Iran J Sci Technol Trans Sci https://doi.org/10.1007/s40995-017-0352-4
RESEARCH PAPER
Hermite–Hadamard–Feje´r Type Inequalities for p-Convex Functions via Fractional Integrals Mehmet Kunt1 • ˙Imdat ˙Is¸can2 Received: 4 October 2016 / Accepted: 23 November 2017 Ó Shiraz University 2017
Abstract In this paper, firstly, Hermite–Hadamard–Feje´r type inequalities for p-convex functions in fractional integral forms are built. Secondly, an integral identity and some Hermite–Hadamard–Feje´r type integral inequalities for p-convex functions in fractional integral forms are obtained. Finally, some Hermite–Hadamard and Hermite–Hadamard–Feje´r inequalities for convex, harmonically convex and p-convex functions are given. Many results presented here for p-convex functions provide extensions of others given in earlier works for convex, harmonically convex and p-convex functions. Keywords Hermite–Hadamard inequalities Hermite–Hadamard–Feje´r inequalities Fractional integrals Convex functions Harmonically convex functions p-Convex functions Mathematics Subject Classification 26A51 26A33 26D10
1 Introduction Let f : I R ! R be a convex function defined on the interval I of real numbers and a; b 2 I with a\b. The inequality Z b aþb 1 f ðaÞ þ f ðbÞ ð1Þ f ; f ðxÞdx 2 ba a 2 is well known in the literature as Hermite–Hadamard’s inequality (Hadamard 1893; Hermite 1883). The most well-known inequalities related to the integral mean of a convex function f are the Hermite–Hadamard inequalities or its weighted versions, the so-called Hermite–Hadamard–Feje´r inequalities. Feje´r (1906) established the following Feje´r inequality which is the weighted generalization of Hermite–Hadamard inequality (1): & Mehmet Kunt
[email protected] ˙Imdat ˙Is¸ can
[email protected];
[email protected] 1
Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey
2
Department of Mathematics, Faculty of Sciences and Arts, Giresun University, 28200 Giresun, Turkey
Theorem 1 Let f : ½a; b! R be convex function. Then the inequality Z b Z b aþb f wðxÞdx f ðxÞwðxÞdx 2 a a ð2Þ Z f ðaÞ þ f ðbÞ b wðxÞdx; 2 a holds, where w : ½a; b! R is nonnegative, integrable and symmetric to ða þ bÞ=2: For some results which generalize, improve, and extend the inequalities (1) and (2), see Bombardelli and Varosˇanec (2009), Chen and Wu (2014), Dragomir and Agarwal (1998), Fang and Shi (2014), I˙s¸ can (2013, 2014c, d, 2016b, c), Mihai et al. (2015), Noor et al. (2016), Pearce and Pecaric (2000), Sarıkaya (2012) and Tseng et al. (2011). We will now give definitions of the right-hand side and left-hand side Riemann–Liouville fractional integrals which are used throughout this paper. Definition 1 (Kilbas et al. 2006). Let f 2 L½a; b. The right-hand side and left-hand side Riemann–Liouville a a fractional integrals Jaþ f and Jb f of order a [ 0 with b [ a 0 are defined by
123
Iran J Sci Technol Trans Sci
a Jaþ f ðxÞ ¼ a f ðxÞ ¼ Jb
1 CðaÞ 1 CðaÞ
Z Z
x
ð x tÞa1 f ðtÞdt; x [ a and
a b
ðt xÞa1 f ðtÞdt; x\b;
x
respectively, where CðaÞ is the Gamma function defined by R1 CðaÞ ¼ 0 et ta1 dt. Because of the wide application of Hermite–Hadamard type inequalities and fractional integrals, many researchers extend their studies to Hermite–Hadamard type inequalities involving fractional integrals not limited to integer integrals. Recently, more and more Hermite–Hadamard inequalities involving fractional integrals have been obtained for different classes of functions; see Dahmani (2010), ˙Is¸ can (2014a, b, 2015), ˙Is¸ can and Wu (2014), I˙s¸ can et al. (2016d), Sarıkaya et al. (2013) and Wang et al. (2012, 2013). ˙Is¸ can (2014d) gave the definition of harmonically convex function and established the following Hermite– Hadamard type inequality for harmonically convex functions as follows: Definition 2 Let I Rnf0g be a real interval. A function f : I ! R is said to be harmonically convex if xy f tf ð yÞ þ ð1 tÞf ð xÞ; ð3Þ tx þ ð1 tÞy for all x; y 2 I and t 2 ½0; 1. If the inequality in (3) is reversed, then f is said to be harmonically concave. Theorem 2 (I˙s¸ can 2014d). Let f : I Rnf0g ! R be a harmonically convex function and a; b 2 I with a\b. If f 2 L½a; b; then the following inequalities hold: Z b 2ab ab f ð xÞ f ð aÞ þ f ð bÞ ð4Þ f : dx aþb b a a x2 2
Chen and Wu (2014) presented Hermite–Hadamard– Feje´r inequality for harmonically convex functions as follows: Theorem 3 Let f : I Rnf0g ! R be a harmonically convex function and a; b 2 I with a\b. If f 2 L½a; b and w : ½a; b Rnf0g ! R is nonnegative, integrable and 2ab harmonically symmetric with respect to aþb , then Z b Z b 2ab w ð xÞ f ð xÞwð xÞ f dx dx a þ b a x2 x2 a ð5Þ Z b f ð aÞ þ f ð bÞ wð xÞ dx: 2 x2 a
123
Sarıkaya et al. (2013) presented Hermite–Hadamard inequality for convex functions via fractional integrals as follows: Theorem 4 Let f : ½a; b ! R be a positive function with 0 a\b and f 2 L½a; b. If f is a convex function on ½a; b, then the following inequalities for fractional integrals hold: aþb Cða þ 1Þ a a f a Jaþ f ðbÞ þ Jb f ðaÞ 2 2ðb aÞ ð6Þ f ðaÞ þ f ðbÞ ; 2 with a [ 0. I˙s¸ can and Wu (2014) presented Hermite–Hadamard inequality for harmonically convex functions via fractional integrals as follows: Theorem 5 Let f : I ð0; 1Þ ! R be a function such that f 2 L½a; b, where a; b 2 I with a\b. If f is a harmonically convex function on ½a; b, then the following inequalities for fractional integrals hold: 2ab Cða þ 1Þ ab a h a f J1=a ð f gÞð1=bÞ aþb 2 ba ð7Þ i f ðaÞ þ f ðbÞ a þ J1=bþ ; ð f gÞð1=aÞ 2 1 1 1 with a [ 0 and gð xÞ ¼ x, x 2 b ; a . ˙Is¸ can (2015) presented Hermite–Hadamard–Feje´r inequality for convex functions via fractional integrals as follows: Theorem 6 Let f : ½a; b ! R be a convex function with a\b and f 2 L½a; b. If w is nonnegative, integrable and symmetric to ða þ bÞ=2, then the following inequalities for fractional integrals hold: aþb a a f wðaÞ Jaþ wðbÞ þ Jb 2 a a ð8Þ Jaþ ð fwÞðbÞ þ Jb ð fwÞðaÞ
f ðaÞ þ f ðbÞ a a Jaþ wðbÞ þ Jb w ð aÞ ; 2
with a [ 0. I˙s¸ can et al. (2016d) presented Hermite–Hadamard–Feje´r inequality for harmonically convex functions via fractional integrals as follows: Theorem 7 Let f : ½a; b! R be a harmonically convex function with a\b and f 2 L½a; b. If w : ½a; b! R is nonnegative, integrable and harmonically symmetric with respect to 2ab=a þ b, then the following inequalities for fractional integrals holds:
Iran J Sci Technol Trans Sci
i 2ab h a a ðw gÞð1=bÞ J1=bþ ðw gÞð1=aÞ þ J1=a aþb h i a a J1=bþ ð fw gÞð1=aÞ þ J1=a ð fw gÞð1=bÞ i f ðaÞ þ f ðbÞ h a a J1=bþ ðw gÞð1=aÞ þ J1=a ðw gÞð1=bÞ ; 2 ð9Þ with a [ 0 and gðxÞ ¼ 1x, x 2 1b ; 1a . f
Zhang and Wan (2007) gave the definition of p-convex function on I R, ˙Is¸ can (2016c) gave a different definition of p-convex function on I ð0; 1Þ as follows:
Definition 4 Let p 2 Rnf0g. A function w : ½a; b ð0; 1Þ ! R is said to be p-symmetric with respect to ap þbp 1=p if 2 wð xÞ ¼ w ½ap þ bp xp 1=p ; holds for all x 2 ½a; b. Lemma 1 Let p 2 Rnf0g, a [ 0 and w : ½a; b ð0; 1Þ ! R is integrable, p-symmetric with respect to ap þbp 1=p , then 2 (i)
Jaap þ ðw gÞðbp Þ ¼ Jbap ðw gÞðap Þ 1 ¼ Jaap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ ; 2
Definition 3 Let I ð0; 1Þ be a real interval and p 2 Rnf0g. A function f : I ! R is said to be p-convex, if f ½txp þ ð1 tÞyp 1=p tf ð xÞ þ ð1 tÞf ð yÞ ð10Þ for all x; y 2 I and t 2 ½0; 1.
1
(ii)
with gð xÞ ¼ xp , x 2 ½ap ; bp . If p\0, Jbap þ ðw gÞðap Þ ¼ Jaap ðw gÞðbp Þ 1 ¼ Jbap þ ðw gÞðap Þ þ Jaap ðw gÞðbp Þ ; 2
It can be easily seen that for p ¼ 1 and p ¼ 1, pconvexity reduces to ordinary convexity and harmonically convexity of functions defined on I ð0; 1Þ, respectively. In Fang and Shi (2014), Theorem 5, if we take I ð0; 1Þ, p 2 Rnf0g and hðtÞ ¼ t, then we have the following theorem. Theorem 8 Let f : I ð0; 1Þ ! R be a p-convex function, p 2 Rnf0g, and a; b 2 I with a\b. If f 2 L½a; b then the following inequalities hold: p p 1=p ! Z b a þb p f ð xÞ f ðaÞþf ðbÞ f : dx p p 1p b a a x 2 2
If p [ 0,
1
with gð xÞ ¼ xp , x 2 ½bp ; ap . Proof (i)
Let p [ 0. Since w is p-symmetric with respect to ap þbp 1=p
, using Definition 4 we have w x1=p ¼ 2 w ½ap þ bp x1=p for all x 2 ½ap ; bp . Hence in the following integral setting t ¼ ap þ bp x and dt ¼ dx gives
ð11Þ
Jaap þ ðw gÞðbp Þ ¼
For some results related to p-convex functions and its generalizations, we refer the reader to see Fang and Shi (2014), I˙s¸ can (2016a, b, c), Mihai et al. (2015), Noor et al. (2016) and Zhang and Wan (2007). In this paper, we built Hermite–Hadamard–Feje´r type inequalities for p-convex functions in fractional integral forms. We obtain an integral identity and some Hermite– Hadamard–Feje´r type integral inequalities for p-convex functions in fractional integral forms. We give some Hermite–Hadamard and Hermite–Hadamard–Feje´r inequalities for convex, harmonically convex and p-convex functions.
1 CðaÞ
1 ¼ CðaÞ 1 ¼ CðaÞ
(ii)
Z
bp
Z
ap bp
Z
ap bp ap
ðbp xÞa1 w x1=p dx ðbp xÞa1 w ½ap þbp x1=p dx ð xap Þa1 w x1=p dx ¼ Jbap ðw gÞðap Þ:
This completes the proof of i. The proof is similar to i.
Theorem 9 Let f : I ð0; 1Þ ! R be a p-convex function, p 2 Rnf0g, a [ 0 and a; b 2 I with a\b. If f 2 L½a; b and w : ½a; b ! R is nonnegative, integrable and p p p 1=p symmetric with respect to a þb , then the following 2 inequalities for fractional integrals hold:
2 Main Results Throughout this section, kwk1 ¼ supt2½a;b jwðtÞj, for the continuous function w : ½a; b! R.
123
Iran J Sci Technol Trans Sci
(i)
f ½tap þ ð1 tÞbp 1=p þ f ½tbp þ ð1 tÞap 1=p
If p [ 0,
p ! a þ bp 1=p a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ f 2 a Jap þ ð fw gÞðbp Þ þ Jbap ð fw gÞðap Þ f ðaÞ þ f ðbÞ a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ ; 2
2 f ðaÞ þ f ðbÞ : 2 ð15Þ Multiplying both sides of (15) by 2t w ½tap þ ð1 tÞbp 1=p and integrating with
ð12Þ (ii)
a1
with gðxÞ ¼ x1=p , x 2 ½ap ; bp . If p\0,
! ap þ bp 1=p a Jbp þ ðw gÞðap Þ þ Jaap ðw gÞðbp Þ f 2 Jbap þ ð fw gÞðap Þ þ Jaap ð fw gÞðbp Þ f ðaÞ þ f ðbÞ a Jbp þ ðw gÞðap Þ þ Jaap ðw gÞðbp Þ ; 2
respect to t over ½0; 1, using Lemma 1-i, we get a Jap þ ð fw gÞðbp ÞþJbap ð fw gÞðap Þ f ðaÞþf ðbÞ a Jap þ ðw gÞðbp ÞþJbap ðw gÞðap Þ ; 2
ð13Þ
(ii)
the right hand side of (12). This completes the proof of i. The proof is similar to i. h
with gðxÞ ¼ x1=p , x 2 ½bp ; ap . Remark 1 Proof (i)
Let p [ 0. Since f : I ð0; 1Þ ! R is a p-convex function, we have, for all x; y 2 I (with t ¼ 12 in the inequality (10)) p ! x þ yp 1=p f ð xÞ þ f ð yÞ : f 2 2 Choosing
x ¼ ½tap þ ð1 tÞbp 1=p
p
p 1=p
and
y¼
½tb þ ð1 tÞa , we get p p 1=p ! a þb f 2 f ½tap þ ð1tÞbp 1=p þf ½tbp þ ð1tÞap 1=p : 2 ð14Þ Multiplying both sides of (14) by a1 2t w ½tap þ ð1 tÞbp 1=p and integrating with respect to t over ½0; 1, using Lemma 1-i, we get p ! a þ bp 1=p a f Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ 2 a Jap þ ð fw gÞðbp Þ þ Jbap ð fw gÞðap Þ ; the left hand side of (12). For the proof of the second inequality in (12), we first note that if f is a p-convex function, then, for all t 2 ½0; 1, it yields
123
(1) (2) (3) (4) (5) (6) (7) (8) (9)
In Theorem 9, one can see the following.
If one takes p ¼ 1, one has (8). If one takes p ¼ 1 and wð xÞ ¼ 1, one has (6). If one takes p ¼ 1 and a ¼ 1, one has (2). If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has (1). If one takes p ¼ 1, one has (9). If one takes p ¼ 1 and wð xÞ ¼ 1, one has (7), If one takes p ¼ 1 and a ¼ 1, one has (5). If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has (4). If one takes a ¼ 1 and wð xÞ ¼ 1, one has (11).
Lemma 2 Let f : I ð0; 1Þ ! R be a differentiable function on I and a; b 2 I with a\b, p 2 Rnf0g and a [ 0. If f 0 2 L½a; b and w : ½a; b ! R is integrable and p p p 1=p symmetric with respect to a þb , then the following 2 equalities for fractional integrals hold: (i)
If p [ 0, f ðaÞ þ f ðbÞ a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ 2 Jaap þ ð fw gÞðbp Þ þ Jbap ð fw gÞðap Þ " # Z bp R t p a1 ðw gÞðsÞds 1 ap ðb sÞ ð f gÞ0 ðtÞdt; ¼ R p CðaÞ ap b ðs ap Þa1 ðw gÞðsÞds t
ð16Þ with gðxÞ ¼ x1=p , x 2 ½ap ; bp .
Iran J Sci Technol Trans Sci
(ii)
If p\0, f ðaÞ þ f ðbÞ a Jbp þ ðw gÞðap Þ þ Jaap ðw gÞðbp Þ 2 Jbap þ ð fw gÞðap Þ þ Jaap ð fw gÞðbp Þ " # R Z ap t a1 p ðw gÞðsÞds 1 bp ða sÞ ¼ ð f gÞ0 ðtÞdt; R p CðaÞ bp a ðs bp Þa1 ðw gÞðsÞds t
(ii)
Remark 2 (1)
ð17Þ (2)
with gðxÞ ¼ x1=p , x 2 ½bp ; ap .
(3) Proof (i)
(4)
Let p [ 0. It suffices to note that # Z bp " R t p a1 ðw gÞðsÞds 1 a p ðb sÞ ð f gÞ0 ðtÞdt I¼ R p CðaÞ ap b ðs ap Þa1 ðw gÞðsÞds t Z bp Z t 1 ðbp sÞa1 ðw gÞðsÞds ð f gÞ0 ðtÞdt ¼ CðaÞ ap ap Z bp Z bp 1 ðs ap Þa1 ðw gÞðsÞds ð f gÞ0 ðtÞdt CðaÞ ap t
(5) (6) (7) (8)
¼ I1 I2 :
ð18Þ By integration by parts and using Lemma 1-i, we have Z t bp 1 ð f gÞ ð t Þ ðbp sÞa1 ðw gÞðsÞds I1 ¼ C ð aÞ ap ap Z bp 1 ðbp tÞa1 ð fw gÞðtÞdt C ð aÞ a p Z bp 1 ¼ f ð bÞ ðbp sÞa1 ðw gÞðsÞds CðaÞ ap Z bp 1 ðbp tÞa1 ð fw gÞðtÞdt C ð aÞ a p f ð bÞ a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ ¼ 2 Jaap þ ð fw gÞðbp Þ
A combination of (18), (19) and (20) gives (16). This completes the proof of i. The proof is similar to i. In Lemma 2, one can see the following.
If one takes p ¼ 1, one has I˙s¸ can (2015), Lemma 2.4. If one takes p ¼ 1 and wð xÞ ¼ 1, one has Sarıkaya et al. (2013), Lemma 2. If one takes p ¼ 1 and a ¼ 1, one has Sarıkaya (2012), Lemma 2.6. If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has Dragomir and Agarwal (1998), Lemma 2.1. If one takes p ¼ 1, one has ˙Is¸ can et al. (2016d), Lemma 3. If one takes p ¼ 1 and wð xÞ ¼ 1, one has ˙Is¸ can and Wu (2014), Lemma 3. If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has ˙Is¸ can (2014d), 2.5. Lemma. If one takes a ¼ 1 and wð xÞ ¼ 1, one has Noor et al. (2016), Lemma 2.4.
Theorem 10 Let f : I ð0; 1Þ ! R be a differentiable function on I such that f 0 2 L½a; b, where a; b 2 I and a\b. If jf 0 j is p-convex function on ½a; b for p 2 Rnf0g and a [ 0, w : ½a; b ! R is continuous and p-symmetric p p 1=p with respect to a þb , then the following inequality for 2 fractional integrals hold: (i)
If p [ 0,
f ðaÞ þ f ðbÞ a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ 2 J ap ð fw gÞðbp Þ þ J ap ð fw gÞðap Þ a þ
b
kwk1 ðbp ap Þaþ1 ½C1 ða; pÞjf 0 ðaÞj þ C2 ða; pÞjf 0 ðbÞj; Cða þ 1Þ
where
ð19Þ C1 ða; pÞ ¼
and similarly
Z
p½uap þ ð1 uÞbp 1ð1=pÞ
0
Z bp bp 1 p a1 I2 ¼ ðsa Þ ðw gÞðsÞds ð f gÞðtÞ CðaÞ t ap Z bp 1 þ ðt ap Þa1 ð fw gÞðtÞdt CðaÞ ap Z bp 1 ¼ f ðaÞ ðsap Þa1 ðw gÞðsÞds CðaÞ ap Z bp 1 þ ðt ap Þa1 ð fw gÞðtÞdt CðaÞ ap f ðaÞ a Jap þ ðw gÞðbp ÞþJbap ðw gÞðap Þ ¼ 2 þJbap ð fw gÞðap Þ:
¼
(ii)
Z
jð1 uÞa ua j
1
1
0 p½uap
jð1 uÞa ua j þ ð1 uÞbp 1ð1=pÞ
udu
and
C2 ða; pÞ
ð1 uÞdu
with gðxÞ ¼ x1=p , x 2 ½ap ; bp . If p\0, f ðaÞ þ f ðbÞ a Jbp þ ðw gÞðap Þ þ Jaap ðw gÞðbp Þ 2 J ap ð fw gÞðap Þ þ J ap ð fw gÞðbp Þ b þ
a
kwk1 ðap bp Þaþ1 ½C3 ða; pÞjf 0 ðaÞj þ C4 ða; pÞjf 0 ðbÞj; Cð a þ 1 Þ
ð20Þ
where
123
Iran J Sci Technol Trans Sci
C3 ða; pÞ ¼ ¼
Z
1
jð1 uÞa ua j
0 p½uap
Z
0
1
þ ð1
uÞbp 1ð1=pÞ
jð1 uÞa ua j p½uap þ ð1 uÞbp 1ð1=pÞ
udu
and
C4 ða; pÞ
ð1 uÞdu
with gðxÞ ¼ x1=p , x 2 ½bp ; ap . Proof (i)
Let p [ 0. Using Lemma 2-i, it follows that f ðaÞ þ f ðbÞ a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ 2 Jaap þ ð fw gÞðbp Þ þ Jbap ð fw gÞðap Þ R Z bp t p a1 1 ap ðb sÞ ðw gÞðsÞds 0 ð f gÞ ðtÞ dt: R bp CðaÞ ap ðs ap Þa1 ðw gÞðsÞds t
ð21Þ p p 1=p Since w is p-symmetric with respect to a þb , 2
1=p using Definition 4 we have w x ¼ w ½ap þ bp x1=p for all x 2 ½ap ; bp :
A combination of (21) and (22) gives f ðaÞþf ðbÞ a Jap þ ðw gÞðbp ÞþJbap ðw gÞðap Þ 2 Jaap þ ð fw gÞðbp ÞþJbap ð fw gÞðap Þ 2 R ap þbp R p p 3 a þb t 2 ðsap Þa1 ðw gÞðsÞ ds ð f gÞ0 ðtÞ dt t 1 6 ap 7 4 5 0 CðaÞ þ Rabppþbp R t p a1 ds ð f g Þ dt ð sa Þ ð w g Þ ð s Þ ð t Þ ap þbp t 2 2 R ap þbp R p p 3 a þb t 2 ðsap Þa1 ds ð f gÞ0 ðtÞ dt t kwk1 6 ap 7 4 5 CðaÞ þ Rabppþbp R t p a1 ð f gÞ0 ðtÞ dt ð sa Þ ds p p a þb t 2 2 R ap þbp R p p 1 3 a þb t 2 ðsap Þa1 ds 1ð1=pÞ f 0 t1=p dt ap t 7 kwk1 6 pt 6 1 7 5 CðaÞ 4 R bp R t a1 0 1=p p þ ap þbp ap þbp t ðsa Þ ds 1ð1=pÞ f t dt 2 pt 2 3 R ap þbp ðbp tÞa ðt ap Þa 0 1=p 2 f t dt 7 p 6 a 1 ð 1=p Þ kwk1 6 pt 7 6 7: Cðaþ1Þ 4 R bp ðt ap Þa ðbp tÞa 0 1=p 5 þ ap þbp f t dt 2 pt1ð1=pÞ
Setting t ¼ uap þ ð1 uÞbp and dt ¼ ðap bp Þdu gives
Z t Z bp ðbp sÞa1 ðw gÞðsÞds ðs ap Þa1 ðw gÞðsÞds p t a Z bp Z t ¼ ðs ap Þa1 ðw gÞðsÞds þ ðs ap Þa1 ðw gÞðsÞds ap þbp t bp Z t ¼ ðs ap Þa1 ðw gÞðsÞds p p 8 a þb t p p R ap þbp t > > ðs ap Þa1 ðw gÞðsÞ ds; t 2 ap ; a þ b > < t 2 p : Rt > a þ bp p > p a1 > ;b : ap þbp t ðs a Þ ðw gÞðsÞ ds; t 2 2
ð22Þ
f ð aÞ þ f ð bÞ a a p a p p a p Jap þ ðw gÞðb Þ þ Jbp ðw gÞða Þ Jap þ ð fw gÞðb Þ þ Jbp ð fw gÞða Þ 2 2 R1 3 ð1 uÞa ua 0 p p 1=p 2 f ½ ua þ ð 1 u Þb du 0 7 p½uap þ ð1 uÞbp 1ð1=pÞ kwk1 ðbp ap Þaþ1 6 6 7 6 7 a a 4 R1 5 Cða þ 1Þ u ð 1 uÞ 0 p p 1=p f ½ ua þ ð 1 u Þb þ 1 du 1 ð 1=p Þ 2 p½uap þ ð1 uÞbp Z aþ1 1 jð1 uÞa ua j kw k1 ð bp ap Þ 0 p p 1=p ¼ f ½ ua þ ð 1 u Þb du: 1ð1=pÞ C ð a þ 1Þ 0 p½uap þ ð1 uÞbp
123
ð23Þ
Iran J Sci Technol Trans Sci
Since jf 0 j is p-convex function on ½a; b, we have
(3)
If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has the following Hermite–Hadamard inequality for harmonically convex functions: Z b f ð aÞ þ f ð bÞ ab f ð xÞ dx 2 b a a x2 ba ½C3 ð1; 1Þjf 0 ðaÞj þ C4 ð1; 1Þjf 0 ðbÞj: ab
(4)
If one takes p ¼ 1 and a ¼ 1, one has the following Hermite–Hadamard–Feje´r inequality for harmonically convex functions:
0 1=p ujf 0 ðaÞj þ ð1 uÞjf 0 ðbÞj: f ½uap þ ð1 uÞbp
ð24Þ A combination of (23) and (24) gives
f ðaÞ þ f ðbÞ a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ 2 Jaap þ ð fw gÞðbp Þ þ Jbap ð fw gÞðap Þ kwk1 ðbp ap Þaþ1 Cða þ 1Þ 2 3 R1 jð1 uÞa ua j 0 udu f ð a Þ j j 0 6 7 p½uap þ ð1 uÞbp 1ð1=pÞ 6 7 6 7 a a 4 R1 5 jð1 uÞ u j ð1 uÞdujf 0 ðbÞj þ 0 1 ð 1=p Þ p p p½ua þ ð1 uÞb
¼
(ii)
(2) (3) (4)
(2)
(5)
˙Is¸ can If one takes p ¼ 1, one has (2015), Theorem 2.6. If one takes p ¼ 1 and wð xÞ ¼ 1, one has Sarıkaya et al. (2013), Theorem 3. If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has Dragomir and Agarwal (1998), Theorem 2.2. If one takes a ¼ 1 and wð xÞ ¼ 1, one has Noor et al. (2016), Theorem 3.1. In Theorem 10, one can see the following.
If one takes p ¼ 1 and a ¼ 1, one has the following Hermite–Hadamard–Feje´r inequality for convex functions: Z Z b 1 f ð aÞ þ f ð bÞ b 1 wð xÞdx f ð xÞwð xÞdx b a 2 ba a a kwk1 ðb aÞ ½C1 ð1; 1Þjf 0 ðaÞj þ C2 ð1; 1Þjf 0 ðbÞj: 2
If one takes p ¼ 1 and wð xÞ ¼ 1, one has the following Hermite–Hadamard inequality for harmonically convex functions via fractional integrals:
Theorem 11 Let f : I ð0; 1Þ ! R be a differentiable function on I such that f 0 2 L½a; b, where a; b 2 I and a\b. If jf 0 jq , q 1, is p-convex function on ½a; b for p 2 Rnf0g, a [ 0, w : ½a; b ! R is continuous and p p p 1=p symmetric with respect to a þb , then the following 2 inequality for fractional integrals holds: (i)
If p [ 0, f ð aÞ þ f ð bÞ a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ 2 Jaap þ ð fw gÞðbp Þ þ Jbap ð fw gÞðap Þ kwk1 ðbp ap Þaþ1 11q C5 ða;pÞ Cða þ 1Þ q q 1
C1 ða;pÞjf 0 ðaÞj þC2 ða;pÞjf 0 ðbÞj q ;
If one takes p ¼ 1, one has the following Hermite– Hadamard–Feje´r inequality for harmonically convex functions via fractional integrals: i f ðaÞþf ðbÞ h a a J1=bþ ðw gÞð1=aÞþJ1=a ðw gÞð1=bÞ 2 h i a a J1=bþ ð fw gÞð1=aÞþJ1=a ð fw gÞð1=bÞ kwk1 abðbaÞ ba a ½C3 ða;1Þjf 0 ðaÞjþC4 ða;1Þjf 0 ðbÞj: Cðaþ1Þ ab
kwk1 ðb aÞ2 ½C3 ð1; 1Þjf 0 ðaÞj þ C4 ð1; 1Þjf 0 ðbÞj: 2
f ðaÞ þ f ðbÞ Cða þ 1Þ h i a a 1 1a J1=bþ ð f gÞð1=aÞ þ J1=a ð f gÞð1=bÞ 2 2 ba ba ½C3 ða;1Þjf 0 ðaÞj þ C4 ða;1Þjf 0 ðbÞj: ab
In Theorem 10, one can see the following.
Corollary 1 (1)
This completes the proof of i. The proof is similar to i.
Remark 3 (1)
kwk1 ðbp ap Þaþ1 ½C1 ða; pÞjf 0 ðaÞj þ C2 ða; pÞjf 0 ðbÞj: Cða þ 1Þ
Z b Z f ðaÞ þ f ðbÞ b wðxÞ f ðxÞwðxÞ dx dx 2 x2 x2 a a
where C1 ða; pÞ, C2 ða; pÞ are the same in Theorem 10, Z 1 jð1 uÞa ua j C5 ða; pÞ ¼ du 1ð1=pÞ 0 p½uap þ ð1 uÞbp (ii)
with gðxÞ ¼ x1=p , x 2 ½ap ; bp . If p\0,
123
Iran J Sci Technol Trans Sci
f ð aÞ þ f ð bÞ a Jbp þ ðw gÞðap Þ þ Jaap ðw gÞðbp Þ 2 Jbap þ ð fw gÞðap Þ þ Jaap ð fw gÞðbp Þ kwk1 ðap bp Þaþ1 11q C6 ða; pÞ Cða þ 1Þ q q 1 C3 ða; pÞjf 0 ðaÞj þC4 ða; pÞjf 0 ðbÞj q ;
with gðxÞ ¼ x
p
If one takes p ¼ 1 and a ¼ 1, one has the following Hermite–Hadamard–Feje´r inequality for convex functions: Z Z b 1 f ðaÞþf ðbÞ b 1 wð xÞdx f ð xÞwð xÞdx ba 2 ba a a kwk1 ðbaÞ 11q C5 ð1;1Þ 2 q q 1 C1 ð1;1Þjf 0 ðaÞj þC2 ð1;1Þjf 0 ðbÞj q :
(3)
If one takes p ¼ 1, one has the following Hermite– Hadamard–Feje´r inequality for harmonically convex functions via fractional integrals: i f ðaÞþf ðbÞ h a a J ð w g Þ ð 1=a ÞþJ ð w g Þ ð 1=b Þ 1=bþ 1=a 2 h i a a J1=bþ ð fw gÞð1=aÞþJ1=a ð fw gÞð1=bÞ a kwk1 abðbaÞ ba Cðaþ1Þ ab 11q q q 1 C6 ða;1Þ C3 ða;1Þjf 0 ðaÞj þC4 ða;1Þjf 0 ðbÞj q :
(4)
If one takes p ¼ 1 and a ¼ 1, one has the following Hermite–Hadamard–Feje´r inequality for harmonically convex functions: Z Z b f ð aÞ þ f ð bÞ b w ð x Þ f ð xÞwð xÞ dx dx 2 x2 x2 a a
, x 2 ½b ; a .
Let p [ 0. Using (23), power mean inequality and the p-convexity of jf 0 jq ; it follows that
kwk1 ðbp ap Þaþ1 Cðaþ1Þ
Z
1
Z
jð1uÞa ua j
1 0
p½uap þ ð1uÞbp 1ð1=pÞ
!11q du
!1q q 0 p p 1=p f ½ua þ ð1uÞb du 1ð1=pÞ
jð1uÞa ua j
p½uap þ ð1uÞbp !11q Z 1 kwk1 ðbp ap Þaþ1 jð1uÞa ua j du 1ð1=pÞ Cðaþ1Þ 0 p½uap þ ð1uÞbp ! " Z 1 jð1uÞa ua j q
udu jf 0 ðaÞj 1ð1=pÞ p 0 p½ua þ ð1uÞbp ! #1q Z 1 jð1uÞa ua j q 0 ð 1u Þdu f ð b Þ þ j j 1ð1=pÞ 0 p½uap þ ð1uÞbp 0
¼
(ii)
This completes the proof of i. The proof is similar to i.
Remark 4 (1) (2) (3) (4)
kwk1 ðbp ap Þaþ1 11q q q 1 C5 ða;pÞ C1 ða;pÞjf 0 ðaÞj þC2 ða;pÞjf 0 ðbÞj q : Cðaþ1Þ
In Theorem 11, one can see the following.
˙Is¸ can If one takes p ¼ 1, one has (2015), Theorem 2.8. If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has Pearce and Pecaric (2000), Theorem 1. If one takes p ¼ 1 and wð xÞ ¼ 1, one has ˙Is¸ can and Wu (2014), Theorem 5. If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has ˙Is¸ can (2014d), 2.6. Theorem.
123
If one takes p ¼ 1 and wð xÞ ¼ 1, one has the following Hermite–Hadamard inequality for convex functions via fractional integrals:
(2)
p
f ðaÞþf ðbÞ a Jap þ ðw gÞðbp ÞþJbap ðw gÞðap Þ 2 Jaap þ ð fw gÞðbp ÞþJbap ð fw gÞðap Þ Z kwk1 ðbp ap Þaþ1 1 jð1uÞa ua j 1ð1=pÞ p Cðaþ1Þ 0 p½ua þ ð1uÞbp 0 p p 1=p f ½ua þ ð1uÞb du
In Theorem 11, one can see the following.
f ðaÞ þ f ðbÞ Cða þ 1Þ a a J f ðbÞ Jb f ðaÞ 2 2ðb aÞa aþ ðb aÞ 11q q q 1 C5 ða; 1Þ C1 ða; 1Þjf 0 ðaÞj þC2 ða; 1Þjf 0 ðbÞj q : 2
Proof (i)
If one takes a ¼ 1 and wð xÞ ¼ 1, one has Noor et al. (2016), Theorem 3.2.
Corollary 2 (1)
where C3 ða; pÞ, C4 ða; pÞ are the same in Theorem 10, Z 1 jð1 uÞa ua j du C6 ða; pÞ ¼ 1ð1=pÞ 0 p½uap þ ð1 uÞbp 1=p
(5)
kwk1 ðb aÞ2 11q C6 ð1; 1Þ 2 q q 1 C3 ð1; 1Þjf 0 ðaÞj þC4 ð1; 1Þjf 0 ðbÞj q :
Theorem 12 Let f : I ð0; 1Þ ! R be a differentiable function on I such that f 0 2 L½a; b, where a; b 2 I and a\b. If jf 0 jq , q [ 1, is p-convex function on ½a; b for p 2 Rnf0g, a [ 0, 1q þ 1r ¼ 1, w : ½a; b ! R is continuous p p 1=p , then the foland p-symmetric with respect to a þb 2 lowing inequality for fractional integrals holds:
Iran J Sci Technol Trans Sci
(i)
If p [ 0,
0
p½uap þ ð1 uÞbp 1ð1=pÞ
Z
1
C7 ða; p; r Þ ¼
Z
1 0
!r
a
jð1 uÞ ua j p½uap þ ð1 uÞbp 1ð1=pÞ
¼ du
0
q
1q
ujf ðaÞj þð1 uÞjf ðbÞj du
¼
where Z
1 0
jð1 uÞa ua j p½uap þ ð1 uÞbp 1ð1=pÞ
!r
!r
!1r du
Remark 5
Proof
(1) (2)
Let p [ 0. Using (23), Ho¨lder’s inequality and the p-convexity of jf 0 jq ; it follows that
f ðaÞþf ðbÞ a Jap þ ðw gÞðbp ÞþJbap ðw gÞðap Þ 2 Jaap þ ð fw gÞðbp ÞþJbap ð fw gÞðap Þ Z kwk1 ðbp ap Þaþ1 1 jð1uÞa ua j 1ð1=pÞ Cðaþ1Þ 0 p½uap þ ð1uÞbp kwk1 ðbp ap Þaþ1
f 0 ½uap þ ð1uÞbp 1=p du Cðaþ1Þ !r !1r Z 1 a jð1uÞ ua j
du p 0 p½ua þ ð1uÞbp 1ð1=pÞ Z 1 q 1q 0 p p 1=p
du f ½ua þ ð1uÞb
(3)
kwk1 ðbp ap Þaþ1 1r C7 ða; p; r Þ C ða þ 1 Þ 0 1 jf ðaÞjq þjf 0 ðbÞjq q
: 2
This completes the proof of i. The proof is similar to i.
(ii)
du
with gðxÞ ¼ x1=p , x 2 ½bp ; ap .
0
kwk1 ðbp ap Þaþ1 C ða þ 1 Þ Z 1 jð1 uÞa ua j p½uap þ ð1 uÞbp 1ð1=pÞ 0 1 jf ðaÞjq þjf 0 ðbÞjq q
2
f ðaÞ þ f ðbÞ a Jbp þ ðw gÞðap Þ þ Jaap ðw gÞðbp Þ 2 Jbap þ ð fw gÞðap Þ þ Jaap ð fw gÞðbp Þ 0 1 kwk1 ðap bp Þaþ1 1r jf ðaÞjq þjf 0 ðbÞjq q ; C8 ða; p; r Þ Cða þ 1Þ 2
(i)
q
du
0
with gðxÞ ¼ x1=p , x 2 ½ap ; bp . If p\0,
C8 ða; p; rÞ ¼
0
!1r
!r
0
where
(ii)
kwk1 ðbp ap Þaþ1 Cða þ 1Þ Z 1 jð1 uÞa ua j
f ðaÞ þ f ðbÞ a Jap þ ðw gÞðbp Þ þ Jbap ðw gÞðap Þ 2 Jaap þ ð fw gÞðbp Þ þ Jbap ð fw gÞðap Þ 0 1 kwk1 ðbp ap Þaþ1 1r jf ðaÞjq þjf 0 ðbÞjq q C7 ða; p; r Þ ; C ða þ 1 Þ 2
In Theorem 12, one can see the following.
If one takes p ¼ 1, one has I˙s¸ can (2015), Theorem 2.9-i. If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has Dragomir and Agarwal (1998), Theorem 2.3. If one takes p ¼ 1 and a ¼ 1, one has Sarıkaya (2012), Theorem 2.8.
Corollary 3
In Theorem 12, one can see the following.
(1)
If one takes p ¼ 1 and wð xÞ ¼ 1, one has the following Hermite–Hadamard inequality for convex functions via fractional integrals: f ðaÞ þ f ðbÞ Cða þ 1Þ a a J f ðbÞ Jb f ðaÞ 2 2ðb aÞa aþ 0 1 b a 1r jf ðaÞjq þjf 0 ðbÞjq q C7 ða; 1; r Þ : 2 2
(2)
If one takes p ¼ 1 and wð xÞ ¼ 1, one has the following Hermite–Hadamard inequality for harmonically convex functions via fractional integrals:
123
Iran J Sci Technol Trans Sci f ðaÞ þ f ðbÞ Cða þ 1Þ h i a a 1 1a J1=bþ ð f gÞð1=aÞ þ J1=a ð f gÞð1=bÞ 2 2 ba 1 0 b a 1r jf ðaÞjq þjf 0 ðbÞjq q C8 ða; 1; r Þ : ab 2
(3)
(4)
If one takes p ¼ 1, a ¼ 1 and wð xÞ ¼ 1, one has the following Hermite–Hadamard inequality for harmonically convex functions: Z b f ð aÞ þ f ð bÞ ab f ð xÞ dx 2 b a a x2 0 1 b a 1r jf ðaÞjq þjf 0 ðbÞjq q : C8 ð1; 1; r Þ ab 2 If one takes p ¼ 1, one has the following Hermite– Hadamard–Feje´r inequality for harmonically convex functions via fractional integrals: i f ðaÞ þ f ðbÞ h a a J1=bþ ðw gÞð1=aÞ þ J1=a ðw gÞð1=bÞ 2 h i a a ð fw gÞð1=aÞ þ J1=a ð fw gÞð1=bÞ j J1=bþ a 0 1 1 kwk1 abðb aÞ b a jf ða Þjq þ jf 0 ðb Þjq q C8r ða; 1; r Þ : Cða þ 1Þ ab 2
(5)
If one takes p ¼ 1 and a ¼ 1, one has the following Hermite–Hadamard–Feje´r inequality for harmonically convex functions: Z Z b f ðaÞ þ f ðbÞ b wð xÞ f ð xÞwð xÞ dx dx 2 x2 x2 a a 0 1 kwk1 ðb aÞ2 1r jf ðaÞjq þjf 0 ðbÞjq q C8 ð1; 1; r Þ : 2 2
(6)
If one takes a ¼ 1 and wð xÞ ¼ 1, one has the following Hermite–Hadamard inequality for p-convex functions: 0 1 Z b f ðaÞ þ f ðbÞ p f ð xÞ jf ðaÞjq þjf 0 ðbÞjq q dx 2 bp ap a x1p 2 8 p p 1 ð b a Þ > > < C7r ð1; p; r Þ; p[0 2 :
p p 1 > ða b Þ r > : C8 ð1; p; r Þ; p\0 2
3 Conclusion In Theorem 9, Hermite–Hadamard–Feje´r type inequalities for p-convex functions in fractional integral forms are built. In Lemma 2, an integral identity, and in Theorems 10, 11 and 12, some Hermite–Hadamard–Feje´r type integral inequalities for p-convex functions in fractional integral
123
forms are obtained. In Corollaries 1, 2 and 3, some Hermite–Hadamard and Hermite–Hadamard–Feje´r inequalities for convex, harmonically convex and p-convex functions are given. Some results presented in Remarks 3, 4 and 5 provide extensions of others given in earlier works for convex, harmonically convex and p-convex functions.
Compliance with ethical standards Conflict of interest The authors declare that they have no competing interests.
References Bombardelli M, Varosˇanec S (1869) Properties of h-convex functions related to the Hermite Hadamard Feje´r inequalities. Comput Math Appl 58(2009):1877 Chen F, Wu S (2014) Feje´r and Hermite–Hadamard type inqequalities for harmonically convex functions. J Appl Math 2014. Article id:386806 Dahmani Z (2010) On Minkowski and Hermite–Hadamard integral inequalities via fractional integration. Ann Funct Anal 1(1):51–58 Dragomir SS, Agarwal RP (1998) Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl Math Lett 11(5):91–95 Feje´r L (1906) Uber die Fourierreihen, II. Math Naturwise Anz Ungar Akad Wiss 24:369–390 (in Hungarian) Fang ZB, Shi R (2014) On the ðp; hÞ-convex function and some integral inequalities. J Inequal Appl 2014:45 Hadamard J (1893) E´tude sur les proprie´te´s des fonctions entie`res et en particulier d’une fonction conside´re´e par Riemann. J Math Pures Appl 58:171–215 Hermite Ch (1883) Sur deux limites d’une inte´grale de´finie. Mathesis 3:82–83 I˙s¸ can ˙I (2013) New estimates on generalization of some integral inequalities for s-convex functions and their applications. Int J Pure Appl Math 86(4):727–746 ˙Is¸ can ˙I (2014a) Generalization of different type integral inequalities for s-convex functions via fractional integrals. Appl Anal 93(9):1846–1862 I˙s¸ can ˙I (2014b) On generalization of different type integral inequalities for s-convex functions via fractional integrals. Math Sci Appl E Notes 2(1):55–67 ˙Is¸ can ˙I (2014c) Some new general integral inequalities for h-convex and h-concave functions. Adv Pure Appl Math 5(1):21–29 ˙Is¸ can ˙I (2014d) Hermite–Hadamard type inequalities for harmonically convex functions. Hacet J Math Stat 43(6):935–942 I˙s¸ can I˙, Wu S (2014) Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl Math Comput 238:237–244 I˙s¸ can ˙I (2015) Hermite–Hadamard-Feje´r type inequalities for convex functions via fractional integrals. Studia Universitatis Babes¸ Bolyai Mathematica 60(3):355–366 I˙s¸ can ˙I (2016a) Ostrowski type inequalities for p-convex functions. N Trends Math Sci 4(3):140–150 I˙s¸ can ˙I (2016b) Hermite–Hadamard type inequalities for p-convex functions. Int J Anal Appl 11(2):137–145 I˙s¸ can ˙I (2016c) Hermite–Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions. https://doi.org/
Iran J Sci Technol Trans Sci 10.13140/RG.2.1.2589.4801. https://www.researchgate.net/pub lication/299610889 ˙Is¸ can I˙, Kunt M, Yazıcı N (2016d) Hermite–Hadamard–Feje´r type inequalities for harmonically convex functions via fractional integrals. N Trends Math Sci 4(3):239–253 Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam Mihai MV, Noor MA, Noor KI, Awan MU (2015) New estimates for trapezoidal like inequalities via differentiable ðp; hÞ-convex functions. https://doi.org/10.13140/RG.2.1.5106.5046. https:// www.researchgate.net/publication/282912293 Noor MA, Noor KI, Mihai MV, Awan MU (2016) Hermite-Hadamard inequalities for differentiable p-convex functions using hypergeometric functions. Publications de L’institut Mathematique, Nouvelle se´rie, tome 100(114):251–257 Pearce CEM, Pecaric J (2000) Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl Math Lett 13(2):51–55
Sarıkaya MZ (2012) On new Hermite Hadamard Feje´r type integral inequalities. Stud Univ Babes¸ Bolyai Math 57(3):377–386 Sarıkaya MZ, Set E, Yaldız H, Bas¸ ak N (2013) Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math Comput Model 57(9):2403–2407 Tseng K-L, Yang G-S, Hsu K-C (2011) Some inequalities for differentiable mappings and applications to Feje´r inequality and weighted trapezoidal formula. Taiwan J Math 15(4):1737–1747 Wang J, Li X, Fecˇkan M, Zhou Y (2012) Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity. Appl Anal 92(11):2241–2253 Wang J, Zhu C, Zhou Y (2013) New generalized Hermite–Hadamard type inequalities and applications to special means. J Inequal Appl 2013:325 Zhang KS, Wan JP (2007) p-Convex functions and their properties. Pure Appl Math 23(1):130–133
123