differintegration of the logarithmic function," J. College Eng. Nihon Univ., B20, 9-18 (1979). 1019. K. Nishimoto, "Some properties of the fractional differintegrated trigonometric functions," J. College Eng. Nihon Univ., B21, 9-17 (1980). 1020. K. Nishimoto, "On some contour integral representations for beta function and fractional differintegrations of the functions (1 - z)a-1 and z~-l, " J. College Eng. Nihon Univ., B22, 1-8 (1981). 1021. K. Nishimoto, "On some contour integral representations for hypergeometric function and fractional differintegration of the functions z~-'1(l - z)'~-~-z,"J. College Eng. Nihon Univ., B23, 1-6 (1982). 1022. N. E. Norlund, "Hypergeometric functions," Acta Math., 94, No. 3-4, 289-349 (1955). 1023. A. H. Nuttall, "Some integrals involving the Q ~ function," IEEE Trans. Information Theory, IT-21, 95-96 (1975). 1024. F. Oberhettinger, Tabellen zur Fourier Transformation, Springer, Berlin (1957). 1025. F. Oberhettinger, "On some expansions for Bessel integral functions," J. Res. Natl. Bur. Standards, 59, No. 3, 197-201 (1957). 1026. F. Oberhettinger, Tables of Bessel Transforms, Springer, New York (1972). 1027o F. Oberhettinger, Fourier expansions. A Collection of Formulas, Academic Press, New York (1973). 1028. F. Oberhettinger, Tables of Mellin Transforms, Springer, Berlin (1974). 1029o F. Oberhettinger and L. Badii, Tables of Laplace transforms, Springer, Berlin (1973). 1030. F. Oberhettinger and T. P. Higgins, Tables of Lebedev, Mehler and generalized Mehler transforms. Math. Note, No. 246 (1961). 1031o M. J. Offerhaus, "On integrals of Bessel functions related to Weber's second exponential integral," Appl. Sci. Res., 26, No. 5, 374-382 (1972). 1032. Sh. Okui, "Complete elliptic integrals resulting from infinite integrals of Bessel functions," J. Res. Natl. Bur. Standards, 78B, No. 3, 113-135 (1974). 1033. Sh. Okui, "Complete elliptic integrals resulting from infinite integrals of Bessel functions. II," J. Res. Natl. Bur. Standards, 79B, No. 3-4, 137-170, (1975). 1034. S. Okui, "Some integrals relating to the l.-funetion," Math. Comp., 41, No. 164, 613-622 (1983). 1035. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York (1974). 1036. G. S. Olkha, "On multiple integrals for Meijer's G-function," Indian J. Pure Appl. Math., 3, No. 3, 366-369 (1972). 1037. Per O. M. Olsson, "The Laplace transform of a product of two Whittaker functions," Ark. Fys., 28, No. 2, 113-120 (1965). 1038. F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York (1974). 1039. A. Orihara, "On some integral formulae containing Bessel functions," Publ. Res. Inst. Math. Sci.,A1, No. I, 55-66 (1965). 1040. N. Ortner, "The value of a definite integral," Z. Angew. Math. Mech., 58, No. 3, 163-165 (1978). 104t. A. Otet, "Integral properties of generalized even and odd functions," Gaz. Mat. (Bucharest), gs, No. 7, 293-299 (1980). 1042. G. Palatal, "Su delle relazioni integrali relative ai polinomi di Laguerre e d'Hermite," Rend. Sem. Mat. Univ. Padova, 10, 46-54 (1939). 1043. G. Palatal, "Relazioni integrali tra le funzioni d'Hermite e di Laguerre di prima e seconda specie, e su dei polinomi ad esse associati," Riv. Mat. Univ. Parma, 4, No. 1-2, 105-122 (1953). 1044. R. Panda, "Some integrals associated with the generalized Lauricella functions," Bull. Inst. Math. (Beograd), 16, 115-122 (1973). 1045. R. Panda, "Certain integrals involving the H-function of several variables," Publ. Inst. Math. (Beograd), 22, 207-210 (1977). 1046. R. Panda, "On a multiple integral involving the H-function of several variables," Indian J. Math., 19, No. 3, 157-162 (1977). 1047. R. Panda, "Integration of certain products associated with the H-function of several variables," Comment. Math. Univ. St. Paul., 26, No. 2, 115-123 (1977(1978)). 1048. R. C. Pandey, "A note on certain hypergeometric integrals," Ganita, 12, No. 2, 97-104 (1961).
1323
1049. R. N. Pandey, "On integro-exponential transform of two variables," J. Sci. Res. Banaras Hindu Univ., 13, No. 2, 332-343 (1962-63). 1050. R. N. Pandey, "Some theorems on generalized Meljer and Whittaker transforms," J. Sci. Res. Banaras Hindu Univ., 18, No. 1-2, 207-2t2 (1967/1968). 1051. B. P. Parashar, "Some theorems on a generalized Laplace transform and results involving H-function of Fox," Riv. Mat. Univ. Parma, 8, 375-384 (1967). 1052. O. P. Parashar and A. N. Goyal, "Definite integrals involving Legendre function and the generalized function," Vijnana Parishad Anusandhan Patrika, 16, No. 1, 37-45 (1973). 1053. O. P. Parashar and A. N. Goyal, "On integrals involving products of classical polynomials and Fox H-function," Indian J. Pure Appl. Math., 5, No. 9, 802-810 (1974). 1054. C. L. Parihar, "On integrals involving hypergeometric functions," Proc. Indian Acad. Sci., A65, No. 5, 291-297 (1967). 1055. M. Parodi, "Relation int6grale entre les fonctions v(t) et #(t, x) de Serge Colombo," Rev. Sei., 85, 360 (1974). 1056. M. Parodi, "Sur certaines relations v~rifi6es par les polyn0mes de Legendre," C. R. Acad. Sci. Paris, S6r. A-B, 263, No. 9, A313-A316 (1966). 1057. M. Parodi, "Sur certaines int6grales qui interviennent dans l'6tude des polyn0mes de Tchebicheff et d'Hermite," C. R. Acad. Sci. Paris, S6r. A-B, 268, No. 20, AII85-AII88 (1969). 1058. M. Parodi, "A propos des polyn0mes de Legendre," C. R. Acad. Sci. Paris, S6r. A-B, 270, No. 16, AI023-AI025 (1970). 1059. B. R. Pasricha, "Some infinite integrals involving Whittaker functions," Proc. Benares Math. Sot., 4, 61-69 (1943). 1060. R. S. Pathak, "Some infinite integrals involving a generalization of Lommel and Maitland functions. II," J. Sei. Res. Banaras Hindu Univ., 15, No. 2, 163-166 (1964/65). 1061. R. S. Pathak, "Some integrals involving a generalization of Lommel and Maitland functions. I," Proc. Natl. Acad. Sci. India, A35, No. 2, 214-220 (1965). 1062. R. S. Pathak, "Two theorems on a generalization of Lommel and Maitland transforms," Proc. Natl. Acad. Sci. India, A36, No. 4, 809-816 (1966). 1063. R. S. Pathak, "Definite integrals involving generalized hyoergeometric functions," Proc. Natl. Acad. Sci. India, A36, No. 4, 849-852 (1966). 1064. R. S. Pathak, "Definite integrals involving G-functions," Ganita, 17, No. 2, 96-98 (1966). 1065. R. S. Pathak, "Some integrals involving a generalization of Lommel and Maitland functions. III," J. Sci. Res. Banaras Hindu Univ., 17, No. 1, 40-43 (1966/1967). 1066. R. S. Pathak, "Definite integrals involving some special functions," Bull. Calcutta Math. Soe., 59, No. 1, 159-164 (1967). 1067. R. S. Pathak, "Some results involving G- and H-functions," Bull. Calcutta Math. Soc., 62, No. 3, 97-106 (1970). 1068. M. A. Pathan, "A theorem on Laplace transform," Proc. Natl. Acad. Sci. India, A37, No. 2, 124-130 (1967). 1069. B. A. Peavy, "Indefinite integrals involving Bessel functions," J. Res. Natl. Bur. Standards, 71B, No. 2-3, 131-141 (1967). 1070. A. Pendse, "Integration of H-function with respect to parameters," Vijnana Parishad Anusandhan Patrika, 13, No. 1, 129-138 (1970). 1071. A. Pendse, "A note on generalized Kontorovich--Lebedev transform," Univ. Studies Math., 1, No. 1, 47-55 (1971). 1072. A. Pendse, "On integration of a function with respect to its parameters," Rev. Univ. Nac. Tucum~in, A21, No. 1-2, 105-117 (1971). 1073. D. D. Penrod and C. Farrell, "On the evaluation of certain integrals containing products of Bessel functions," Ind. Math., 21, 85-89 (1971). 1074. K. R. Penrose, "The evaluation of an improper integral," Proc. Mont. Acad. Sci., 29, 92-94 (1969). 1075. G. Petiau, La th6orie des Fonctions de Bessel, Expos6e en Vue de ses Applications ~ la Physique Math~matique, CNRS, Paris (1955). 1076. S. S. Phull, "A definite integral for Bessel's function," Am. Math. Monthly, 76, No. 5, 549-551 (1969). 1077. S. Pincherle, "Sopra certi integrali definiti," Atti Reale Acad. Lincei, Rend. CI. Sci. Fis. Mat. Natl., 4, 100-104 (1888). 1078. S. Pincherle, "Sull'inversione degl'integrali definiti," Mem. Mat. Fis. Soc. Ital. Sci. (3), 15, 3-43 (1907). 1079. E. Pinney, "Some discontinuous Bessel integrals," J. Math. and Phys., 36, No. 4, 362-370 (1958). 1080. J. C. Piquette and A. L. Van Buren, "Technique for evaluating indefinte integrals involving products of certain special functions," SIAM J. Math. Anal., 15, No. 4, 845-855 (1984). 1324
1081. L. Poli, "Quelques images symboliques," Ann. Soc. Sci. Bruxelles, S6r. I, 68, No. 1-2, 13-22 (1954). 1082. L. Poli and P. Delerue, "Le calcul symbolique ~ deux variables et ses applications," M~m. Sci. Math., Gauthier-Villars, Paris, No. 127 (1954). 1
1083. G. C. Pomraning, "A method for computing
I ctxPkJ (x) p#m (x) ," Nucl. Sci. Eng., 23, No. 4, 395-397 (1965).
1084. E. G. C. Poole, "The dual integral representations of Kummer's series 1Fl(a, c, x)," Proc. London Math. Soe. 38, 542--552 (1935). 1085. B. S. Popov, "On some integrals involving Legendre polynomials," Bull. Soe. Roy. Sci. Liege, 211, No. 7-8, 188-191 (1959). 1086. B. S. Popov, "On ultraspherical polynomials," Boll. Un. Mat. Ital., 14, No. 1, 105-108 (1959). 1087. B. S. Popov, "Sur les polynomes de Legendre," Mathesis, 68, No. 7-9, 239-242 (1959). 1088. B. S. Popov, "Sur les fonctions de Legendre associ6es," C. R. Acad. Sci. Paris, 248, No. 7,912-914 (1959). 1089. B. S. Popov, "A note concerning the integrals involving the derivatives of Legendre polynomials," Rend. Sere. Mat. Univ. Padova, 29, 316-317 (1959). 1090. T. R. Prabhakar and R. C. Tomar, "Some integrals and series relations for biorthogonal polynomials suggested by the Legendre polynomials," Indian J. Pure Appl. Math., 11, No. 7, 863-869 (1980). 1091. S. Prabhu, "Some integrals involving the Euler and Bernoulli's numbers," J. Indian Inst. Sci., 50, No. 3,238-243 (1968). 1092. K. M. Pradhan, "Integrals representing the products of Kamp6 de F6riet's function and A*-function," Vijnana Parishad Anusandhan Patrika, 21, No. 3, 205-211 (1978). 1093. K. M. Pradhan, "An integral involving the generalized associated Legendre function and the double H-function," Indian J. Math., 21, No. 2, 141-144 (1979). 1094. 13. L. S. Prakasa Rao, "On evaluating a certain integral," Am. Math. Monthly, 75, No. 1, 55 (1968). 1095. Y. N. Prasad, "On generalized Laplace transform," J. Sci. Res. Banaras Hindu Univ., 18, No. 1-2, 292-298 (1967/68). 1096. Y. N. Prasad and R. Sh. Dhir, "On some triple integrals involving Meijer's G-function," Indian J. Pure Appl. Math., 6, No. 10, 1173-1179 (1975). 1097. Y. N. Prasad and R. K. Gupta, "Integration of the H-function of two variables with respect to a parameter," Vij nana P~rishad Anusandhan Patrika, 19, No. 2, 179-190 (1976). 1098. Y. N. Prasad and S. D. Ram, "On some double integrals involving Fox's H-function," Progr. Math. (Allahabad), 7, No. 2, 13-20 (1973). 1099. Y. N. Prasad and S. D. Ram, "Integrals involving H-function of two variables," Indian J. Pure Appl. Math., 6, No. 16, 1188-1192 (1975). 1100. Y. N. Prasad and S. D. Ram, "On some triple integrals involving Meijer's G-function," Indian J. Pure Appl. Math., 6, No. I0, 1173-1179 (1975). 1101. Y. N. Prasad and S. D. Ram, "Integrals involving H-function of two variables," Indian J. Pure Appl. Math., 6, No. 10, 1182-1192 (1975). 1102. Y. N. Prasad and S. P. Sharma, "Some integrals and series relation for two variable H-polynomial," Proc. Natl. Acad. Sci. India, A52, No. 3, 273-280 (1982). 1103. Y. N. Prasad and A. Siddiqui, "Integral relations involving Fox's H-function," Jnanabha, A4, 77-86 (1974). 1104. Y. N. Prasad and A. Siddiqui, "Some theorems on a double integral transform," Jnanabha, A4, 119-127 (1974). 1105. Y. N. Prasad and A. Siddiqui, "On some integral relations involving Fox's H-function," Vijnana Parishad Anusandhan Patrika, 18, No. 2, 115-121 (1975). 1106. Y. N. Prasad and A. K. Singh, "Finite integration of certain products associated with the H-function of two variables," Indian J. Pure Appl. Math., 10, No. 12, 1497- 1503 (1979). 1107. Y. N. Prasad and S. N. Singh, "Integrals involving the H-function of two variables," Jnanabha, 6, 95-101 (1976). 1108. Y. N. Prasad and S. N. Singh, "An application of the H-function of several complex variables in the production of heat in a cylinder," Pure Appl. Math. Soc., 6, No. 1-2, 57-64 (1977). 1109. Y. N. Prasad and S. N. Singh, "Multiple integrals involving the generalized function of two variables," Ann. Fac. Sci. Univ. Natl. Zaire (Kinshasa). Sect. Math.-Phys., 3, No. 2, 252-265 (1977). 1110. M. Profant and Ch. P6ppe, Integration von Produkten halbzahliger Besselfunktionen mit Potenzen von x. Berichte der Kernforschungsanlage Ji~lich, No. 1097-MA, Zemtralinstitut for Angewandte Mathematik, Kernforschungsanlage J~lich, Jiilich (1974). 1111. W. Pye, "Further generalizations of Neumann's integral," J. Austral. Math. Soc., 14, No. 3, 368-374 (1972).
1325
1112. F. M. Ragab, "An integral involving the product of a Bessel function and an E-function," Proc. Glasgow Math. Assoc., I, No. 1, 8-9 (1952). 1113. F. M. Ragab, "Generalizations of some integrals involving Bessel functions and E-functions," Proc. Glasgow Math. Assoc., 1, No. 2, 72-75 (1952). 1114. F. M. Ragab, "An integral involving a modified Bessel function of the second kind and an E-function," Proc. Glasgow Math. Assoc., 1, 119-120 (1953). 1115. F. M. Ragab, "Integrals involving E-functions," Proc. Glasgow Math. Assoc., 1, No. 3, 129-136 (1953). 1116. F. M. Ragab, "Integrals of E-functions expressed in terms of E-functions," Proc. Glasgow Math. Assoc., 1, 192195 (1953). 1117. F. M. Ragab, "Integrals involving E-functions and modified Bessel functions of the second kind," Proc. Glasgow Math. Assoc., 2, 52-56 (1954). 1118. F. M. Ragab, "Further integrals involving E-functions," Proc. Glasgow Math. Assoc., 2, No. 2, 77-84 (1954). 1119. F. M. Ragab, "An integral involving a product of two modified Bessel functions of the second kind," Proc. Glasgow Math. Assoc., 2, No. 2, 85-88 (1954). 1120. F. M. Ragab, "Integrals involving E-functions and Bessel functions of the second kind," Proc. Glasgow Math. Assoc., 2, No. 1, 52-56 (1954). 1121. F. M. Ragab, "Integrals involving E-functions and Bessel functions," Nederl. Akad. Wetensch. Proc. Ser. A, 57, No. 4, 414-423 (1954). 1122. F. M. Ragab, "New integrals involving Bessel functions," Math. Z., 61, No. 4, 386-390 (1955). 1123. F. M. Ragab, "Some formulae for the associated Legendre functions of the first kind," Proc. Cambridge Philos. Sot., 51, No. 3, 538-540 (1955). 1124. F. M. Ragab, "Some formulae for the product of two Whittaker functions," Nederl. Akad. Wetensch. Proc. Ser. A, 58, No. 4, 430-434 (1955). 1125. F. M. Ragab, "Some formulae for the product of three modified Bessel functions of the second kind," Nederl. Akad. Wetensch. Proc. Ser. A, 58, No. 5,621-626 (1955). 1126. F. M. Ragab, "Integrals involving products of Bessel functions," Proc. Glasgow Math. Assoc., 2, No. 4, 180-182 (1956). 1127. F. M. Ragab, "New integrals involving Bessel functions," Acta Math., 95, No. 1-2, 1-8 (1956). 1128. F. M. Ragab, "Integrals involving products of E-functions, Bessel functions and generalized hypergeometric functions," Boll. Un. Mat. Ital., 12, No. 4, 535-551 (1957). 1129. F. M. Ragab, "Integration of E-functions with regard to their parameters," Proc. Glasgow Math. Assoc., 3, No. 2, 94-98 (1957). 1130. F. M. Ragab, "On the product of two confluent hypergeometric functions," Arch. Math., 8, No. 3, 180-183 (1957). 1131. F, M. Ragab, "On the product of two confluent hypergeometric functions," Monatsh. Math., 61, No. 4, 312- 317 (1957). 1132. F. M. Ragab, "Some formulae for the product of hypergeometric functions," Proc. Cambridge Philos. Soc., 53, No. 1, 106-110 (1957). 1133. F. M. Ragab, "Integration of H-functions and related functions with respect to their parameters," Nederl. Akad. Wetenseh. Proe. Ser. A, 61, No. 3, 335-340 (1958). 1134. F. M. Ragab, "Some formulae for the product of Bessel and Legendre functions," Math. Z., 68, No. 4, 338-339 (1958). 1135. F. M. Ragab, "The inverse Laplace transform of an exponential function," Comm. Pure Appl. Math., 11, No. 1, 115-127 (1958). 1136. F. M. Ragab, "On the product of Legendre and Bessel functions," Proc. Amer. Math. Soc., 9, No. 1, 26-31 (1958). 1137. F. M. Ragab, "A formula similar to Barnes' lemma," Ann. Polon. Math., 5, No. 2, 149-152 (1958). 1138. F. M. Ragab, "An integral involving the associated Legendre functions of the first kind," Michigan Math. J., 6, No. 1, 97-99 (1959). 1139. F. M. Ragab, "Integrals involving products of Bessel functions," Ann. Mat. Pura Appl., 56, 301-311 (1961). 1140. F. M. Ragab, "The inverse Laplace transform of the product of two Whittaker functions," Proc. Cambridge Philos. Sot., 511, No. 4, 580-582 (1962). 1141. F. M. Ragab, "Neue Integraldarstellungen aus der Theorie der MacRobertschen und Besselschen Funktionen," Math. Z., 79, No. 2, 147-157 (1962). 1142. F. M. Ragab, "Integrals involving products of Bessel functions," Math. Z., 80, No. 3, 177-183 (1962).
1326
1143. F. M. Ragab, "The inverse Laplace transform of the modified Bessel function l(,~(al/2mp~/:,~) ," J. London Math. Sot., 37, No. 4, 391-402 (1962). 1144. F. M. Ragab, "The Laplace transform of the modified Bessel function K,(t+mx) , where rn = 1, 2 ..... n," Proc. Edinburgh Math. Soc., 13, No. 4, 325-329 (1963). 1145. F. M. Ragab, "Integrals involving products of modified Bessel functions of the second kind," Proc. Glasgow Math. Assoc., 6, No. 2, 70-74 (1963). and I~(xt• where n = 1, 2, 3 ..... " 1146. F. M. Ragab, "The Laplace transform of the Bessel functions 1Q(xt• Ann. Mat. Pura Appl., 61, 317-335 (1963). 1147. F. M. Ragab, "The inverse Laplace transform of the product of two modified Bessel functions Kn~al/2:apl/Zn]Knu[al/2npl/2n] where n = 1, 2, 3 ..... " Ann. Polon. Math., 14, 77-83 (1963). 1148. F. M. Ragab, "The inverse Laplace transform of the product exp (--al/2p~/2/2)K~,.~ - (a~/'~pt/"), n=l, 2, 3~ ... ," Boll. Un. Mat:. Ital., 19, No. I, 26-30 (1964). 1149. F. M. Ragab, "Integrals involving Whittaker functions," Ann. Mat. Pura Appl., 65, 49-79 (1964). 1150. F. M. Ragab, "Multiple integrals involving product of modified Bessel functions of the second kind," Rend. Circ. Mat. Palermo, 14, No. 3, 367-381 (1965(1966)). 1151. F. M. Ragab, "E-transforms. I," J. Res. Natl. Bur. Standards, 71B, No. 1, 23-37 (1967). 1152. F. M. Ragab, "E-transforms. II," J. Res. Natl. Bur. Standards, 71B, No. 2-3, 77-89 (1967). 1153. F. M. Ragab, "Integration of Kamp6 de F6riet's hypergeometric functions with regard to their parameters," Rend. Circ. Mat. Palermo, 19, No. 3,225-242 (1970(1971)). 1154. F. M. Ragab and A. M. Hamza, "Integrals involving E-functions and Kamp6 de F~riet's function of higher order," Ann. Mat. Pura Appl., 87, 11-24 (1970). 1155. F. M. Ragab and M. A. Simary, "Integrals involving products of generalized Whittaker functions," Proc. Cambridge Philos. Soc., 61, No. 2, 429-432 (1965). 1156. F. M. Ragab and M. A. Simary, "Integrals involving E-functions," Proc. Glasgow Math. Assoc., 7, No. 4, 174-177 (1966). 1157. F. M. Ragab and M. A. Simary, "Integration of E-functions and related series," Monatsh. Math., 70, No. 1, 58-63 (1966). 1158. F. M. Ragab and M. A. Simary, "Definite integrals involving Whittaker functions," Proc. Cambridge Philos. Soc., 64, No. 4, 1033-1039 (1968). 1159. F. M. Ragab and M. A. Simary, "Definite integrals involving modified Bessel functions of the second kind," Ann. Univ. Bucuresti, Mat., 26, 91-101 (1977). 1160. R. K. Raina, "On Laplace transformations of H-function of two variables," Proc. Natl. Acad. Sci. India, A45, No. 2, 133-142 (1977). 1161. R. K. Raina and C. L. Koul, "On certain integral relations involving the H-function of two variables," Proc. Natl. Acad. Sci. India, A47, No. 3, 169-176 (1977). 1162. E. D. Rainville, Special Functions, Macmillan, New York (1960). 1163. S. L. Rakesh, "Infinite integrals involving generalized hypergeometric functions," Math. Ed., AS, 96-98 (1971). 1164. S. L. Rakesh, "Integrals involving generalized functions," Vijnana Parishad Anusandhan Patrika, 16, 27-30 (1973). 1165. S. L. Rakesh, "Integrals involving products of generalized hypergeometric function and generalized H-function of two variables. I," Rev. Univ. Nac. Tucumfin, A23, 281-288 (1973(1974)). 1166. S. L. Rakesh, "Integrals involving the H-function of two variables," Indian J. Math., 21, No. 1, 63-67 (1979). 1167. S. Ramanujan, "Some definite integrals, " Messenger Math., 44, 10-18 (1915). 1168. S. Ramanujan, "Some definite integrals," Proc. London Math. Soc. 17, 17-18 (1918). 1169. S. Ramanujan, "A class of definite integrals," Quart. J. Math., 48, 294-310 (1920). 1170, M. A. Rashid, "Lattice Green's functions for cubic lattices," J. Math. Phys., 21, No. 10, 2549-2552 (1980). 1171. A. K. Rathie, "An integral involving H-function. II," Vijnana Parishad Anusandhan Patrika, 22, No. 3, 235-238 (1979). 1172. C. B. Rathie, "Some infinite integrals involving E-functions," J. Indian Math. Sot., 17, No. 4, 167-175 (1953). 1173. C. B. Rathie, "A theorem in operational calculus," Ganita, 4, No. 2, 135-137 (1953). 1174. C. B. Rathie, "Some infinite integrals involving Bessel functions," Proc. Natl. Inst. Sci. India, 20, No. 1, 62-69 (1954). 1175. C. B. Rathie, "Some results involving hypergeometric and E-functions," Proc. Glasgow Math. Assoc., 2, No. 3, 132- 138 (1955). 1176. C. B. Rathie, "A few infinite integrals involving E-functions," Proc. Glasgow Math. Assoc., 2, No. 4, 170-172 (1956).
1327
1177. C. B. Rathie, "A theorem in operational calculus and some integrals involving Legendre, Bessel, and E-functions," Proc. Glasgow Math. Assoc., 2, No. 4, 173-179 (1956). 1178. C. B. Rathie, "Integrals involving E-functions,,' Proc. Glasgow Math. Assoc., 4, No. 4, 186-187 (1960). 1179. N. R. Rathie, "Integrals involving the H-function," Vijnana Parishad Anusandhan Patrika, 22, No. 3, 253-258 (1979). 1180. N. R. Rathie, "Integrals involving the H-function. II," Vijnana Parishad Anusandhan Patrika, 23, No. 4, 331337 (1980). 1181. P. N. Rathie, "The inverse Laplace transform of the product of Bessel and Whittaker functions," J. London Math. Soc., 40, No. 2, 367-369 (1965). ~i!82. P. N. Rathie, "Integrals involving Appell's function F4," Nederl. Akad. Wetensch. Proc. Ser. A, 68, No. 1, 113-118 (1965). 1183. P. N. Rathie, "Some results involving Appelrs function F4," Proc. Natl. Acad. Sci. India, A36, No. 2, 457-461 (1966). 1184. P. N. Rathie, "Some finite integrals involving F 4 and H-functions," Proc. Cambridge Philos. Soc., 63, No. 4, 1077-1081 (1967). 1185. P. N. Rathie, "A theorem on Hankel transform," Proc. Natl. Acad. Sci. India, A37, No. 1, 65-73 (1967). 1186. P. N. Rathie, "Infinite integrals involving products of Bessel and Meijer's G-functions," Proc. Natl. Acad. Sci. India, A38, 256-258 (1968). 1187. P. N. Rathie, "On some finite integrals involving generalised hypergeometric functions," Ricerca (Napoli), No. 1, 11-19 (1968), 1188. P. N. Rathie, "On definite integrals involving special functions," Ricerca (Napoli), 20, maggioo-agosto 13-18 (1969). 1189. P. N. Rathie and I. P. Gupta, "Infinite integrals involving generalized hypergeometric functions," Rev. Univ. Nac. Tucumfin, A18, No. 1-2, 57-67 (1968). 1190. P. N. Rathie and I. P. Gupta, "Some infinite integrals involving ~b2, F~ and H-functions," Vijnana Parishad Anusandhan Patrika, 11, 11-29 (1968). 1191. G. E. Raynor, "On Serret's integral formula," Bull. Am. Math. Soc., 45, No. 12, 911-917 (1939). 1192. I. S. Reed, "The Mellin type of double integral," Duke Math. J., 11, 565-572 (1944). 1193. B. Richmond and G. Szeker-es, "Some formulas related to dilogarithms, the zeta function and the Andrews-Gordon identities," J. Austral. Math. Soc., A31, No. 3, 362-373 (1981). 1194. G. E. Roberts and H. Kaufman, Table of Laplace Transforms, Saunders, Philadelphia (1966). 1195. P. J. Roberts, "An infinite integral involving the product of three spherical Bessel functions," J. London Math. Soc., 2, No. 4, 736-740 (1970). 1196. P. G. Rooney, "A property of the Laplace transformation," Proc. Amer. Math. Soc., 8, No. 5, 883-886 (1957). 1197. R. Rfsler, "Eine Integralbeziehung Legendrescher Funktionen," Z. Angew. Math. Mech., 4g, No. 6, 420-421 (1968). 1198. B. Ross, Fractional Calculus Tables. West Haven, Conn. (1984). 1199. B. K. Sachdeva and B. Ross, "Evaluation of certain real integrals by contour integrals," Am. Math. Monthly, g9, No. 4, 246-249 (1982). 1200. R. Roy, "On a paper of Ramanujan on definite integrals," Math. Student, 46, No. 2-4, 130-132 (1978(1982)). 1201. S. N. Roy, "On a certain class of multiple integrals," Bull. Calcutta Math. Soc., 37, No. 1, 69-76 (1945). 1202. E. Rufener, Die Methoden zur Ermittlung der bestimmten Integrale. Diss. Basel., Guhl und Scheibler, No. 19 (1953). 1203. S. Ruscheweyh, "Einige neue Darstellungen des Di- und Trilogarithmus," Math. Nachr., 57, No. 1-6,237-244 (1973). 1204. K. C. Rusia, "Some integral equations and integrals," Proc. Natl. Acad. Sci. India, A37, No. 1, 67-70 (1967). 1205. K. C. Rusia, "Application of an integral equation involving generalized Laguerre polynomial in the evaluation of certain integrals and in the problem of mortality of equipment," Proc. Natl. Acad. Sci. India, A40, No. 2, 177-180 (1970). 1206. K. C. Rusia and R. C. Varma, "Some integrals involving hypergeometric function. I," Math. Student, 43, No. 1-2, 25-28 (1975(1976)). 1207. I. Rusu, "The multidimensional discrete Hilbert transform," Rev. Transp. Telecomm., 4, No. 6, 382-386, 390 (1977). 1208. J. G. Rutgers, "Sur quelques int6grales d6finies se rattachant aux fonctions de Bessel.I, II, III," Nederl. Akad. Wetensch., Proc. 34, No. 1, 148-159; No. 2, 239-256; No. 3,427-437 (1931).
1328
1209. J. G. Rutgers, "Sur des s6ries et des int6grales d6finies contenantes les fonctions de Bessel. I-VI," Nederl. Akad. Wetensch., Proc. 44,464-474, 636-647, 744- 753, 840-851,978-988, 1092-1098 (1941). 1210. J. G. Rutgers, "On series and definite integrals involving Bessel functions.I, II," Nederl. Akad. Wetensch., Proc. 45, 376-379, 484-489 (1942). 1211. G. J. Sahai, "Integrals involving P-function of two variables and Gauss's hypergeometric function," Math. Balkanica, 3, 443-448 (1973). 1212. S. N. Samaddar, "Some integrals involving associated Legendre functions," Math. Comp., 28, No. 125, 257-263 (1974). 1213. M. S. Samar, "Integrals involving the H-function, the integration being with respect to a parameter," J. Indian Math. Soc. 37, No. 1-4, 323-328 (1973-1974). 1214. M. S. Samar, "Some definite integrals," Vijnana Parishad Anusandhan Patrika, 16, No. 1, 7-11 (1973). 1215. M. S. Samar, "Double integrals involving the product of Bessel, F and H-functions," Vijnana Parishad Anusandhan Patrika, 17, 89-95 (1974). 1216. M. S. Santana de Galindo and S. L. Kalla, "An integral involving generalized function of two variables," Ann. Univ. Timisoara Ser. Sti. Mat., 13, No. 2, 141-147 (1975/1977). 1217. S. Saran, "Hypergeometric functions of three variables," Ganita, 5, No. 2, 77-91 (1954/1955). 1218. S. Saran, "A definite integral involving the G-function," Nieuw. Arch. Wisk. (3), 13, No. 3, 226-229 (1965). 1219. G. K. Sarkar, "On certain theorems on operational calculus and some properties of the generalized k-function of Bateman," Bull. Calcutta Math. Soc., 47, No. 2, 81-86 (1955). 1220. K. M. Saksena, "Some theorems concerning a generalized Laplace transform," Collect. Math., 10, No. 1, 3-19 (1958). 1221. R. K. Saxena, "Some theorems on generalized Laplace transform. I," Proc. Natl. Inst. Sci. India, A26, No. 4, 400-413 (1960). 1222. R. K. Saxena, "An integral involving G-function," Proc. Natl. Inst. Sci. India, A26, No. 6, 661-664 (1960). 1223. R. K. Saxena, "Some integrals involving E-functions," Proc. Glasgow Math. Assoc., 4, No. 4, 178-185 (1960). 1224. R. K. Saxena, "A definite integral involving associated Legendre function of the first kind," Proc. Cambridge Philos. Soc., 57, No. 5,281-283 (1961). 1225. R. K. Saxena, "Some theorems in operational calculus and infinite integrals involving Bessel function and Gfunctions," Proc. Natl. Inst. Sci. India, A27, No. 1, 38-61 (1961). 1226. R. K. S~txena, "Definite integrals involving G-functions," Proc. Cambridge Philos. Soc., 58, No. 3,489-491 (1962). 1227. R. K. Sa• "Some infinite integrals involving E-functions," Proc. Glasgow Math. Assoc., 5, No. 4, 183-187 (1962). 1228. R. K. Saxena, "Integrals involving Legendre functions," Math. Ann., 147, No. 2, 154-157 (1962). 1229. R. K. Saxena, "Some formulae for the G-function," Proc. Cambridge Philos. Soe., 59, No. 2, 347-350 (1963). 1230. R. K. Saxena, "Some formulae for the G-function. II," Collect. Math., 15, No. 3,273-283 (1963). 1231. R. K. Saxena, "Integrals involving Legendre functions. II," Math. Ann., 154, No. 2, 181-184 (1964). 1232. R. K. Saxena, "Relation between Whittaker transform and modified ~,k.,~ -transform," Math. Ann., 154, No. 4, 301-306 (1964). 1233. R. K. Sa• "Some theorems on Laplace transform," Proc. Natl. Inst. Sci. India, A30, No. 2, 230-234 (1964). 1234. R. K. Saxena, "Integrals involving MacRobert's E-functions and hypergeometric functions," Indian J. Math., 6, No. 2, 117-120 (1964). 1235. R. K. Sa• "Integrals involving Bessel functions and Whittaker functions," Proc. Cambridge Philos. Sot., 60, No. 1, ][74-176 (1964). 1236. R. K. Saxena, "Integrals involving G-functions," Ann. Soc. Sci. Bruxelles, S~r. I, 78, No. 3, 157-162 (1964). 1237. R. K. Saxena, "Integrals involving products of Bessel functions," Proc. Glasgow Math. Assoc., 6, No. 3, 130-132 (1964). 1238. R. K. Saxena, "Certain properties of Varma transform involving Whittaker functions," Collect. Math., 16, No. 2-3, 193-200 (1964). 1239. R. K. Saxena, "On some results involving Jacobi polynomials," J. Indian Math. Soc. 28, No. 3-4, 197-202 (1964(65)). 1240. R. K. Saxena, "Some theorems on generalized Laplace transform. III," Riv. Mat. Univ. Parma, 6, 135-146 (1965). 1241. R. K. Sa• "An integral involving products of G-functions," Proc. Natl. Acad. Sci. India, A36, No. 1, 47-48 (1966). 1242. R. K. Saxena, "Integrals involving products of Bessel functions. II," Monatsh. Math., 70, No. 2, 161-163 (1966). 1243. R. K. Saxena, "A study of the generalized Stieltjes transform," Proc. Natl. Inst. Sci. India, A25, No. 6, 340-355 (1959).
1329
1244. R. K. Saxena, "Integrals involving Kampe de F6riet function and Gauss's hypergeometric function," Ricerca (Napoli), 2, maggio-agosto, 21-27 (1970). 1245. P. K. Banerji and R. K. Saxena, "Integrals involving Fox's H-function," Bull. Math. S,c. Sci. Math. R. S. Roumanie, 15, 263-269 (1971). 1246. R . K . Saxena, "Integrals of products of H-functions," Univ. Nac. Tucum~n Rev., A21, No. 1-2, 185-191 (1971). 1247. R . K . Saxena, "Definite integrals involving Fox's H-function," Acta Mexicana Ci. Tecn., 5, No. 1, 6-11 (1971). 1248.R.K. Saxena, "An integral associated with generalized H-function and Whittaker functions," Acta Mexicana Ci. Tecn., 5, No. 3, 149-154 (1971). 1249. R. K. Saxena, "Integration of certain products associated with Bessel and confluent hypergeometric functions," Bull. Math. S,c. Sci. Math. R. S. Roumanie, 16, No. 1, 93-96 (1972(73)). 1250. R. K. Saxena and G. C. Modi, "Some expansions involving H-function of two variables," C. R. Bulgare Sci., 27, No. 2, 165-168 (1974). 1251. R. K. Saxena and L. C. Gupta, "Integral representations for certain hypergeometric functions of three variables due to Lauricella and Srivastava," Indian J. Pure Appl. Math., 15, No. 5, 491-496 (1984). 1252. R. K. Saxena and B. L. Sharma, "Integrals involving Appell's functions," Proc. Natl. Acad, Sci. India, A36, No. 1, 73-80 (1966). 1253. V. P. Saxena, "On some rules of operational calculus," Ganita, 18, No. 2, 17-24 (1967). 1254. F. W. Sch~ifke, "Integrale uber Produkte von Sph~iroidfunktionen," Math. Z., 67, No. 3, 238-251 (1957). 1255. F.W. Sch~ifke, "l~lber einige Integrale mit Produkten von Mathieu-Funktionen," Arch. Math. (Basel), 41, No. 2, 152-162 (1983). 1256. D. Schechter, "A method of evaluating integrals of 2me-c'rjn(Qr)," J. Phys. A, 9, No. 3, 335-336 (1976). 1257. D. H. Schiller, "A remark on certain Fermi integrals," An. Univ. Timisoara, Ser. Stiint. Mat., 3,275-280 (1965). 1258. M. Schleiff, "Die endliche Hilberttransformation einiger spezieller Funktionen," Z. Angew. Math. Mech., 50, No. 9, 575-576 (1970). 1259. K. Sehmidt, "Zur Berechnung des vollstandigen elliptischen Integrals dritter Gattung dutch Rekursion," Z. Angew. Math. Mech., 51, No. 1, 57-60 (1971). 1260. A. Schubert, "Beitr~ige zur Integration von Funktionen, in denen Produkte von Zylinderfunktionen auftreten," Wiss. Z. Tech. Hochsch. Dresden, 2, No. 3, 437-440 (1953). 1261. E. O. Schulz-DuBois, "Integral relations among Bessel functions," Math. Comp., 23, No. 108, 845-847 (1969). 1262. Ch. Schwartz, "A class of discontinuous integrals involving Bessel functions," J. Math. Phys., 23, No. 12, 2266-2267 (1982). 1263. A. Selberg, "Remarks on a multiple integral," Norsk. Mat. Tidsskr., 26, No. 2-3, 71-78 (1944). 1264. H. M. Sengupta, "On a certain definite integral," Math. Student, 20, 122-123 (1952/53). 1265. K.C. Sevaria, "An integral involving product of Legendre function and Meijer's G-function," Vijnana Parishad Anusandhan Patrika, 10,227-229 (1967). 1266. N. G. Shabde, "On some integrals involving associated Legendre functions," Bull. Calcutta Math. S.c., 31, No. 3, 87-90 (1939). 1267. N. G. Shabde, "On some results involving Legendre and Bessel functions," Proc. Benares Math. S.c., 1, 55-59 (1939). 1268. N. G. Shabde, "On some series and integrals involving k,~-functions," J. Indian Math. S,c. 3, 307-311 (1939). 1269. N. G. Shabde, "On some results involving Legendre functions," Bull. Calcutta Math. S.c., 32, 121-124 (1940). 1270. N.G. Shabde, "On some results involving confluent hypergeometric functions," J. Indian Math. S.c. 4, 151-157 (1940). 1271. N. G. Shabde, "On some integrals involving Legendre functions," Proc. Benares Math. S,c., 4, 3-8 (1943). 1272. N.G. Shabde, "On a definite integral involving Legendre functions," Proc. Benares Math. S.c., 5, No. 1, 31-32 (1943). 1273. N.G. Shabde, "On some results involving Legendre functions," Proc. Benares Math. S,c., 7, No. 1, 1-2 (1945). 1274. N. G. Shabde, "Two integrals involving Legendre functions," Proc. Benares Math. S,c., 7, No. 2, 51-53 (1945). 1275. M. Shah, "Certain integrals involving the product of two generalised hypergeometric polynomials," Proc. Natl. Acad. Sci. India, A37, No. 1, 79-96 (1967). 1276. M. Shah, "On applications of Mellin's inversion formula to hypergeometric polynomials," Labdev J. Sci. Tech., A6, No. 1, 19-22 (1968). 1277. M. Shah, "Some integrals involving generalized hypergeometric polynomials. I," Labdev J. Sci. Tech., A6, No. 2, 70-74 (1968). 1278. M. Shah, "Integrals involving the product of the generalized hypergeometric polynomials and their derivatives with other orthogonal polynomials," Labdev J. Sci. Tech., A6, No. 4, 183-190 (1968). 1330
1279. M. Shah, "Some infinite integrals involving Whittaker functions and generalized hypergeometric polynomials, with their applications," Proc. Cambridge Philos. Sot., 65, No. 2, 483-488 (1969). 1280. M. Shah, "Some integrals involving H-functions. I," Math. Ed., A3, 82-88 (1969). 1281. M. Shah, "Some results on the H-function involving the generalized Laguerre polynomial," Proc. Cambridge Philos. Soc., 65, No. 3, 713-720 (1969). 1282. M. Shah,, "Certain relations involving generalized hypergeometric and Tchebichef polynomials of the first kind," Comment. Math. Univ. St. Paul., 17, No. 2, 73-81 (1969). 1283. M. Shah, "Some Fourier series for generalized hypergeometric polynomials," Portugal. Math., 28, No. 1-2, 7-19 (1969). 1284. M. Shah, "Some results involving generalized hypergeometric polynomials and generalized Meijer function of two variables," Comment. Math. Univ. St. Paul., 18, No. 2, 95-110 (1970). 1285. M. Shah, "Fourier series for generalized Meijer functions," An. Stiint. Univ. Iasi, Sec. la, 16, No. 2, 293-313 (1970). 1286. M. Shah, "Some results of generalized Meijer functions associated with Tchebichef polynomials of the second kind," An. Univ. Timisoara Ser. Sti. Mat., 8, No. I, 101-113 (1970). 1287. M. Shah, "On some results involving generalized hypergeometric polynomials and associated Legendre functions," J. Indian Math. Sot., 34, No. 1-2, 89-97 (1970(71)). 1288. M. Shah, "Certain relations involving generalized hypergeometric polynomials," J. Sci. Phys. Sec., 1, No. 1, 7180 (1971). 1289. M. Shah, "Some results involving generalized Meijer functions associated with Gegenbauer (ultraspherical) polynomials," Indian J. Pure Appl. Math., 2, No. 3, 387- 400 (1971). 1290. M. Shah, "On Fourier series for generalized Meijer functions of two variables and their applications," Indian J. Pure Appl. Math., 2, No. 3, 464-478 (1971). 1291. M. Shah, "A result on generalized hypergeometric function and generalized Meijer function of two variables," An. Stiint. Univ. Iasi, Sec. la, 17, No. 2, 331-338 (1971). 1292. M. Shah, "Gegenbauer (ultraspherical) polynomial and heat production in a cylinder," Studia Univ. Babes-Bolyai Ser. Math.-Mech., 16, No. 2, 83-90 (1971). 1293. M. Shah, "On generalized Meijer function of two variables and some applications," Comment. Math. Univ. St. Paul., 19, No. 2, 93-122 (1971). 1294. M. Shah, "Some results involving a generalized Meijer function," Mat. Vesnik, 8, No. 1, 3-16 (1971). 1295. M. Shah, "Certain results involving Kamp6 de F6riet's functions," An. Sti. Univ. "A1. I. Cuza" Iasi, Sect. I a Mat., 18, No. I, 93-99 (1972), 1296. M. Shah, "Results on generalized hypergeometric and Jacobi polynomials," An. Sti. Univ. "A1. I. Cuza" Iasi, Sect. I a Mat., lg, No. I, 101-108 (1972). 1297. M. Shah, "On generalized Meijer's and associated generalized Legendre's functions," Portugal. Math., 31, No. 1-2, 57-76 (1972). 1298. M. Shah, "On some problems leading to certain results involving generalized Meijer functions of two variables and associated Legendre functions," Math. Student, 40A, 124-133 (1972). 1299. M. Shah, "On generalized Meijer's G-functions of two variables and generalized Legendre's associated functions," Math. Student, 40A, 157-168 (1972). 1300. M. Shah, "Several properties of generalized Fox's H-functions and their applications," Portugal. Math., 32, No. 3-4, 179-199 (1973). 1301. M. Shah, "On some applications related to Fox's H-functions of two variables," Publ. Inst. Math. (Beograd), 16, 123-133 (1973). 1302. M. Shah, "On generalizations of some results and their applications," Collect. Math., 24, No. 3,249-266 (1973). 1303. M. Shah, "Some results associated with extended Fox's H-functions and their applications," Vijnana Parishad Anusandhan Patrika, 16, No. 1, 47-66 (1973). 1304. M. Shah, "A new formula on generalized functions," Indian. J. Pure Appl. Math., 4, No. 11 - 12,889-897 (1973). 1305. M. Shah, "A note on Mellin inversion formula," Indian J. Pure Appl. Math., 5, No. 5, 464-469 (1974). 1306. M. Shah,, "An extension of Rice's result on an integral equation," Publ. Inst. Math. (Beograd), 18, 173- 179 (1975). 1307. M. Shah, "On applications of H-functions," C. R. Acad. Bulgare Sci., 28, No. 11, 1459-1462 (1975). 1308. M. Shah, "A property of generalized integral transform of two variables," Math. Balkanica, 6, 186-193 (1976). 1309. H. Shanker, "On certain integrals and expansions involving Weber's parabolic cylinder functions," J. Indian Math. Soc. 4, 158-166 (1940).
1331
1310. H. Shanker, "On some integrals and expansions involving Whittaker's confluent hypergeometric functions," Proc. Benares Math. Soc., 4, 51-57 (1943). 1311. H. Shanker, "Some definite integrals involving confluent hypergeometric functions," J. London Math. Sot., 23, 44-49 (1948). 1312. O. Shanker, "An integral involving the G-function and Kamp6 de F6riet function," Proc. Cambridge Philos. Soc., 64, No. 4, 1041-1044 (1968). 1313. B. L. Sharma, "Integrals involving G-function," Collect. Math., 16, No. 1, 3-13 (1964). 1314. B. L. Sharma, "Integrals involving Legendre function," Collect. Math., 17, No. 1, 85-93 (1965). 1315. B. L. Sharma, "On the generalized function of two variables. I," Ann. Soc. Sci. Bruxelles, Ser. I, 79, No. 1, 26-40 (1965). 1316. B. L. Sharma, "An integral involving G-function," Ann. Soc. Sci. Bruxelles, Ser. I, 79, No. 2, 113-116 (1965). 1317. B. L. Sharma, "Integrals involving hypergeomtric functions of two variables," Proc. Natl. Acad. Sci. India Sect. A36 (1966), 713-718. 1318. B. L. Sharma, "Integrals involving generalised function of two variables. II," Proc. Natl. Acad. Sci. India, A37, No. 2, 137-148 (1967). 1319. B. L. Sharma, "A formula for g-function," Ricerca (Napoli), No. 1, 3-7 (1967). 1320. B. L. Sharma, "Integrals involving Bessel functions," J. Math. Tokushima Univ., 1, 37-41 (1967). 1321. B. L. Sharma, "Infinite integrals involving Legendre and G-functions," Arch. Math. (Basel), 18, No. 3,293-298 (1967). 1322. B. L. Sharma, "Integrals associated with generalized function of two variables," Mathematica, 9, No. 2, 361-374 (1967). 1323. B. L. Sharma, "Some theorems in operational calculus," Mathematica, 9, No. 2, 375-381 (1967). t324. B. L. Sharma, "A theorem in operational calculus and infinite integrals," Riv. Mat. Univ. Parma, 8, 251-257 (1967). 1325. B. L. Sharma, "Some formulae for generalized function of two variables," Mat. Vesnik, 5, No. 1, 43-52 (1968). 1326. B. L. Sharma, "An integral involving products of G- function and generalized function of two variables," Rev. Univ. Nac. Tucum~in, AI$, No. 1-2, 17-23 (1968). 1327. B. L. Sharma, "Double integrals involving Bessel functions," An. Sti. Univ. "A1. I, Cuza" Iasi, Sect. I Mat., 14, No. 2, 363-367 (1968). 1328. B. L. Sharma, "Some formulae for G-function," Rev. Un. Mat. Argentina, 24, No. 4, 159-167 (1968/69). 1329. B. L. Sharma, "An integral involving generalised function of two variables," Ricerca (Napoli), 20, 13-22 (1969). 1330. B. L. Sharma, "Double integrals involving Legendre functions," Ann. Polon. Math., 22, No. 1, 97-100 (1969/70). 1331. B. L. Sharma, "Double integrals involving Bessel and hypergeometric functions," Mat. Vesnik, 7, No. 2, 151-154 (1970). 1332. B. L. Sharma, "An integral involving products of G-function and generalized function of two variables," Rev. Mat. Hisp.-Am., 32, No. 4-5, 188-196 (1972). 1333. B. L. Sharma, "On operational calculus," Bull. Math. Soc. Sci. Math. R.S. Roumanie, 21, No. 1-2, 145-156 (1977). 1334. B. L. Sharma, "Two theorems in operational calculus," Bull. Math. Soc. Sci. Math. R.S. Roumanie, 21, No. 1-2, 157-163 (1977). 1335. B. L. Sharma and R. K. Jindia, "Some definite integrals involving Legendre and generalized function of two variables," Rev. Univ. Nac. Tucumfin, A17, No. 1-2, 67-78 (1967). 1336. B. L. Sharma and R. K. Saxena, "Integral representations for the hypergeometric functions of three variables," Ann. Soc. Sci. Bruxelles, Ser. I, 78, No. 3, 163-170 (1964). 1337. C. K. Sharma and P. M. Gupta, "On certain integrals involving Fox's H-function," Indian J. Pure Appl. Math., 3, No. 6, 992-995 (1972). 1338. C. K. Sharma and P. M. Gupta, "On certain transformation formulae and Fox's H-function of two variables. II," Math. Student, A40, 239-252 (1972). 1339. C. K. Sharma and P. M. Gupta, "On certain transformation formulae and Fox's H-function of two variables. I," Indian J. Pure Appl. Math., 4, No. 11-12, 844-855 (1973). 1340. H. N. Sharma, "Evaluation of definite integrals by the method of convolution transformation," Indian J. Math., 15, No. 1, 13-16 (1973). 1341. K. C. Sharma, "Infinite integrals involving products of Legendre functions," Proc. Glasgow Math. Assoc., 3, No. 3, 111-118 (1957). 1342. K. C. Sharma, "A theorem on Meijer transform and infinite integrals involving G-function and Bessel functions," Proc. Natl. Inst. Sci. India, A24, No. 2, 113-120 (1958). 1343. K. C. Sharma, "Infinite integrals involving E-functions," Proc. Natl. Inst. Sci. India, A25, No. 3, 161-165 (1959). 1332
1344. K. C. Sharma, "Infinite integrals involving E-function and Bessel functions," Proc. Natl. Inst. Sci. India, A25, No. 6, 337-339 (1959). 1345. K. C. Sharma, "An integral involving G-function," Proc. Natl. Inst. Sci. India, A30, No. 5, 597-601 (1964). 1346. K. C. Sharma, "Integrals involving products of G- functions and Gauss's hypergeometric function," Proc. Cambridge Philos. Soc., 60, No. 3, 539-542 (1964). 1347. O. P. Sharma, "Some finite and infinite integrals involving H-function and Gauss's hypergeometric functions," Collect. Math., 17, No. 3, 197-209 (1965). 1348. O. P. Sharma, "Certain infinite and finite integrals involving H-function and confluent hypergeometric functions," Proc. Natl. Acad. Sci. India, A36, No. 4, 1023-1032 (1966). 1349. O. P. Sharma, "Relation between Whittaker and generalized Hankel transforms," Proc. Natl. Acad. Sci. India, A37, No. 1, 97-108 (1967). 1350. O. P. Sharma, "On generalized Hankel and K-transforms," Math. Student, 37, No. 1-4, 109-116 (1969). 1351. O. P. Sharma, "Certain infinite integrals involving H-function and MacRobert's E-function," Labdev J. Sci. Tech., A10, No. 1, 9-13 (1972). 1352. S. D. Sharma and R. K. Gupta, "On multiple integrals involving generalised H-function and spherical functions," Ganita, 30, No. 1-2, 47-58 (1979). 1353. N. A. Shastri, "An infinite integral involving Bessel functions, parabolic cylinder functions, and the confluent hypergeometric functions," Math. Z., 44, 789-793 (1939). 1354. N. A. Shastri, "Some results involving Bateman's polynomials," Bull. Calcutta Math. Sot., 32, 89-94 (1940). 1355. N. A. Shastri, "Some theorems in operational calculus," Proc. Indian Acad. Sci., A20,211-223 (1944). 1356. N. A. Shastri, "Some theorems in operational calculus," Proc. Benares Math. Soc., 7, No. 1, 3-9 (1945). t357. B. M. Shrivastava, "Integration of certain products involving Kamp6 de F6riet's function and the generalized H-function," Jnanabha, A3, 85-93 (1973). 1358. J. Siekmann, "Note on a Riegels-type integral," Z. Angew. Math. Phys., 15, No. 1, 79-83 (1964). 1359. A. Siddiqui, "Integral involving the H-function of several variables and an integral function of two complex variables;," Bull. Inst. Math. Acad. Sinica, 7, No. 3, 329-332 (1979). t360. M. A. Simary, "Integral representations of the modified Bessel function of the second kind," J. Nat. Sci. Math., 8, 133-139 (1968). 1361. M. A. Simary, "On hypergeometric functions of matrix argument," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 16, No. 1, 113-118 (1972(1973)). 1362. M. A. Simary, "Definite integrals involving generalized E-functions," Math. Student, A40, 119-123 (1972). 1363. M. A. Simary, "Integrals involving generalized hypergeometric functions," Rev. Roumaine Math. Pures Appl., 17, No. 2, 281-286 (1972). 1364. M. A. Simary, "Definite integrals involving Whittaker functions," C. R. Acad. Bulgare Sci., 29, No. 7, 931-934 (1976). I365. A. K. Singh and A. Siddiqui, "Integral involving the H-function of several variables and an integral function of two complex variables," Bull. Inst. Math. Acad. Sinica, 11, No. 1, 31-35 (1983). 1366. B. Singh, "On certain expansions and integrals involving wmu(x)," Proc. Rajasthan Acad. Sci., 9, No. 2, 9-22 (1962). 1367. B. Singh., "On certain integrals involving %,,,(x)," Mitt. Verein. Schweiz. Versicherungsmath., 65, No. 1, 55-62 (1965). 1368. R. C. Singh Chandel, "Fractional integration and integral representations of certain generalized hypergeometric functions of several variables," Jnanabha, A1, No. 1, 45-56 (1971). 1369. F. Singh, "An integral involving product of G-functi0n, generalized hypergeometric function and Jacobi polynomial," J. Sci. Eng. Res., 12, No. l, 155-160 (1968). 1370. F. Singh, "Application of the E-operator to evaluate an infinite integral," Proc. Cambridge Philos. Soc., 65, No. 3, 725-730 (1969). 1371. F. Singh, "Integration of certain products involving H-function and double hypergeometric function. II," Math. Student, A40, 47-55 (1972). 1372. F. Singh, "Application of E-operator in evaluating certain finite integrals," Def. Sci. J., 22, 105-112 (1972). 1373. F. Singh, "On some results associated with a generalized Meijer function," Math. Student, A40,291-296 (1972). 1374. F. Singh and B. M. Shrivastava, "On some integral relations of Fox's function with applications," Ranchi Univ. Math. J., 6, 48-53 (1975). 1375. F. Singh and N. P. Singh, "Evaluation of an integral involving generalised Fox's H-function and generalized Legendre associated function," Vijnana Parishad Anusandhan Patrika, 17, 71-80 (1974).
1333
1376. F. Singh and R. C. Varma," Application of E-operator to evaluate a definite integral and its application in heat conduction," J. Indian Math. Soc., 36, No. 3-4, 325-332 (1972). 1377. N. Singh, "A finite integral involving a Jacobi polynomial and a generalized H-function of two variables," Indian J. Pure Appl. Math., 11, No. 11, 1497-1503 (1980). 1378. N. Singh, "A definite integral involving generalized Fox's H-function with applications," Kyungpook Math. J., 13, 253-264 (1973). 1379. N. P. Singh, "A definite integral involving generalized Fox's H-function with applications," Kyungpook Math. J., 13, 253-264 (1973). 1380. N. M. Prasad, "A double integral involving the H-functions of one and two variables," Pure Appl. Math. Sci., 11, No. 1-2, 13-16 (1980). 1381. N. Singh, "A finite integral involving Jacobi polynomial and a generalized H-function of two variables," Indian J. Pure Appl. Math., 11, No. 11, 1497-1503 (1980). 1382. R. Singh, "On some results involving H-function of Fox," Proc. Natl. Acad. Sci. India, A38, No. 3-4, 240-250 (1968). 1383. R. P. Singh, "A note on double transformations of certain hypergeometric functions," Proc. Edinburgh Math. Soc., 14, No. 3, 221-227 (1965). 1384. R. P. Singh, "Associated Legendre functions," Proc. Natl. Acad. Sci. India, A35, No. 2, 207-213 (1965). 1385. S. P. Singh, "Certain integrals involving the Besselian functions," J. Sci. Res. Banaras Hindu Univ., 12, No. 1, 138-141 (1961-62). 1386. S. P. Singh, "Relations between Hankel transform and the generalized Laplace transforms (Whittaker and Meijer transforms)," Proc. Natl. Acad. Sci. India, A32, No. 4, 355-359 (1962). 1387. S. P. Singh, "On certain properties of generalized Hankel transforms," J. Indian Math. Soc. 26, No. 1-2, 35- 52 (1962). 1388. S. P. Singh, "Some properties of a generalized Laplace transform," J. Sci. Res. Banaras Hindu Univ., 13, No. 2, 344-360 (1962/1963). 1389. S. P. Singh, "Infinite integrals involving G-functions," Riv. Mat. Univ. Parma, 7,225-235 (1966). 1390. S. P. Singh, "A theorem on generalized Meijer - Laplace transform," J. Sci. Res. Banaras Hindu Univ., 17, No. 1, 154-162 (1966/1967). 1391. S. P. Singh, "A note on k-transforms," Riv. Mat. Univ. Parma, 9, 195-201 (1968). 1392. V. N. Singh, "On some double integrals involving Meijer's G-function," Indian J. Pure Appl. Math., g, No. 2, 189-195 (1977). 1393. Y. P. Singh, "On generalized Hankel transform ~u ...... u~(x) ," J" Sci. Res. Banaras Hindu Univ., 16, No. l, 91-100 (1965/1966). 1394. B. M. Singhal, "On product of generalized hypergeometric functions," Indian J. Pure Appl. Math., 5, No. 12, 1141-1146 (1974). 1395. B. M. Singhal, "A technique to evaluate the integrals involving product of orthogonal polynomials," Indian J. Pure Appl. Math., 7, No. 10, 1161-1165 (1976). 1396. J. P. Singhal, "Integration of certain products involving a generalized Meijer function," Proc. Natl. Acad. Sci. India, A36, No. 4, 976-986 (1966). 1397. J. P. Singhal, "An integral involving Kamp6 de F6riet's function," Vijnana Parishad Anusandhan Patrika, 10, 37-42 (1967). 1398. J. P. Singhal and S. S. Bhati," Integrals involving generalized H-function of two variables," Vijnana Parishad Anusandhan Patrika, 20, No. 1, 73-80 (1977). J. P. Singhal and N. K. Soni, "Some integrals involving Appell's hypergeometric functions," Math. Student, 40, 1399. 385-388 (1972(74)). 1400. J. P. Singhal and N. K. Soni, "An integral involving Legendre polynomial and generalized function of two variables," Rev. Univ. Nac. Tucum~in, A25, No. 1, 73-77 (1975). 1401. S. Sinha, "A few infinite integrals," J. Indian Math. Soc. 6, 103-104 (1942). 1402. S. Sinha, "Some infinite integrals," Bull. Calcutta Math. Soc., 34, 67-77 (1942). 1403. S. Sinha, "Some infinite integrals involving Bessel functions of imaginary argument," Bull. Calcutta Math. Soc., 35, 37-42 (1943). 1404. S. Sinha, "Infinite integrals involving Bessel functions of imaginary argument," J. Indian Math. Soc. 8, 21-26 (1944). 1405. S. Sinha, "A few integrals involving Bessel and hypergeometric functions," Proc. Benares Math. Soc., 6, No. 1, 3-9 (1944).
1334
1406. R. Sips, "Recherches sur les fonctions de Mathieu. I-VI," Bull. Soc. Roy. Sci. Liege, 22, No. 6-7,341-355; No. 8-10, 374-387; No.ll, 444-455; No. 12, 530-540 (1953); 23, No. 1, 41-50; No. 2, 90-103 (1954). 1407. R. Sips, "Quelques int6grales d6finies discontinues contenant des fonctions de Mathieu," Acad. Roy. Belg. Bull. CI. Sci., 56, 475-491 (1970). 1408. B. D. Sivazlian, "The generalized Dirichlet's multiple integral," SIAM Rev., 11, No. 2, 285-288 (1969). 1409. B. D. Sivazlian, "A class of multiple integrals," SIAM J. Math. Anal., 2, No. 1, 72-75 (1971). 1410. B. D. Sivazlian, "The incomplete Liouville multiple integral and its application," Am. J. Math. Management Sci., 3, No. 4, 297-311 (1983). 1411. L. J. Slater, "Two double hypergeometric integrals," Quart. J. Math. Oxford, 4, No. 14, 127-131 (1953). 1412. L. J. Slater, "Integrals representing general hypergeometric transformations," Quart. J. Math. Oxford, 3, No. 11, 206-216 (1952). 1413. L. J. Slater, "An integral of hypergeometric type," Proc. Cambridge Philos. Soc., 48, No. 4, 578-582 (1952). t414. L. J. Slater, "The integration of hypergeometric functions," Proc. Cambridge Philos. Soc., 51, No. 2, 288-296 (1955). 1415. L. J. Slater, "Hypergeometric Mellin transforms," Proc. Cambridge Philos. Soc., 51, No. 4, 577-589 (1955). 1416. L. J. Slater, "Integrals for asymptotic expansions of hypergeometric functions," Proc. Am. Math. Sot., 6, No. 2, 226-231 (1955). 1417. L. J. Slater, Confluent Hypergeometric Functions, Cambridge Univ. Press, London (1960). 1418. L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, London (1966). 1419. P. W. Schmidt, "Evaluation of the integral
(1 + t~)a+f~-I
dt ," Math. Comp., 32, No. 141,265-269 (1978).
0
1420. I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam (1966). 1421. I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York (1972). 1422. I. N. Sneddon, "The evaluation of an integral involving the product of two Gegenbauer polynomials," SIAM Rev., 9, No. 3, 569-572 (1967). 1423o H. S. V. de Snoo. "An extension of Neumann's integralrelation for generalized Legendre functions," Duke Math. J., 37, No. 1, 71-75 (1970). t424. W. Sollfrey, "On a Bessel function integral," SIAM Rev., 9, No. 3, 586-589 (1967). 1425. S. L. Soni0 "Evaluation of certain integrals," Math. Ed., A4, 140-142 (1970). 1426. S. L. Soni, "An integral involving the product of H- functions," Math. Student, A40, 203-207 (1972). 1427. A. Srivastava, "On products of hypergeometric series," J. Indian Math. Soc., 35, No. 1-4, 235-240 (1971-72). 1428. A. Srivastava, "On finite integrals involving products of n-Bessel functions," Math. Student, 40A, 134-138 (1972). 1429. A. Srivastava, "On the inverse Laplace transform of p-%uPWk, r (2up) ~v,~ \~
," Indian J. Pure Appl. Math.,
5, No. 9, 825=831 (1974). 1430. G. P. Srivastava and S. Saran, "Integrals involving Kamp6 de F6riet function," Math. Z., 98, No. 2, I19-125 (1967). 1431. G. P. Srivastava and S. Saran, "A theorem on Kamp6 de F~riet function," Proc. Cambridge Philos. Soc., 64, No. 2, 435-437 (1968). 1432. G. P. Srivastava and S. Saran, "A general theorem on a Kamp6 de Feriet function," Math. Notae, 21, No. 3-4, 105-111 (1968/1969). 1433. H. M. Srilvastava, "On some sequences of Laplace transforms," Ann. Soc. Sci. Bruxelles, S6r. I, 67, No. 3,218-228 (1953). 1434. H. M. Srivastava, "On integrals associated with certain hypergeometric functions of three variables," Proc. Natl. Acad. Sci. India, A34, 309-316 (1964). 1435. H. M. Srivastava, "Hypergeometric functions of three variables," Ganita, 15, 97-108 (1964). 1436. H. M. Sr~.vastava, "Some integrals involving products of Bessel and Legendre functions," Rend. Sere. Mat. Univ. Padova, 35, No. 2, 418-423 (1965). 1437. H. M. Srivastava, "The integration of generalized hypergeometric functions," Proc. Cambridge Philos. Soc., 62, No. 4, 761-764 (1966). 1438. H. M. Srivastava, "Some integrals representing triple hypergeometric functions," Rend. Circ. Mat. Palermo, 16, No. 1, 99-115 (1967).
1335
1439. H. M. Srivastava, "Some integrals involving products of Bessel and Legendre functions. II," Rend. Sem. Mat. Univ. Padova, 37, 1-10 (1967). 1440. H. M. Srivastava, "A note on a generalized of Sonine's first finite integral," Matematiche (Catania), 23, No. 1, 1-6 (1968). 1441. H. M. Srivastava, "Integration of certain products containing Jacobi polynomials," Collect. Math., 19, No. 1, 3-9 (1968). 1442. H. M. Srivastava, "A note on the evaluation of a definite integral," J. Korean Math. Soc., 7, 29-32 (1970). 1443. H.M.Srivastava,"Certaindoubleintegrals involving hypergeometric functions," Jnanabha, A1, No. 1, 1- 10 (1971 ). 1444. H. M. Srivastava, "A contour integral involving Fox's H-function," Indian J. Math., 14, No. 1, 1-6 (1972). 1445. H. M. Srivastava, "Remark on some integrals involving products of Whittaker functions," Proc. Am. Math. Soc., 31, No. 1, 133-134 (1972). 1446. H. M. Srivastava, "On reciprocal functions," Indian J. Pure Appl. Math., 3, No. 5, 704-713 (1972). 1447. H.M.Srivastava, "Certain double integrals involving hypergeometric functions," Jnanabha, A1, No. I, 1- I 0 (1971 ). Collect. Math., 24, No. 2, 117-121 (1973). 1448. H. M. Srivastava, "The Laplace transform of the modified Bessel function of the second kind," Publ. Inst. Math. (Beograd), 26, 273-282 (1979). 1449. H. M. Srivastava and M. C. Daoust, "On Eulerian integrals associated with Kamp6 de Feriet's function," Publ. Inst. Math. (Beograd), 9, 199-202 (1969). 1450. H. M. Srivastava and H. Exton, "A generalization of the Weber-Schafheitlin integral," J. Reine Angew. Math., 309, I-6 (1979). 1451. H. M. Srivastava, S. P. Goyal, and R. K. Agrawal, "Some multiple integral relations for the H-function of several variables," Bull. Inst. Math. Acad. Sinica, 9, No. 2, 261-277 (1981). 1452. H. M. Srivastava, K. C. Gupta, and S. P. Goyal, The H-Functions of One and Two Variables, South Asian Publishers, New Delhi (1982). 1453. H. M. Srivastava, K. C. Gupta, and S. Handa, "A certain double integral transformation," Nederl. Akad. Wetensch. Proc. Ser. A, 78, No. 5, 402-406 (1975). 1454. H. M. Srivastava and Co M. Joshi, "Certain double Whittaker transforms of generalized hypergeometric functions," Yokohama Math. J., 15 No. 1,, 17-32 (1967). 1455. H. M. Srivastava and C. M. Joshi, "Certain integrals involving a generalized Meijer function," Glas. Mat. 3, No. 2, 183-191 (1968). 1456. H. M. Srivastava and C. M. Joshi, "Integration of certain products associated with a generalized Meijer function," Proc. Cambridge Philos. Sot., 65, No. 2, 471- 477 (1969). 1457. H. M. Srivastava and C. M. Joshi, "Integral representation for the product of a class of generalized hypergeometric polynomials," Acad. Roy, Belg. Bull. CI. Sci., 60, 919-926 (1974). 1458. H. M. Srivastava and R. Panda, "Some operational techniques in the theory of special functions," Nederl. Akad. Wetensch. Proc. Ser. A, 76, No. 4, 308-319 (1973). 1459. H. M. Srivastava and R. Panda, "An integral representation for the product of two Jacobi polynomials," J. London Math. Soc., 12, No. 4, 419-425 (1975). 1460. H. M. Srivastava and R. Panda, "Some multiple integral transformations involving the H-function of several variables," Nederl. Akad. Wetensch. Proc. Ser. A, A82, No. 3, 353-362 (1979). 1461. H. M. Srivastava and N. P. Singh, "The integration of certain products of the multivariable H-function with a general class of polynomials," Rend. Circ. Mat. Palermo, 32, No. 2, 157-187 (1983). 1462. H. M. Srivastava and J. P. Singhal, "Contour integrals associated with certain generalized hypergeometric functions," Proc. Natl. Acad. Sci. India, A36, No. 4, 824- 840 (1966). 1463. H. M. Srivastava and J. P. Singhal, "A note on certain hypergeometric functions of two and three variables," Ganita, 17, No. 2, 99-108 (1966). 1464. H. M. Srivastava and J. P. Singhal, "Double Meijer transformations of certain hypergeometric functions," Proc. Cambridge Philos. Soc., 64, No. 2, 425-430 (1968). 1465. H. M. Srivastava and J. P. Singhal, "Certain integrals involving Meijer's G-function of two variables," Proc. Natl. Inst. Sci. India, A35, No. 1, 64-69 (1969). 1466. H. S. P. Srivastava, "Integrals involving generalized Legendre functions and a generalized function of two variables," Vijnana Parishad Anusandhan Patrika, 21, No. 1, 27-33 (1978). 1467. K. J. Srivastava, "Certain integral representations of MacRobert's E-function," Ganita, 8, 51-60 (1957). 1468. K. N. Srivastava, "On some integrals involving Jacobi's polynomials," Math. Z., 82, No. 4, 299-302 (1963). 1469. K. N. Srivastava, "On some integrals involving Gegenbauer polynomial and Chebychev polynomial of first kind," Ricerca (Napoli), 14, genn.-apr., 10-16 (1963).
1336
1470. K. N. Srivastava, "On some integrals involving Jacobi's polynomials. II," Math. Z., 85, No. 3, 257-259 (1964). 1471. R. Srivastava, "Definite integrals associated with the H-function of several variables," Comment. Math. Univ. St. Paul., 30, No. 2, 125-129 (1981). 1472. S. C. Srivastava, "On certain integrals," Math. Balkanica, 8, 187-192 (1978). 1473. S. K. Srivastava, "Theorems on a generalised Laplace transform," Acta Mexicana Cienc. Teen., 6, 59-63 (1972). 1474. S. K. Sr~Lvastava,"A generalized Laplace transform," Istanbul lSIniv. Fen. Fak. Mecm., A37, 93-100 (1974). 1475.T.N. Srivastava, "A note on an integral transform," Univ. Nac. Tucumgn Rev., A21, No. 1-2, 85-94 (1971). 1476. T.N. Srivastava, "Some integrals involving generalized H-function of Fox," Acta Mexieana Cienc. Teen., 11/12, No. 31-34, 42-52 (1977/1978). 1477. R. Straubel, "Unbestimmte Integrale mit Produkten yon Zylinderfunktionen. II," Ing.-Areh., 13, 14-20 (1942). 1478. S. N. Stuart, "Non-classical integrals of Bessel functions," J. Austral. Math. Sot., B22, No. 3, 368-378 (1981). 1479. K. Sugahara, "Some applications of complex integral," Repts. Himeji. Inst. Technol., No. 25a, 11-13 (1972). 1480. P.K. Sundararajan, "Some integrals involving E- function of MacRobert and G-function of Meijer, n Proc. Natl. Acad. Sci. India, A34, No. 1, 97-104 (1964). 1481. P.K. Sundararajan, "Some finite and infinite integrals involving G-function," Proc. Natl. Acad. Sci. India, A36, No. 2, 435-440 (1966). 1482. C. D. Sutherland, "Footnote to the evaluation of certain complex elliptic integrals," Math. Comp., 19, No. 89, 132-133 (1965). 1483. R. Swaroop, "A study of Varma transform," Collect. Math., 16, No. 1, 15-32 (1964). o~
1484. M. Talfit--Erben, "Evaluation of the integral
I (n, a. b) = l
6
rne - a t
X Ei(br) ar ," Istanbul Tek. ldniv. Bill., 29, No.
1, 78-87'. (1976). 1485. I.C. Tang, "Some definite integrals and Fourier series for Jacobian elliptic functions," Z. Angew. Math. Mech., 49, No. 1-2, 95-96 (1969). 1486. S. C. Tang, "A definite integral," Duke Math. J., 30, No. 1, 47-50 (1963). 1487. B. S. Tavathia, "On certain integrals involving Whittaker's function," Proc. Natl. Acad. Sci. India, A36, No. 4, 945-949 (1966). 1488. B.S. Tavathia, "Certain theorems on Meijer transform," Mat. Vesnik, 4, No. 3, 228-238 (1967). 1489. B.S. Tavathia, "Certain theorems in operational calculus involving integrals containing hyperbolic functions," Portugal. Math., 30, No. 1, 21-28 (1971). 1490. R. L. Taxak, "Fourier series for Fox's H-function," Univ. Lisboa Revista Fac. Ci., A13, No. 1, 115-123 (1969/1970). 1491. R. L. Taxak, "Some results involving Fox's H-function and associated Legendre functions," Vijnana Parishad Anusandhan Patrika, 13, 161-168 (1970). t492. R. !. Taxak, "Some results involving Fox's H-function and exponential functions," Labdev J. Sci. Tech., AS, No. 3, 139-144 (1970). 1493. R. L. Taxak, "A contour integral involving Fox's H-function and Whittaker function," An. Fac. Ci. Univ. Porto, 54, No. 3-4, 353-362 (1971). 1494. R. I. Taxak, "Fourier series for Fox's H-function," Def. Sci. J., 21, No. 1, 43-48 (1971). 1495. R.L. Taxak, "Integration of some H-functions with respect to their parameters," Def. Sci. J., 21, 111-118 (1971). 1496. R.L. Taxak, "Some integrals involving Bessel's functions and Fox's H-function," Def. Sci. J., 22, 15- 20 (1972). 1497. R.I. Taxak, "Some integrals involving product of the H-function and Gauss's hypergeometric function," Vijnana Parishad Anusandhan Patrika, 16, No. 1, 21-26 (1973). 1498. N. D. Tewari, "A theorem on the generalized Laplace's transform," Proco Benares Math. Soc., 7, No. 7, 51-58 (1945). 1499. L. Thielemans, "Sur l'6valuation de certaines integrales d6finies," C. R. Acad. Sei. Paris, 220, 422-424 (1945). 1500. Y. V. Thosar, "Generalization of Neumann's formula for Q,~(y)," Math. Z., 60, No. 1, 52-60 (1954). I f sinx ~r~ 1501. R. Thompson, "Evaluation of 1~ (b)=2z -1 /'--Y'-) cos b x d x and of similar integrals," Math. Comp., 20, No. 94, 0 330-332 (1966). 1502. V. G. Tikekar, "On some integral properties of hypergeometric functions," Proc. Indian Acad. Sci., A74, No. 4, 189-194 (1971). 1503. E. C. Titchmarsh, "Some integrals involving Bessel functions," J. London Math. Sot., 2, No. 1, 97-99 (1927).
1337
1504. E. C. Titchmarsh, "Some integrals involving Hermite polynomials," J. London Math. Soc., 23, No. I, 15-16 (1948). 1505. E. Toscano, "Relazioni integrali sulla funzione ipergeometrica di Kummer," Matematiche Catania, 8, No. 2, 51-58 (1953). 1506. E. Toscano, "Sul complemento delia funzione gamma incompleta nel calcolo simbolico," Boll. Un. Mat. Ital., 10, No. 4, 484-488 (1955). 1507. E. Toscano, "Calcul de deux int6grales d6finies de polyncSmes hyperg~ometriques h l'aide du th6or6me de composition de la transformation de Laplace," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 18, No. 3-4, 403-414 (1974/1976). 1508. E. Toscano, "Transformata di Laplace di prodotti di funzioni di Bessel e polinomi di Laguerre. Relazione integrale su funzioni ipergeometriche piu generali della F~, di Lauricella," Pont. Acad. Sci. Comment., 5, 471-500 (1941). 1509. E. Toscano, "Calcolo di un integrale della teoria del potenziale di un ellisoide," Ist. Lombbardo Sci. Lett. Rend. C1. Sci. Mat. Natl., 13, 192-200 (1949). 1510. C. J. Tranter, "A generalization of Sonine's first finite integral," Proc. Glasgow Math. Assoc., 6, No. 2, 97-98 (1963). 1511. G. N. Tsandoulas, "Evaluation of a type of definite integral," Electron. Letters, 3, No. 11,493-494 (1967). 1512. Gh. Tudor, "On certain improper integrals," Bul. Sti. Tehno Inst. Politehn. Timisoara, Ser. Mat.-Fiz.-Mec. Teoret. Apl., 15, No. 1, 51-54 (1970). 1513. A. H. van Tuyl, "The evaluation of some definite integrals involving Bessel functions which occur in hydrodynamics and elasticity," Math. Comp., 18, No. 87, 421-432 (1964). 1514. N. Ullah, "Evaluation of an integral involving associated Legendre polynomials and inverse powers of (1 - x2), '' J. Math. Phys., 25, No. 4, 872-873 (1984). 1515. R. C. Varma, "Some infinite integrals involving parabolic cylinder functions," Proc. Bewares Math. Sot., 1, 61-67 (1939). 1516. R. C. Varma, "Some infinite integrals involving Whittaker functions," Proc. Benares Math. Soc., 2, 81-84 (I 940). 1517. R. S. Varma, "An infinite integral involving Whittaker's function," Proc. Natl. Acad. Sci. India, A13, 40-41 (1943). 1518. R. C. Varma, "On some integrals involving Jacobi polynomials," Proc. Natl. Acad. Sci. India, A36, No. 2, 465-468 (1966). R. C. Varma and K. C. Rusia, "Certain finite integrals involving the hypergeometric function," Indian J. Math., 1519. 15, No. 1, 51-55 (1973). 1520. V. K. Varma, "On a theorem in operational calculus," Ganita, 12, No. 2, 115-122 (1961). 1521. S. K. Vasishta, "An integral involving products of Appell functions and Fox's H-functlon," Vijnana Parishad Anusandhan Patrika, 17, No. 3, 207-213 (1974). 1522. S. K. Vasishta, "Some integrals involving the H-function of two variables," Math. Ed., A8, 65-71 (1974). 1523. S. K. Vasishta and S. P. Goyal, "Some finite integrals involving the H-function of two variables," Univ. Studies Math., 76, No. 5, 13-22 (1975-76). 1524. S. K. Vasishta and S. P. Goyal, "Multiple integrals involving the H-function of two variables," Proc. Indian Acad. Sci., A83, No. 2, 41-49 (1976). 1525. S. K. Vasishta and S. P. Goyal, "On a generalized double L--H-transform," An. Univ. Timisoara Ser. Sti. Mat., 14, No. 2, 157-171 (1976(1977)). A. Verma, "Integration of bilateral hypergeometric series with respect to their parameters," J. London Math. Soc., 1526. 39, No. 4, 673-684 (1964). 1527. A. Verma, "A note on the evaluation of certain integrals involving G-functions," Ganita, 16, No. 1, 51-54 (1985). 1528. A. Verma, "Integration of E-functions with respect to their parameters," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 9, No. 4, 343-349 (1965). 1529. A. Verma, "On integration of Meijer's G-functions," Bull. Calcutta Math. Soc., 59, No. I, 67-72 (1967). 1530. A. Verma, "Integration of E-function with respect to their parameters. II," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 11, No. 2, 205-217 (1967(1968)). 1531. C. B. L. Verma, "On mutual relationships between various integral transforms," Proc. Natl. Acad. Sci. India, A30, No. I, 94-101 (1961). 1532. C. B. L. Verma, "On generalized Laplace transforms and infinite integrals involving G- and E-functions," Proc. Natl. Acad. Sci. India, A32, No. 2, 198-206 (1962). 1533. C. B. L. Verma, "Some theorems of integral transforms," Proc. Natl. Acad. Sci. India, A33, No. 2,267-274 (1963). 1534. R. U. Verma, "Integrals involving Meijer's G-functions," Ganita, 16, No. 1, 65-68 (1965). 1338
1535. R. U. Verma, "Certain integrals involving the G-function of two variables," Ganita, 17, No. 1, 43-50 (1966). 1536. R. U. Verma, "On some integrals involving Meijer's G-function of two variables," Proc. Natl. Inst. Sci. India, A32, No. 5-6, 509-515 (1966). 1537. R. U. Verma, "Integral involving G-function of two variables. II," C. R. Acad. Bulgare Sci., 24, No. 4, 427430 (1971). 1538. R. U. Verma, "A note on an integral involving G- and H-function of two variables," C. R. Acad. Bulgare Sci., 24, 999-1001 (1971). 1539. R. U. Verma, "On the H-function of two variables. II," An. Sti, Univ. "A1. I. Cuza" Iasi Sect. Ia Mat., 17, No. 1, 103-110 (1971). 1540. R. Uo Verma, "A generalization of integrals involving Meijer's G-function of two variables," Math. Student, A40, 40--46 (1972). 1541. R. U. Verma, "On the H-function transform of two variables. I," Indian J. Pure Appl. Math., 5, No. 7, 616623 (1974). 1542. R. U. Verma, "On the H-function of two variables. III," Bull. Math. Soc. Sci. Math. R. S. Roumanie, 23, No. 3, 323-328 (1979). 1543. G. C. Vidyasagar, "On certain integrals," Ganita, 5, No. 1, 61-68 (1954). 1544. P. M. Villalonga, "Some finite integrals involving products of Bessel functions," Rev. Univ. Nac. Tucum~in, A26, No.. 1-2, 69-73 (1976(1981)). 1545. L. N. Vishwakarma, "On the extension of some Bessel and Struve integrals," Ganita, 17, No. 1, 7-14 (1966). 1546. V. Vodicka, "On a formula of operational calculus," Apl. Mat., 12, No. 2, 123-129 (1967). 1547. D. Voelker and G. Doetsch, Die Zweidimensionale Laplace-Transformation, Birkhauser, Basel (1950). 1548. C~ Vroelant, "Calcul des int~grales intervenant pour certaines formes approch~es de la fonction d'onde," C. R. Acad. Sci. Paris, 236, No. 26, 2504-2506 (1953). 1549. R. C. Vyas and S. N. Mathur, "Integrals involving products of modified Bessel functions of the second kind," Math. Nachr., 40, No. 4-6, 225-227 (1969). 1550. R. C. Vyas and R. K. Saxena, "Integrals involving G-function of two variables," Univ. Nac. Tucum~in Rev., A23, 17-23 (1973/1974). I551. R. C. Vyas and R. K. Saxena, "On Kummer's transform of two variables involving Meijer's G-function," Rev. Mat. Hi,;p.-Amer. (4), 34, No. 6, 335-338 (1974). 1552. A. D. Wadhwa, "Expansion formulae for the Kamp6 de Feriet function involving Bessel function," Def. Sci. J., 21, No. 1, 31-38 (1971). 1553. R. A. Waldron, "The integration of Bessel functions," J. Inst. Math. Appl., 4, No. 3, 315-319 (1968). 1554. G. N. Watson, "An infinite integral involving Bessel functions," J. London Math. Soc., 9, No. 1, 16-22 (1934). 1555. G. Wechsung, "Logarithmische Integrale," Publ. Math. Debrecen, 14, 255-271 (1967). 1556. A. Weinstein, "Discontinuous integrals and generalized potential theory," Trans. Am. Math. Soc., 63, No. 2, 342-354 (1948). 1557. R. L. van de Wetering, "Parseval's relations for some integral transforms," Nederl. Akad. Wetensch. Proc. Ser. A, 70, No. 4, 453-466 (1967). 1558. R. L. van de Wetering, "A generalization of the Mehler--Dirichlet integral," Nederl. Akad. Wetensch. Proc. Ser. A, 71, No. 2, 234-238 (1968). 1559. A. D. Wlheelon, Tables of Summable Series and Integrals Involving Bessel Function, Holden-Day, San Francisco (1968). 1560. J. E. Wilkins, Jr., "Nicholson's integral for J~2(z)+Y,J(z) ," Bull. Am. Math. Soc., 54, No. 2, 232-234 (1948). 1561. R. Wilson, "On the evaluation of
(x--e)~+, 1/ax2 + bx + e '" Edinburgh Math. Notes, 32, 13-14 (1941).
1562. D. E. Winch, "Integration formulae for Wigner's 3 - j coefficients," J. Math. Phys., 17, No. 7, 1166-1170 (1976). 1563. W. Witschel, "Integralproperties of Hermite polynomials by operator methods," Z. Angew. Math. Phys., 24, No. 6, 861-870 (1973). 1564. G. Wolf, "Integralrelationen Mathieuscher Funktionen," Arch. Rational. Mech. Anal. 45, No. 2, 134- 142 (I 972). 1565. L. v. Wolfersdorf, "Berechnung einiger Laplace- und Fourier-Integrale," Z. Angew. Math. Mech., 43, No. 12, 565-567 (1963). 1566. S. J. Wolfson, "A closed form for Elsasser integrals," J. Math. Phys., 7, No. 7, 1337-1339 (1966). 1567. V. E. Wood, R. P. Kenan, and M. L. Glasser, "Doppler broadening integrals," Math. Comp., 20, No. 96,610-611 (1966).
1339
1568. E. M. Wright, "The asymptotic expansion of the generalized hypergeometric function," J. London Math. Soc., 10, No. 4, 286-293 (t935). 1569. E. M. Wright, "The asymptotic expansion of the generalized hypergeometric function," Proc. London Math. Soc. 46, No. 5, 389-408 (1940). 1570. C. R. Wylie Jr., "New forms of certain integrals," Am. Math. Monthly, 49, No. 7, 457-461 (1942). 1571. J. M. S. Yadav and Y. N. Prasad, "Some finite integrals involving generalized function of r variables," Vijnana Parishad Anusandhan Patrika, 20, No. 3, 211-217 (1977). 1572. J. M. S. Yadav and Y. N. Prasad, "Some infinite integrals involving generalized functions of r variables," Vijnana Parishad Anusandhan Patrika, 21, No. 3, 213-220 (1978). 1573. S. R. Yadava, "On certain integrals and a theorem in generalised Hankel transform," Proc. Natl. Acad. Sci. India, A42, No. 4, 277-286 (1972). 1574. S. R. Yadava, "Certain theorems in two dimensional Laplace transform," Indian J. Pure Appl. Math., 6, No. 10, 1167-1172 (1975). 1575. C. Yeh, "A note on integrals involving parabolic cylinder functions," J. Math. and Phys., 45, No. 2, 231-232 (1966). 1576. M. Yoshida, "Euler integral transformations of hypergeometric functions of two variables," Hiroshima Math. J., 10, No. 2, 329-335 (1980). 1577. J. van Yzeren, "Moivre's and Fresnel's integrals by simple integration," Am. Math. Monthly, 86, No. 8, 691693 (1979). 1578. R. Zanovello, "Integrali di funzioni di Anger, Weber ed Airy--Hardy," Rend. Sem. Mat. Univ. Padova, 58,275285 (1977). 1579. A. Zygmund, "On certain integrals," Trans. Am. Math. Soc., 55, 170-204 (1944). SUPPLEMENTARY LITERATURE 1.
2. 3. 4.
.
6. 7. 8.
.
10.
11. 12. 13. 14.
1340
E. I. Aguf, "Evaluation of certain singular integrals, arising in problems of elasticity theory," in: Analytical and Numerical Solutions of Applied Problems of Mathematical Physics [in Russian], Leningrad (1986), pp. 9-12. G. N. Afanasiev, Analytical expressions for certain useful sums and integrals, containing Legendre functions. Joint Inst. Nuclear Res., Dubna. Preprint No. P5-85-118 (1985). Yu. A. Brychkov, O. I. Marichev, and A. P. Prudnikov, Tables of Indefinite Integrals [in Russian], Nauka, Moscow (1986). V. F. Volkodavov and V. I. Makeev, "Evaluation of certain integrals in the principal value sense," in: Analytical Methods in the Theory of Differential and Integral Equations [in Russian], Kuibyshev. Gos. Univ., Kuibyshev (1987), pp. 19-24. V. A. Volokhin, The evaluation of certain singular integrals of aerodynamics with unbounded characteristics. Gor'k. Politekhn. Univ., Gorki (1985). L. V. Pestun, "Applications of the Kontorovich--Lebedev integral transform," in: Some Problems of Differential Equations in the Solution of Applied Problems [in Russian], Tul'sk. Politekhn. Inst., Tula (1984), pp. 16- 21. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Supplementary Chapters [in Russian], Nauka, Moscow (1986). M. P. Lenyuk and V. G. Suchevan, "Evaluation of certain improper integrals of Bessel functions," in: Analytical Methods in the Theory of Differential and Integral Equations [in Russian], Kuibyshev. Gos. Univ., Kuibyshev (1987), pp. 60-79. M. D. Khriptun, "Some improper integrals containing generalized Bessel functions, satisfying a third-order ordinary differential equation," in: Well-Posedness Questions in Problems of Mathematical Physics and Analysis [in Russian], Novosibirsk (1986), pp. 136-150. M. D. Khriptun, "Sonin type integrals of generalized Bessel functions, satisfying a third-order ordinary differential equation," in: Methods of Investigation in Problems of Mathematical Physics [in Russian], Novosibirsk (1985), pp. 113-121. G. N. Afanasiev, "Closed analytical expressions for some useful sums and integrals involving Legendre functions," J. Comput. Phys., 69, No. 1, 196-208 (1987). J. R. Albricht and E. P. Gavathas, "Integrals involving Airy functions," J. Phys. A, 19, No. 13, 2663-2665 (1986). A. Apelblat, "Some integrals of gamma, polygamma and Volterra functions," IMA J. Appl. Math., 34, No. 2, 173186 (1985). A. K. Arora and C. L. Koul, "Applications of fractional calculus," Indian J. Pure AppI. Math., 18, No. 10, 931-937 (I987).
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
R. Askey, T. H. Koornwinder, and M. Rahman, "An integral of products of ultraspherical functions and a qextension," J. London Math. Soc., 33, No. 1, 133-148 (1986). N.A. Baykara and M. Demiralp, "Analytic evaluation of equipotential hyperangular interaction integrals," Nuovo Cimento, B100, No. 2, 161-171 (1987). P.J. Bushell, "On a generalization of Barton's integral and related integrals of complete elliptic integrals," Math. Proc. Cambridge Philos. Soc., 101, 1-5 (1987). A. Devoto and D. W. Duke, "Table of integrals and formulae for Feynman diagram calculations," Riv. Nuovo Cimento, 7, No. 6, 1-39 (1984). H.E. Fettis, "Further extensions of a Legendre function integral," Math. Comp., 45, No. 172, 549-552 (1985). M. Garg, "On multiple integral relations involving the multivariable H-function," Indian J. Pure Appl. Math., 15, No. 12, 1319-1331 (1984). A. Gervois and H. Navelet, "Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities," J. Math. Phys., 25, No. 11, 3350-3356 (1984). A. Gervois and H. Navelet, "Integrals of three Bessel functions and Legendre functions. I," J. Math. Phys., 26, No. 4, 633-644 (1985). A. Gervois and H. Navelet, "Integrals of some three Bessel functions and Legendre functions. II," J. Math. Phys., 26, No..4, 645-655 (1985). A. Gervois and H. Navelet, "Some integrals involving three modified Bessel functions. I," J. Math. Phys., 27, No. 3, 682-687 (1986). A. Gervois and H. Navelet, "Some integrals involving three modified Bessel functions. II," J. Math. Phys., 27, No. 3, 688-695 (1986). M.L. Glasser, "A novel class of Bessel function integrals," J. Math. Phys., 25, No. 10, 2933-2934 (1984). M.L. Glasser, "Some useful properties of the Hilbert transform," SIAM J. Math. Anal., 15, No. 6, 1228-1230 (1984). K . C . Gupta, S. P. Goyal, and S. Verma, "Unified integrals involving a general class of polynomials and the multivariable H-function," Indian J. Pure Appl. Math., 18, No. 1, 65-73 (1987). 1 K.S. K(ilbig, "On the integral .fx~-l(l--x)-Xlnmxctx ," J. Comput. Appl. Math., 18, No. 3, 369-394 (1987). 0 C. Lal, "On the integrals of Lauricella functions," Indian J. Pure Appl. Math., lg, No. 9, 818-822 (1987). R . L . LzLmphere, "Elementary proof of a formula of Ramanujan," Proc. Am. Math. Soc., 91, No. 3, 416-420 (1984). J. Letessier and G. Valent, "Some integral relations involving hypergeometric functions," SIAM J. Appl. Math., 48, No. 1,214-221 (1988). K. Mclsaac, J. E. Gottschalk, and E. N. Maslen, "Closed form expressions for an integral involving the Coulomb potential," J. Comput. Phys., 67, No. 2, 479-481 (1986). J.C. Piquette, "An analytical expression for coefficients arising when implementing a technique for indefinite integration of products of special functions," SIAM J. Math. Anal., 17, No. 4, 1033-1035 (1986). J.C. Piquette and A. L. Van Buren, "Technique for evaluating indefinite integrals involving products of certain special functions," SIAM J. Math. Anal., 15, No. 4, 845-855 (1984). B. Piraux and C. T. Whelan, "Some remarks on the calculation of Born partial wave integrals," Math. Proc. Cambridge Philos. Soc., 101, No. 3,375-381 (1987). M.A. Rashid, "Evaluation of integrals involving powers of (1 - x 2) and two associated Legendre functions or Gegenbauer polynomials," J. Phys. A, 19, No. 13, 2505-2512 (1986). K.C. Recsia and R. C. Verma, "Some integrals involving hypergeometric function," Math. Stud., 43, No. 3-4, 257-261 (1975(1982)). A. Sackfield and D. A. Hills, "An improper integral evaluated," Math. Gaz., 70, No. 452, 144-146 (1986). N. Ullah, "In integrals involving associated Legendre functions and powers of (1 - x2), " J. Phys. A, 20, No. 16, 5719-5721 (1987). R.C. Varma and J. S. Bharadwaj, "Note on integrals connected with Jacobi polynomials," Proc. Natl. Acad. Sci. India, A54, No. 4, 422-430 (1984). L.T. Wille, "Laplace transform of a class of G functions," J. Phys. A, 19, No. 6, L313-L315 (1986). L.T. Wille and J. Vennik, "Evaluation of an integral involving Airy functions," J. Phys. A, 18, No. 14, 28572858 (1985). S.R. Yadava, "On chains of K-transform," Proc. Natl. Acad. Sci. India, A56, No. 2, 152-155 (1986). R. Zanovello, "On an integral of powers of hypergeometric or trigonometric functions," Calcolo, 23, No. 2, 131-137 (1986).
1341