THE
BOTANICAL
REVIEW
APRIL--JUNE, 1982
VOL. 48
No. 2
SESQUITERPENE L A C T O N E S AS T A X O N O M I C C H A R A C T E R S IN THE A S T E R A C E A E 1
FREDERICK C. SEAMAN
Harding Laboratories The New York Botanical Garden Bronx, New York 10458 USA
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I. Intro duction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II. Biogenesis and Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Biogenesis of Major Skeletal Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Guaianolides, Pseudoguaianolides and Se c o-de ri va t i ve s . . . . . . . . . . . . . . . . Guaianolides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~___ A m b r o s a n o l i d e s and S e c o a m b r o s a n o l i d e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xanthanolides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H e l e n a n o l i d e s and S e c o h e l e n a n o l i d e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. E u d e s m a n o l i d e s , S e c o e u d e s m a n o l i d e s and E r e m o p h i l a n o l i d e s . . . . . . . . . . Eudesmanolides .............................................................. Secoeudesmanolides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Eremophilanolides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bakkenolides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. G e r m a c r a d i e n o l i d e s , G e r m a c r a n o l i d e s and E l e m a n o l i d e s . . . . . . . . . . . . . . . . Germacradienolides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elemanolides ................................................................ III. Sesq uiterp ene L a c t o n e s as T a x o n o m i c C h a r a c t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C h a r a c t e r Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T a x o n o m i c L e v e l of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. Ambrosia ambrosioides (Cav.) P a y n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Ambrosia chamissonis (Less.) G r e e n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. Melampodium lineariloburn DC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. Gaillardia pulchella Foug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. Ambrosia camphorata (Greene) P a y n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Melampodium leucanthum Torr. et G r a y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
123 124 132 133 133 133 135 136 136 137 137 139 139 139 139 139 142 143 145 154 155 156 157 158 160 162
1 Rep rin ts of this special issue [48(2)] may be obtained from: Publications Office, The N e w Y o r k Botanical Garden, Bronx, N Y 10458, USA. P R I C E (includes pos t a ge and handling fee): U.S. ORDERS: $22.50 NON-U.S. ORDERS: $24.50. ( P a y m e n t in U.S. c u r r e n c y dra w n on a U.S. bank. T h a n k you.) The Botanical R e v i e w 48: 121-592, April-June, 1982
9 1982 The New York Botanical Garden
121
122
THE BOTANICAL REVIEW
7. A m b r o s i a d e l t o i d e a ( T o r r . ) P a y n e a n d A . c h e n o p o d i f o l i a ( B e n t h . ) P a y n e ....................................................................................
162
8. A m b r o s i a c o n f e r t i f l o r a D C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
165
9. T h e A m b r o s i a c u m a n e n s i s H B K . - A . p s i l o s t a c h y a D C . - A . a r t e m i s i i folia L. Complex .............................................................. 10. A r t e m i s i a t r i d e n t a t a N u t t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11. A m b r o s i a d u m o s a ( G r a y ) P a y n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Good versus Bad Characters ........................................................ Qualitative versus Quantitative Characters ........................................ Functional versus Non-Functional Character States .............................. IV.
Biosynthetic Divergence and Parallelism .......................................... Subfamilial and Tribal Chemistries .................................................... Subfamilial Classification
............................................................
Tribal Classification .................................................................... 1. V e r n o n i e a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2~ E u p a t o r i e a e
...................................................................
3. A s t e r e a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. I n u l e a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. H e l i a n t h e a e .................................................................... 1. M e l a m p o d i i n a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Examples of Chemical Characterization of Species Relationships within Melampodium and Tetragonotheca ............ 2. Z i n n i i n a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3. E c l i p t i n a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4. V e r b e s i n i n a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5. 6. 7. 8. 9. 10. 11. 13. 14.
Helianthinae ............................................................ Gaillardiinae ...................................................... Coreopsidinae .................................................... Fitchiinae ............................................................... Bahiinae .................................................................. Madiinae ............................................................ G a l i n s o g i n a e a n d 12. N e u r o l a e n i n a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Engelmanniinae ..................................................... Ambrosiinae ............................................................ C h e m i c a l E v i d e n c e a s it P e r t a i n s t o t h e I n c l u s i o n o f F r a n s e r i a in A m b r o s i a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S p e c i e s R e l a t i o n s h i p s in A m b r o s i a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15. M i l l e r i i n a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. A n t h e m i d e a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tribal Chemistry ......................................................... Generic Chemistry 7.
8. 9. 10.
..........................................................
Artemisia .................................................................. Senecioneae .................................................................. Generic Considerations .................................................... Senecio .................................................................... Petasites .............................................................. Othonna ................................................................... Euryops ................................................................... Calenduleae ........................................................ Arctoteae ...................................................................... Cynareae ........................................................................
167 169 172 180 182 183 184 188 189 189 190 195 195 195 201 201 203 203 204 204 204 205 206 206 206 207 207 208 209 209 211 213 214 214 217 217 222 227 227 228 228 229 229 229 230
SESQUITERPENE LACTONES--ASTERACEAE
123
11. M u t i s i e a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12. L a c t u c e a e ......................................................................
232 233
13. T a g e t e a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14. L i a b e a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
234 234
15. A r n i c e a e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. A c c u m u l a t e d S e s q u i t e r p e n e L a c t o n e R e p o r t s o f t h e A s t e r a c e a e . . . . . . . . . . . . . . . . . .
234 235
VI. VII. VIII. IX. X.
Conclusions ................................................................................ Acknowledgments ........................................................................ Literature Cited .......................................................................... Appendix A ............................................................................... Appendix B ................................................................................
236 239 495 538 551
Abstract
The Asteraceae is characterized by structurally diverse sesquiterpene lactones and furanosesquiterpenes. In this review the tribal, subtribal and generic distribution of sesquiterpene lactones is examined and the compounds' utility as taxonomic characters discussed. Sesquiterpene lactones fulfill the major requirements for good analytic and synthetic characters. Studies of infraspecific sesquiterpene lactone variation indicate that different elements within complex taxa are often defined by distinct chemistries, termed chemotypes. Chemotypes have been identified within many of the thoroughly investigated taxa: Ambrosia camphorata, A. chamissonis, A. confertiflora, the A. cumanensis-A. psilostachya-A, artemisiifolia complex, A. dumosa, Artemisia tridentata, Gaillardia pulchella and Melampodium leucanthum. Such an analytic usage is mostly restricted to the infraspecific level. Synthetic usage at the interspecific level and above profits from the application of a biogenetically based methodology for sorting out the complex molecules' carbon-skeletal and substitutional features into unit characters. Cladistics or Hennigian phylogenetic systematics provides a useful framework for such an analysis. Preliminary surveys indicate that sesquiterpene lactones are especially good characters for differentiating subtribes within several major tribes: the Vernonieae, Heliantheae and Mutisieae. As yet, too few data are available for other tribes to discern such patterns. Species surveys in Vernonia, Ambrosia, Iva, Parthenium, Tetragonotheca and Artemisia demonstrate that sesquiterpene lactones are useful in discerning infrageneric groups. The biogenetic cladistic analysis of the interspecific sesquiterpene lactone variation in Iva shows the efficacy of this analytical methodology. At present, such biogenetically based approaches are impeded by limited biosynthetic evidence and the erratic distribution of sesquiterpene lactones within the family. Instances of apparent displacement of sesquiterpene lactones by other terpenoids (i.e. sesquiterpene furans, alco-
124
THE BOTANICAL REVIEW
hols and acids, diterpenes, diterpene acids, etc.) at various taxonomic levels suggest that ultimately sesquiterpene lactones must be interpreted as taxonomic characters in the context of the family's total terpene chemistry. All taxa from which sesquiterpene lactones have been reported are listed together with the compound names, major structural features and the literature cited. A less-complete listing is provided for taxa producing furanosesquiterpenes. Structures for all reported compounds are included. Two appendices listing alphabetically taxa and compounds and relevant text page numbers permit cross-indexing of plants and compounds. There is certain to come a day when the present gap between organismally centered systematics and molecularly centered systematics become[s] first, a blur, then a conceptual framework from which will grow remarkable insights into the whole of biological evolution. B. L. Turner (1%7)
I. Introduction
Terpenoids are the most ubiquitous and structurally diverse class of natural products. Common plant terpene constituents include the essential oils, iridoids, abscisic acid, gibberellins, steroids, cardiac glycosides, saponins and carotenoids. The biosynthetic basis for the terpene nomenclature is determined by the number of five-carbon isoprene units incorporated into the carbon skeleton. Three such isoprene units linked covalently yield a sesquiterpene. The biosynthetically simplest sesquiterpene is farnesyl pyrophosphate (Fig. 1), an unsaturated linear molecule which feeds into several alternative pathways, generating the major subclasses of sesquiterpenes: the bisabolanes, humulanes, germacranes, cadinanes, etc. Germacrane biogenesis, the pathway of primary interest in the present review, is further subdivided into branches based on different modes of secondary cyclization. Common germacrane offshoots include the guaianes, eudesmanes and elemanes. Even these latter specialized structures are widely distributed and of little taxonomic interest at present. However, once oxidation and cyclization of the germacrane's three-carbon sidechain yields a lactone ring, a sesquiterpene class with greatly restricted distribution results. Various dicotyledonous families produce simple germacrane-derived sesquiterpene lactones, but only the Asteraceae (Compositae) is characterized by an array of structurally modified and highly substituted compounds. Over 1300 different structures have been isolated from members of all but two of the family's 15 tribes. Clearly, the potential exists here for the exploitation of a taxonomically useful set of chemical characters.
SESQUITERPENE LACTONES--ASTERACEAE
125
For any natural products class, graduation from potential to routine taxonomic use requires the genesis of a precise methodology for converting raw chemical data into taxonomic characters. The 1977 edition of "The Biology and Chemistry of the Compositae" detailed the progress made in gathering sesquiterpene lactone distributional data. However, it also revealed the comparatively few advances made in formulating methodologies for treating these compounds (or any class of terpenes) as taxonomic characters. Since then, the number of reported compounds has more than doubled, generating a rapidly growing pool of biologically useful information. Despite the expanding data base, the task of abstracting from this chemical information a comprehensive system for applying sesquiterpene lactones to taxonomic problems remains formidable. At least now it is possible to describe those factors which have impeded progress toward this goal of taxonomic utility. 1. When considering the distribution of all sesquiterpene lactone constituents across the range of a taxon, simple species-specific patterns are the exception rather than the rule. Thus, a taxon's chemistry can only be properly defined in terms which convey on one hand the degree of infraspecific variation and on the other, the taxon's unique biogenetic potential reflected in its total complement of biosynthetically-related compounds. In defining a taxon's chemistry, the initial response to the qualitatively variable chemical pattern is often one of despair. Usually, a subsequent, careful study of the array of compounds isolated from different collections of the taxon discloses a high degree of biogenetic relatedness, reflecting activity in only a limited part of the total system of sesquiterpene lactone biosynthetic pathways. 2. In comparing taxa, the simplest use of chemistry is the determination of the presence or absence of each member of a set of biosynthetically homologous compounds. Nevertheless, recording presence/absence for sesquiterpene lactones is an underutilization of available structural information given their stereochemical and substitutional complexity. For example, allied taxa may produce two highly complex compounds which, with only one minor substitutional exception, are identical. If the only two character states are defined as "identical" or "non-identical," these compounds must be scored as non-identical even though they are biosynthetically closely linked. Obviously, a more suitable unit character is needed which can be described by states which communicate degree of structural difference. In one version of a more satisfactory data-handling system, pairs of homologous compounds are compared by contrasting one-by-one the structures' analogous regions. When a structural difference is noted in one region, the difference is quantified according to the number of hypothetical biosynthetic steps necessary to convert one pair member's
126
THE BOTANICAL REVIEW
structural expression into the other. If the pair differ in many structural features, the number of steps, the biogenetic distance, is large; if they differ in only one feature, the distance value is small; if they are identical the value is zero. Comparison of all structural differences between sets of homologous compounds from two different taxa yields a total biogenetic distance value which presumably corresponds to the phylogenetic distance between the pair of taxa. Alternative analytical approaches involve formalized systems of chemical data-handling, particularly phylogenetic systems. Current trends in chemical data analysis parallel the broader plant systematics community's interest in such codified methodologies as cladistics. In a cladistic analysis, sets of chemical characters are classified as plesiomorphic (primitive) or apomorphic (derived) based on various biogenetic and distributional criteria. An exhaustive distributional survey of a set of homologous compounds followed by a biogenetically based evaluation of the relative distribution of each compound often suggests chemical evolutionary trends within a group of taxa. For each compound present in this taxonomic group, the degree of derivation is encoded onto a data matrix in a fashion which records the relative biogenetic and evolutionary position of the compound. Computer analysis of the chemical data set generates phylogenies for the group of taxa, the result being plotted as a cladogram, a rooted-tree diagram which depicts the degree of phylogenetic affinity of the taxa. Clearly, complex sesquiterpene lactones lend themselves to these types of biogenetically based analytic approaches. But, we must recognize that although mechanistically sound, the proposed steps of the sesquiterpene lactone biosynthetic pathways have not been established by the usual labeling or enzyme studies. As discussed later, different precursors and mechanisms have been proposed for the same important biosynthetic steps, raising some doubts about the course of some biogenetic routes. Also, any taxonomic procedure which assigns numerical values to a series of interrelated biosynthetic steps ignores the mechanistic possibility that certain chemical reactions predispose the molecule to subsequent changes, not all of which are necessarily enzyme-mediated or, more importantly, controlled by enzymes specific for the particular molecule. Thus, both natural products chemists (on mechanistic grounds) and taxonomists (on intuitive grounds) recognize, in the attempts to measure biogenetic distance, an increased danger of improperly subdividing unit characters by automatically associating a specific enzyme-mediated biosynthetic step with each structural modification. Similarly, in cladistic analyses, determinations of the degree of biogenetic homology and the primitive-derived polarity of homologous compounds are requisite first
SESQUITERPENE LACTONE S---ASTERACEAE
127
steps which, given the limited sesquiterpene lactone biosynthetic data, should be conducted very carefully. In light of the benefits associated with biogenetically based data handling systems, the second and potentially most frustrating impediment is this lack of biosynthetic information. Although we can describe in general terms the systems of analysis best suited for sesquiterpene lactones, our limited biosynthetic knowledge dictates that we move cautiously in erecting such a system today. Accordingly, a realistic objective of the present review is to simply indicate where to lay the foundation for such a proposed system. 3. Presumably in response to selection pressures associated with predation, the members of the Asteraceae display a facility for shifting their biosynthetic emphasis away from one class of terpenoids to another. Whereas one cluster of related taxa may produce a complex array of biogenetically related compounds of one class, a closely related element may develop an equal level of biogenetic complexity, but in an altogether different class of terpenoids. There are examples at the specific, generic, subtribal and tribal level where the most ubiquitous terpenoid class, the sesquiterpene lactones, are replaced as the dominant compounds by such constituents as non-lactonic sesquiterpenes, diterpenes or triterpenes. For instance, the tribe Astereae synthesizes a broad array of biologically active diterpenes in place of sesquiterpene lactones. The first two impediments to the taxonomic use of sesquiterpene lactones will be dealt with in great detail in the following sections. All available sesquiterpene lactone information will be evaluated in order to assess the significance of infraspecific variation and exploit the links between distributional trends of similar compounds and their proposed biosynthetic (biogenetic) relationships. The third difficulty can only properly be handled in a discussion of the taxonomic utility of terpenoids in general. Although treatment of total terpene variation in the Asteraceae is beyond the scope of the present study, it does represent the next logical step in the application of chemical characters to taxonomic problems in this family. Because sesquiterpene lactones represent only one of many structurally diverse classes of mono- (C10), sesqui- (C15), di- (C20) and triterpenes (C30) found in the Asteraceae, the taxonomic utility of sesquiterpene lactones must ultimately be evaluated in the context of the entire array of terpenoids. Aside from the taxonomic benefits of an exhaustive family-wide survey, consideration of total sesquiterpene lactone variation also contributes to an understanding of the functions of these compounds. Initial experimental studies suggest a role for sesquiterpene lactones in reducing herbivore pressure (598,712, 748). In summary, the reports indicate that
128
THE BOTANICAL REVIEW
these compounds are toxic to a variety of insects and can be shown experimentally to deter insect predation at concentrations equivalent to those commonly found in plant tissues (203,598). Sesquiterpene lactones serve as deterrents to grazing sheep and cattle, and in some cases are responsible for severe livestock losses. They have also demonstrated microbial growth inhibition, contact dermatitis initiation, and allelopathy (598, 748). Sesquiterpene lactones occur predominantly in tissues which are most attractive to herbivores, such as leaves, phyllaries and achenes, and can be found in glandular trichomes or in the exudate covering the surface of these organs. Although the quantity of sesquiterpene lactones varies, it is common for them to be synthesized by Ambrosia, Artemisia, Parthenium, Vernonia and other genera in concentrations of one to several percent of the dry weight of the plant. Thus, sesquiterpene lactone synthesis can be a major investment in terms of the plant's energy outlay. Because sesquiterpene lactones and the related furanoeremophilanes constitute the most predictable chemical characteristic of the Asteraceae and possess potent biological activity, it seems likely that these compounds have contributed to the relative success of this family. Similar roles are attributed to natural products in other plant families: glucosinolates in the Brassicaceae (Cruciferae) (918), cucurbitacins in the Cucurbitaceae (598), isoflavonoids and their derivatives in the Papilionoideae (Leguminosae) (361), non-protein amino acids in the Leguminosae (784), and the complex indole alkaloids of the Loganiaceae, Apocynaceae and Rubiaceae (369). The biological roles of plant natural products are complex and must be investigated by a variety of approaches. In the realm of chemical ecology, the routine methods include: (1) insect bioassays, wherein representative plant compounds are screened to determine their effect on the growth and metabolism of insects and other herbivores, (2) the identification and range determination of generalist and specialist insects associated with the plants producing active compounds and (3) the analysis of herbivory patterns. These findings ultimately must be evaluated in the context of the distribution of the plant compounds used in the experimental studies. One common flaw of chemical ecological research is the pursuit of experimental and field studies of herbivory without thorough documentation of infra- and interspecific variation of the natural products class(es) implicated by these studies. Thus, documentation of the patterns of plant chemical variation serves the mutually-illuminating functions of adding to the knowledge of the chemistry's ecological role, as well as establishing the basis for their taxonomic use. In the following sections, the hypothetical biosynthetic pathways (biogenetic routes) which generate the different sesquiterpene lactone and furanosesquiterpene skeletal types are described and their significance
SESQUITERPENE LACTONES---ASTERACEAE
Farnesyl-OPP
Germacrane
/
Cation
_ I sopen teny ] -0 PP (a)
/
(d)
i/ [o]
14 215 110
Germacrane Acid
O~
13 OH
Hydroxylation at C-6
a
(L)
C-6 Lactonized G.........
(h)
tide
(-~)
9 8
D i me t hy ] a I I y I -OPP (b)
6-Hydroxy GermacraneAc id
129
~Hydroxylat ion ~ a t C-8
~
,
I
H
Z,o.
~/_H20
8-Hydroxy Germacrane AcidI (g) -H20
ill
C-~ Lactonizedll I Germacranolide (i)
Fig. 1. Biogenesis of C-6 and C-8 lactonized sesquiterpene lactones from the isoprene precursors.
130
THE BOTANICAL REVIEW
1
&
~
2
3
4
f
/J
m la.
22
T
? !j i
.
,:"~ \(!1or12) ~'h~, oPP
Id
24.~
21
Fig. 2. Hypothetical biogenesis of the major sesquiterpene lactone skeletal types of the Asteraceae. A, Germacrane-derived skeletal types (all structures shown as C-6 lactonized). B, Eremophilane-derived skeletal types (all lactones shown as C-8 lactonized). C, Isocedrene and cadinane-derived skeletal types. Sesquiterpene lactone and furane skeletal code: la, Germacrolide. lb, Melampolide. le, Heliangolide. ld, cis, cis-Germacradienolide. 2, Eudesmanolide. 3, Guaianolide. 4, Ambrosanolide. 5, Helenanolide. 6, Eremophilanolide. 7, Elemanolide. 8, Secogermacranolide. 9, Secoeudesmanolide. 10, Xanthanolide. 11, Seco-
for the study of evolutionary relationships in the Asteraceae discussed. Next, reports of infraspecific variation of sesquiterpene lactones are examined in order to compare the degree of chemical heterogeneity with morphological, anatomical and chromosomal variation at lower taxonomic levels. Following a general discussion of factors influencing the use of these compounds as taxonomic characters, the sesquiterpene lactones of each tribe of the Asteraceae are considered in terms of their utility in ascertaining tribal, subtribal, generic and specific boundaries. Finally, all
SESQUITERPENE LACTONES--ASTERACEAE 1.
2
131 3
B
OPP
30.
33
/
\
< T
ambrosanolide. 12, Secohelenanolide. 13, Norpsilotropin. 14, Bakkenolide. 15, Pseudo-
guaianolide. 16, Secopseudoguaianolide. 17, Eudesmane acids (not shown). 18, Furanoeremophilane. 19, Aromatic furanoeremophilane. 20, Trixikingolide (Isocedrene-derivative). 21, Nor-helenanolide. 22, Chrymoranolide. 23, Cadinanolide. 24, Trichosalviolide. 25, Disyhamifolide. 26, "Quing Hau Sau.'" 27, Secofuranoeremophilane. 28, Bourbonolide. 29, Neohelenanolide. 30, Farnesyl derivative lactone. 31, Secoeremophilanolide. 32, Rearranged furanoeremophilane. 33, Furanoeudesmane. 34, Aromatic eremophilanolide.
the sesquiterpene lactone reports for the family are listed (Table XXIII) and the structures of known compounds shown (Figs. 32 and 33). In the following discussion a boldface number in parentheses following a compound name refers to the number of that structure in Figure 32. In order for this review to serve as a useful reference, two appendices are includ-
132
THE BOTANICAL REVIEW
ed: one listing alphabetically the taxa from which sesquiterpene lactones and furans have been isolated, the second listing the names and structure numbers of all reported compounds. This latter appendix includes for each compound the page number of first report in Table XXIII.
II. Biogenesis and Distribution The basis for the classification of terpenoids is embodied in the "isoprene rule" which can be roughly defined as follows: terpenoid structures are usually products of the repeated addition of a five-carbon derivative of mevalonic acid, isopentenyl pyrophosphate (Fig. 1a), to an acyclic carbon skeleton composed initially of dimethylallyl pyrophosphate (Fig. lb), an isomer of isopentenyl pyrophosphate. The union of three such fivecarbon isoprene units yields linear trans, trans-farnesyl pyrophosphate (Fig. lc) which can cyclize to produce the germacranes (Fig. ld), a cyclodecadiene (ten-membered carbon ring containing two double bonds) class of sesquiterpenes. After formation of the germacrane intermediate, one of the methyl carbons (C-12) of the isopropyl sidechain, is oxidized to a carboxyl function, while a double bond is introduced between C-11 and the other sidechain methyl carbon (C-13) (Fig. le). Incorporation of a hydroxyl group at C-6 or C-8 on the sesquiterpene's ten-membered ring permits the formation of an ester bond between this hydroxyl and the sidechain carboxyl function. Because the two functional groups reside on the same molecule, this intramolecular esterification is termed lactonization. The participating hydroxyl group is usually situated on the 7 (gamma)-carbon, 2 hence, the five-membered, cyclic lactone formed in this process is a 7-1actone. Six-membered 8 (delta)-lactones are much rarer (e.g. zaluzanin A (1018) and B (1019) of Zaluzania). Although sesquiterpene lactones of germacrane origin are the subject of the present work, lactones of other classes of sesquiterpenes (i.e. cadinanes and isocedrenes) are reported in the Asteraceae (Fig. 2). Either before or after lactonization the germacrane precursors undergo a variety of cyclizations, ring fissions and methyl migrations to yield the other major skeletal types of sesquiterpene lactones (Fig. 2A). Details of these steps are discussed elsewhere (271,275,285, 378, 380). Herz first recommended a useful conceptual framework for organizing these skel-
2 The lactone ring carbons are labelled in a linear sequence according to their position relative to the carboxyl carbon. The terminal carbon in the sequence is the one which has the lactone-forming hydroxyl group. Thus, the carbons are consecutively labelled: a (CI I),/3 (C-7) and 7 (C-6) or a (C-11),/3 (C-7) and 3' (C-8) depending on whether lactonization occurs at C-6 (h, Fig. 1) or at C-8 (i, Fig. 1), respectively.
SESQUITERPENE LACTONES---ASTERACEAE
133
etal types (378,380): Skeletons which were derivable from the hypothetical farnesyl precursor by the same number of modifications of the carbon skeleton were grouped in one of four columns, and assigned the same level of biogenetic complexity. For example, eudesmanolides and guaianolides both differ from their germacranolide precursor(s) (complexity level one) by a single modification of the ring system. Thus, they are assigned to the column containing skeletons of complexity level two. All reported skeletal types are arranged in Figure 2 in columns of increasing biogenetic complexity. As stressed by Herz, such groupings are, in part, superficial and thus should be interpreted with caution. The most interesting aspect of this biogenetic scheme is the initial cyclization of the germacranolide (Fig. 2-1) or its unlactonized precursor to produce either of the two common bicyclic skeletal types, the guaianolides (Fig. 2-3) or eudesmanolides (Fig. 2-2). These products then serve as intermediates in the synthesis of most of the remaining major skeletal types. The guaianolides and their derivative classes will be discussed first. B I O G E N E S I S OF MAJOR S K E L E T A L TYPES
1.
GUAIANOLIDES, PSEUDOGUAIANOLIDES AND SECO-DERIVATIVES
Guaianolides.--Evidently, two types of guaianolides occur in the Asteraceae, trans-fused and cis-fused bicyclic types (Fig. 3). The terms trans and cis refer to the orientation of the five- and seven-membered rings situated on opposite sides of the bond linking carbon no. 1 (C-l) and carbon no. 5 (C-5). The orientation of these two rings relative to this carbon-carbon bond defines a plane upon which this bond rests. As a consequence of the orientation of this bicyclic structure, the two noncyclic substituents at C-1 and C-5 (usually hydrogens or hydroxyl groups) are either situated on the same side, above or below the plane of the structure (cis, Fig. 3i-2) or they are located on opposite sides of the plane (trans, Fig. 3c-2). In the two-dimensional structural representations of Figure 3 (c-2 and i-2) wedge-shaped bonds indicate/3-orientation, meaning that the bond extends in a third dimension above the plane roughly defined by the page. Dashed lines indicate an a-orientation in which the bond extends in a third dimension beneath the plane of the paper. Three dimensional structural representations for these compounds (Fig. 3c-1 and i-1) are provided to contrast the different methods of illustration. Only four reports of trans-fused guaianolides (Fig. 3c) exist (GaiUardia pulchella, Helenium autumnale, Inula brittanica and Inula oculus) while cis-fused guaianolides (Fig. 3i) occur commonly in most of the tribes of the Asteraceae. The rarity of such trans-fused constituents may result from their role as intermediates in the synthesis of a more common skel-
134
THE BOTANICAL REVIEW
Biogenetic Complexity Level:
Trans-fused Guaianolides and Their Derivative Skeletal Types
i.
(a)
Route~ Ia ~
(b) ~ibute
2.
(c-l) Trans-fused Guaianolide (Helenium, Gaillardia, Inula)
~
H ~II
(e)
(d) Helenanolide (Baileya, Balduina., Gaillardia, Helenium, _Hymenoxys, Inula Arnica)
Seco-helenanolide (H~me_noxvs, Psilostr~he)
Carabrone (Helenium, Arnica, Inula, C_~esium)
(g) Neohelenalin (Helenium)
(h) Norhelenalln (Helenium)
Fig. 3. Proposed biogenetic relationships and distributions of guaianolides and pseudoguaianolides (ambrosanolides and helenanolides).
etal type, the helenanolides (Fig. 3d). Two proposals for the initiation of this helenanolide biosynthetic pathway involve in the first instance a germacrolide-4,5-epoxide precursor (Fig. 3a) (275) and in the second a melampolide, 4,5-epoxide (Fig. 3b) precursor (378). Cyclization of either precursor yields a trans-fused guaianolide product. Cis- and trans-fused guaianolides serve as precursors for the biogenesis
SESQUITERPENE LACTONES--ASTERACEAE
135
Cis-fused Guaianolides and
Their DerivativeSkeletalTypes
Germacrolide4,5epoxide
\ ~
14
Cis-fused
~
G~aaianolide
3
(i-~,~o"Y,-~ ~ o~-~
H6 ~oj
(widespread)
(i-i) /
l
(k) Ambrosanolide (Ambrosia,Hymenoclea, Ira, Parthenium)
Xanthanolide~ (Ambrosia,
Iva, Parthenice, Parthenium,Xanthium)
\\ 0
/
0
/
(3) Seco-ambrosanolide (Ambrosia,~menoclea, Parthenium)
of the two major pseudoguaianolide types, ambrosanolides (Fig. 3k) and helenanolides (Fig. 3d), respectively. Both complexity-level 3 pseudoguaianolides result from the migration of the C-4 methyl group to C-5. Ambrosanolides and Secoambrosanolides.--Ambrosanolides are characterized by: (1) an a-oriented hydrogen at C-l, (2) a #-configuration for methyl groups at both C-5 and C-10, and (3) lactonization usually at the C-6 position. Ambrosanolides are the major skeletal type of the subtribe Ambrosiinae (Heliantheae) but have been reported from one species of
136
THE BOTANICAL REVIEW
each of the following non-Ambrosiinae taxa: Carpesium (Inuleae), Inula (Inuleae) and Rudbeckia (Heliantheae, Helianthinae). With the exception of the one ambrosanolide isolated from Carpesium, representatives of this skeletal type are cis-lactonized, usually at C-6 but occasionally at C-8. Regarding lactonization, the terms cis and trans refer to the orientation of the carbon-oxygen lactone bond relative to the/3-orientation of the C-7 C-11 bond. If the C-O bond at C-6 or C-8 is also/3-oriented, the lactone is considered cis-oriented; if the C-O bond is a-oriented, the lactone is defined as trans-oriented. Biosynthesis of ambrosanolides may proceed from a germacrolide 4,5-epoxide precursor (Fig. 3a) through the cis-fused guaianolide intermediate (Fig. 3i-2) and, after a double hydride shift and methyl migration within this guaianolide, terminate in the ambrosanolide product (Fig. 3k) (275,378). Ring fission between C-4 and C-5 of the ambrosanolide (Fig. 3k) results in the seco-ambrosanolides (Fig. 3/), a skeletal type which is restricted to the Ambrosiinae. After bond-breakage, the terminal C-4 is frequently oxidized to a carboxylic acid and subsequently forms a second lactone ring involving either a hydroxyl function at C-1 [to produce a y-lactone, e.g. psilostachyin (1150)] or a hydroxyl at C-5 [to yield a six-membered 8-1actone, e.g. dumosin (1155)]. Xanthanolides.--The cis-fused guaianolide cation (Fig. 3i) has also been proposed as the precursor for the xanthanolides (Fig. 3j) (378). This skeletal type, together with the biogenetically-related ambrosanolides and seco-ambrosanolides, help define the generic boundaries of the Ambrosiinae. Helenanolides and Secohelenanolides.--Helenanolides have C-5 and C-10 methyl groups which are respectively /3-oriented and a-oriented, and are lactonized at C-8 (cis or trans). They are characteristic of the genera presently included in the subtribe Gaillardiinae (Heliantheae), two species of the Inuleae (Anaphalis morrisonicola and Telekia speciosa) and the Arniceae. Ring fission between C-2 and C-3, C-3 and C-4, or C-4 and C-5 of a helenanolide yields the three types of secohelenanolides (e.g. Fig. 3jO. An examination of the distribution of these seco-derivatives reveals that they, too, assist in the boundary delimitation of the Gaillardiinae. A trans-fused guaianolide is also proposed as the precursor for the unusual xanthanolide, carabrone (Fig. 3e). In contrast to other xanthanolides, the stereochemistry of carabrone requires that its precursor be a trans-fused guaianolide. Unlike all the other xanthanolides which are diagnostic of the Ambrosiinae, carabrone has been reported from the Gaillardiinae (Helenium), Verbesininae (Monactis, Kingianthus), Arniceae (Arnica) and the Inuleae (Inula, Carpesium). A survey of helenanolides and biogenetically related structures, and
SESQUITERPENE LACTONES--ASTERACEAE
137
ambrosanolides and their seco-derivatives, clearly demonstrates that groups of related taxa are often characterized by biogenetic series of skeletal types in addition to individual diagnostic skeletons. The distribution of trans-fused guaianolides, helenanolides and carabrone-type xanthanolides indicate that both the subtribe Gaillardiinae and the tribe Inuleae are typified by this series of skeletons. The presence of ambrosanolides, xanthanolides and seco-ambrosanolides in the genera of the Ambrosiinae also exemplifies this pattern. Other examples will be discussed in subsequent sections. This pattern of distribution of biogenetic series of skeletal types can be applied to a particular taxonomic problem concerning the genus Arnica. In the dissolution of the tribe Helenieae, Arnica was transferred to the Senecioneae (914) and subsequently removed to the Arniceae (666). The question of the affinity of Arnica to the Heliantheae was discussed in morphological terms by Cronquist (223,224) and in chemical terms by Seigler et al. (837). As shown in Figure 3 and Table XXII, Arnica possesses a chemistry composed strictly of helenanolides and the unusual xanthanolide, carabrone, a chemistry which is strikingly like those of Helenium and other members of the Gaillardiinae. Hence, the biogenetic parallels as well as the co-occurrence of a number of identical structures in the Gaillardiinae and Arnica suggests these two entities are related. These results support H. Robinson's recent decision to submerge the Arniceae into the Heliantheae subtribe Chaenactidinae (743), a move which is generally supported (Cronquist, pers. comm.). The existence of parallel biogenetic series in the Gaillardiinae and the Inuleae could be interpreted as support for their close alliance, but such a conclusion is incompatible with the capacity of the Inuleae to also synthesize ambrosanolides together with the characteristic helenanolidebased skeletal types of the Gaillardiinae. It should be pointed out, though, that the close chemical parallels between the Inuleae and the entire Heliantheae may be significant. 2. EUDESMANOLIDES, SECOEUDESMANOLIDES AND EREMOPHILANOLIDES
Eudesmanolides.--Cyclization of a germacrolide-l,10-epoxide (Fig. 4a) produces one eudesmanolide skeletal type (b) (275), found throughout the Asteraceae (Table I). Although different populations of a given member of the Asteraceae may synthesize eudesmanolides, guaianolides and their derivatives, the biosyntheses of guaianolides and eudesmanolides are usually mutually-exclusive within a given sesquiterpene lactone-producing plant (an exception: Iva microcephala). The distribution of eudesmanolides and particularly of individual compounds is useful as a
138
THE BOTANICAL REVIEW
T
~ o ~ c o ~'r0
,~
._ ~= o_ o
~
~
O
0~ co
o E
.2-,
E
/
&l
O
E
g
~9
"21
p
tD O
~
--..
c
~ w
>
SESQUITERPENE LACTONES--ASTERACEAE
139
taxonomic character at and below the generic level in such genera as
Ambrosia and Artemisia. Secoeudesmanolides.--Cleavage of the C-1 and C-10 bond of a eudesmanolide precursor to yield a 1,10-secoeudesmanolide (Fig. 4h) has been reported from only three sources, Eriophyllum and Picradiniopsis of the Bahiinae, and Iva of the Ambrosiinae, all of the Heliantheae. Eremophilanolides.--Methyl shift from C-10 to C-5 of the eudesmanolide gives the derivative class of eremophilanolides. Eremophilanolides of type A (Fig. 4c) are reported in Dugesia and Xanthium which, when considered with other chemical, morphological and cytological data, indicate an affinity between the two Heliantheae subtribes, Engelmanniinae and Ambrosiinae. The biogenetic route leading to eremophilanolides of type B (Fig. 4g) is less clear, but probably involves one, or less likely, both of the pathways (Route I and II) indicated in Figure 4. Laboratory synthesis of type B eremophilanolides has been successfully carried out using a furanoeremophilane starting material (Fig. 4e); however, successful biomimetic conversion of a eudesmanolide (Fig. 4b) to an eremophilanolide has also been achieved (378). With one exception, Aster tataricus, the type B eremophilanolides occur only in the Senecioneae, wherein furanoeremophilanes are the major sesquiterpene constituents. Thus, the extensive co-occurrence of these two skeletal types in the Senecioneae and the observation that type B eremophilanolides are all C-8 lactonized (expected if a furanoeremophilane is a precursor) suggest that type B compounds are biosynthesized via the furanoeremophilane intermediate (Route I, Fig. 4). Bakkenolides.--The bakkenolides (fukinanolides) (Fig. 4j'), another sesquiterpene lactone skeletal type, are also restricted to the Senecioneae, where they and the type B eremophilanolides occur almost exclusively in the "cacalioid" genera (for subtribal groupings, see 503 and 504). Laboratory synthesis indicates that the most probable biosynthetic route to the bakkenolides involves an eremophilane intermediate (Fig. 4d) (275). If the furanoeremophilanes, seco-furanoeremophilanes (Fig. 4i), type B eremophilanolides, seco-eremophilanolides (Fig. 4j) and bakkenolides are all derived from a common eremophilane precursor, then this biogenetic series may be very useful in defining the tribal and subtribal boundaries of the Senecioneae. 3.
GERMACRADIENOLIDES, GERMACRANOLIDES AND ELEMANOLIDES
Germacradienolides.--The term germacranolide is all-inclusive, referring to those sesquiterpene lactones called germacradienolides, which have l(10), 4(5)-cyclodecadiene skeletons, as well as those compounds in
140
THE BOTANICAL REVIEW
t",l
~5
0
<
mmZ;~m~
0
..=
m
r
q~ r
~
0
~
~D
m
d.d
d~
,
SESQUITERPENE
LACTONES--ASTERACEAE
141
O r" O
,.~ "oo i~
r
t'~l t'q r
'O
r
r
Cq r
0~
O O..d
O~
~m
142
THE BOTANICAL REVIEW
which one or both of these 1(10) or 4(5) double bonds have been modified through addition reactions or double bond migrations. There are four possible combinations of double bond orientations at C-l-C-10 and C-4C-5 within a germacradienolide cyclodecadiene ring: (1) trans, trans, (2) trans, cis, (3) cis, trans, and (4) cis, cis (Fig. 5A). Although all four configurational isomers have been isolated from the single genus Melampodium, such variety within a single taxon is rare. Not surprisingly, the most common germacradienolide, the germacrolide, is the trans, trans isomer (Fig. 5a) generated from the cyclization of the trans, trans farnesyl precursor. Other isomers include the cis, cisgermacradienolides (b), melampolides (cis, trans) (c) and heliangolides (trans, cis) (d). Until recently, cyclization and lactonization of trans1(10), trans-4(5)-farnesyl pyrophosphate was assumed to be the first, common biosynthetic step leading to all the major sesquiterpene lactone skeletal types of germacrane origin. However, the presence of these four isomeric types raises questions about whether isomerization of the double bonds occurs before or after cyclization to form the germacrane intermediate. If isomerization occurs before cyclization, then this indicates that trans-trans-farnesyl-OPP is not the only farnesyl precursor to the sesquiterpene lactones of germacrane origin. Many authors retain the use of these four names to describe derivative structures in which one of the double bonds has been replaced by a different function, such as an epoxide, if the stereochemistry of the affected part of the molecule is unchanged. For example, compare the two germacrolides, costunolide (1) and parthenolide (149). Introduction of the epoxide at the site of the 4(5) double bond did not alter the orientation of the ring, hence parthenolide is still referred to as a germacrolide. The postulated roles of cis, trans-germacradienolides in the synthesis of trans-guaianolides suggests that, unlike the scheme displayed in Figure 2, germacrolides are not the only possible cyclodecadiene precursors for the other skeletal types of complexity level 2 (378). As shown in Figure 3, two separate routes to the trans-guaianolides have been proposed, one of which involves a melampolide precursor, the other, a germacrolide. It is perhaps significant that melampolides have been reported from the same tribe (Heliantheae) as have trans-guaianolides and derivative skeletal types. Also, germacradienolides other than the major configurational isomers exist in which these double bonds migrate to other positions, e.g. repandolides (Fig. 5e) and leucantholides (Fig. 5f). The relative frequencies of non-germacradienolide and germacradienolide types in the Asteraceae are compared in Table I. Elemanolides.--A cautionary note is required in using the distributional data of the elemanolides, a skeletal type derived from germacrolides through the Cope rearrangement reaction (Fig. 6). The relative ease with
SESQUITERPENE LACTONES---ASTERACEAE
B. Related Structures:
A, Conf]guration~l Isomers:
(a) aer~acrol]de
143
(b) cis, cts-aermac radlenol Tde
(e) Repandolide
Tetragonotheca
(f) LeucanthoIide Melampodium
Artemisia (c) Melampol ~de
Artemi~ia
(d_) Hel iangol ide
Fig. 5. The four major germacradienolide configurational isomers and related cyclodecadiene structures.
which this reaction occurs suggests that some reported elemanolides are artifacts of the laboratory workup of the plant extract. Clearly, those elemanolides in which the 1(2) and 3(4) double bonds have undergone oxidation reactions subsequent to the Cope rearrangement are not artifacts; such compounds have only been isolated from Zinnia, Mikania, Eriophyllurn and Verbesina. The Vernonia compound, vernolepin (1058), represents a special case but is probably not an artifact. III. Sesquiterpene Lactones as Taxonomic Characters
Traditionally, chemistries of related taxa were compared by ascertaining the number of identical compounds shared by members of a taxonomic group. Chemical similarity of a pair of taxa could be quantified by calculating the paired affinity index: number of compounds shared/number of compounds shared + number of compounds not shared. However, this formula and similar approaches failed to utilize the information contained in the many non-identical compounds. A recent development in the interpretation of chemical data which compensates for this deficiency is the comparison of both identical and non-identical compounds according to hypothetical or established biosynthetic criteria. The overall chemical similarity of pairs of taxa can be determined by first noting the presence of shared compounds, and then evaluating the degree of biogenetic relatedness of the remaining non-identical constituents. Any biogenetically based methodology for handling chemical data requires a flow chart-like biogenetic scheme showing the sequence of precursors, intermediates and products, separated by discrete reaction steps.
144
THE BOTANICAL REVIEW
% Fig. 6.
%
Cope rearrangement of costunolide (germacrolide) to the elemanolide product.
As the number of reaction steps leading from the biosynthetic precursor increases, there is a corresponding increase in the structural divergence of the product from the biosynthetic precursor. This divergence can take the form of either increased or decreased structural complexity. Figure 2 displays the hypothetical biogenetic relationships of the sesquiterpene lactone skeletal types isolated from the Asteraceae. As described earlier, these skeletons correspond to series of related precursor-, intermediateand product-like elements situated on a biogenetic route. Applying a seductively simple formula for character state determination, divergence from the precursor-like skeletal type (i.e. germacrolide) is equated with an evolutionarily advanced or derived state, while the skeletons resembling the precursor are assigned a primitive character state. Automatically equating such a sequence with the character state polarity (primitive ~ derived) within a specific group of taxa is incorrect for the following reason: loss of biosynthetic capacity (caused by the blocking of a reaction step converting a biosynthetic intermediate to the product) and the resulting synthesis of skeletons resembling biosynthetic precursors or intermediates are common events in the Asteraceae. As a consequence of this biosynthetic loss, the expected character state polarity is reversed: the presence of precursor- or intermediate-like compounds becomes an advanced or derived state and the presence of the more biogenetically divergent structures becomes relatively less-advanced or primitive. Hence, for a group of related taxa equating increasing structural divergence with evolutionary advancement is risky without corroborative evidence from other chemical and non-chemical sources. In this biogenetic approach to chemical character definition, compounds isolated from a taxon can be interpreted according to (1) their
SESQUITERPENE LACTONES--ASTERACEAE
145
skeletal type and (2) the positions and types of substituents arranged on this molecular skeleton. Thus, character states for non-identical com.e pounds of different taxa can be assigned based on the level of biosynthetic relatedness of the compounds' carbon skeletons and substituents. This approach has been applied to the study of flavonoids (588b), alkaloids and other natural products (24). In several studies, the relative status of biogenetic divergence assigned to different plant chemistries was used to ascertain phylogenetic relationships (24). Sufficient structural data exist to permit the first steps toward a biogenetic methodology for extracting taxonomic information from sesquiterpene lactones. CHARACTER DEFINITION
Davis and Heywood define a unit character as " . . . a taxonomic character of 2 or more states, which within the study at hand cannot be further subdivided logically" (227, p. 113). Five distinct structural levels at which sesquiterpene lactones can be utilized as unit characters are listed in Figure 7. In compiling this list, it became apparent that the distribution of functionalities often provides information independent of the distribution of individual compounds or skeletal types. Each structural level listed in Figure 7 can be used either as an analytic or synthetic character. Analytic characters are used for the identification, characterization and delimitation of taxa, while synthetic characters are used to group elements into higher taxa and are usually characters of a constant, widely-occurring nature. Again, quoting from Davis and Heywood (227, p. 116): 9 . . the analytic or diagnostic characters which serve to recognize a group are seldom of u s e in synthesizing the group along with others into a higher group 9 For this purpose, one needs characters w h o s e c o n s t a n c y of occurrence increases the higher the position of the group in its hierarchy. T h o s e characters u s e d to s y n t h e s i z e lower groups into higher groups serve at the same time to distinguish the higher groups from others o f the s a m e rank.
The authors further point out that there is no inherent difference between analytic and synthetic characters and that the difference results from the particular usage. As represented in Figure 7, skeletal characters 1 and 2 are especially useful as synthetic characters at the higher taxonomic levels (tribal, subtribal). Information regarding the distribution of specific substituents (especially novel functional groups) or combinations of substituents (character 3) is useful in clustering taxa. When this information is combined with skeletal data, taxonomic entities can be grouped, usually at lower levels than possible when only skeletal features are considered. As men-
146
THE BOTANICAL REVIEW
Characters:
Skeletal Features:
Dominant Taxonomic ~se
Level of Application (Hierarchical
Synthetic
High
Anal ~tic
Low
Level)
I. Skeletal type (Germacranolide, Xanthanolide, etc.) 2. Skeletal subclass type (Heliangolide, MelampoI[de, etc.)
Substitutional Features: 3. Comparison of individual or combination of functionalities on corresponding sites of homologous compounds
Individual Compound:
4. Presence/Absence
Total Chemistry: 5. Taxon-specific chemical complement
Fig. 7. Sesquiterpene lactone chemical features and the corresponding level of application as taxonomic characters.
tioned earlier, the presence of a specific skeletal type can be used to establish the affinity of a genus to a particular tribe or subtribe. Although these skeletal types can assist in the identification of tribes and subtribes (analytic usage), they are most useful in assigning to a particular group genera having questionable tribal or subtribal affinities (synthetic usage). The presence of a given biogenetically advanced compound (character 4) can be used as a synthetic character to group taxa. The taxon-specific sesquiterpene lactone complement (level 5) is obviously an analytic character which can be useful in establishing infraspecific boundaries. Although more detailed descriptions will follow, brief examples of the applications of the above types of chemical characters (listed in Fig. 7) are: (1) the distribution of bakkenolides and related furanoeremophilane types assists in interpreting tribal affinities of members of the Senecioneae, (2) the melampolides, a germacradienolide skeletal subclass, help in the delimitation of the boundaries of the Heliantheae subtribe Melampodi-
SESQUITERPENE LACTONES--ASTERACEAE
147
inae, (3) the presence of the hydroxymethylene (-CH2OH) functionality on the ambrosanolides of Parthenium distinguishes its chemical complement from other generic chemistries of the Ambrosiinae. (4) Examples are (a) the presence of the helenanolide, helenalin, in the genera of the Gaillardiinae (Heliantheae) and (b) the presence of the secoambrosanolides, psilostachyin A, B and C, in the now congeneric taxa of Ambrosia and Franseria. This multi-level interpretation of sesquiterpene lactone distributional data is the first step toward a methodology to replace the analysis of the assortment of identical vs. non-identical compounds typified by paired affinity indices. By following biogenetic guidelines the distinct structural levels of non-identical compounds can be evaluated according to biogenetic criteria. However, the above approach is less sophisticated than the detailed biogenetic analyses used by Aparecida et al. (24) in the interpretation of isoflavonoid and alkaloid distributions in several angiosperm groups. Because far more was known about the individual biosynthetic steps involved in the alteration of skeletons and substitution patterns in these other natural products, a more detailed biogenetic evaluation was possible. Nevertheless, the approach used in the present study shares a basic premise of these earlier treatments: variation in skeletal types should be treated initially as a taxonomically significant feature distinct from the substitutional patterns which are superimposed on the basic skeleton. Next, the substitutional information (including functional group stereochemistry) should be evaluated. The two sets of taxonomically relevant data can then be jointly considered in sorting-out taxonomic groups. In order to demonstrate the handling of skeletal and substitutional information, a preliminary cladistic analysis of the sesquiterpene lactones of the genus Ira is summarized below (Seaman and Funk, unpublished). However, attempting a phylogenetic interpretation of sesquiterpene lactone distribution requires elaboration on a feature of terpene chemistry alluded to earlier, that is, the frequent loss of the capacity to synthesize biogenetically complex structures. Noting this phenomenon, earlier workers (595) speculated that among extant taxa of the Asteraceae loss of biosynthetic ability may be more common than gain for a particular class of compounds, suggesting the possibility that chemically complex groups are primitive. In simple terms, given (1) the biosynthetic sequence A ~ B ~ C ~ D, and (2) an assortment of related taxa containing either compound C or D, the presence of C can be interpreted as either a biogenetically primitive or derived character state. If the ancestor(s) of the taxa producing C lacked the capacity to convert C to D, then C should be assigned a primitive character state relative to D. However, if the ancestor(s) of the taxa producing only C
148
THE BOTANICAL REVIEW
possessed the capacity to synthesize D and this capacity was blocked (CAD) in the evolutionary line leading to the C-producing taxa, then presence of C would be a relatively derived character state. Because a cladistic analysis requires that the polarity of character states (primitive ~ derived) be determined, the conversion of a set of homologous compounds into character states requires an evaluation of each compound in terms of this ancestral derived polarity. In the unlikely event that the biosynthesis of compounds C and D has been investigated in our hypothetical group of taxa, the results establish the polarity (C ~ D or D ~ C). More likely, the polarity must be inferred from a comparison of the distribution of C and D in these taxa and related groups of taxa. Thus, in the absence of biosynthetic evidence, a major prerequisite for a cladistic analysis is an exhaustive, broad survey of chemical distribution. Such a wealth of sesquiterpene lactone data is available in only a few cases, principally within the Heliantheae subtribe Ambrosiinae. In the cladistic analysis of a genus, the grouping of taxa at lower hierarchical levels is based on their joint expression of derived character states. Such shared derived character states are called synapomorphies. If a single taxon possesses a derived character state, the state is an autapomorphy. The distributions of synapomorphies and autapomorphies are plotted as a cladogram, a rooted-tree diagram which depicts the proposed evolutionary branching patterns of the investigated taxa. Derived (apomorphic) character states are defined as such only in reference to the primitive (plesiomorphic) states displayed by other taxa. In the use of chemical characters, this primitive-derived character state polarity is based on the biosynthetic relationship of the chemical character states and the character state distribution in this genus and related genera. The related genus (or genera) used for comparison is termed the outgroup. Because the proposed sesquiterpene lactone biosynthetic (biogenetic) relationships are based heavily on mechanistic arguments rather than experimental biosynthetic studies, outgroup comparison is emphasized in ascertaining the character state polarity. The carbon-ring skeleton provides the most significant sesquiterpene lactone character states. Sesquiterpene lactones can be classified according to the position of their skeletal type on the hypothetical biogenetic scheme shown in Figure 2. Biogenetic divergence of a skeleton from the common germacrolide precursor (Fig. 2, la) is measured by the number of "reaction steps" needed to derive it from the precursor skeletal type. The biogenetic relationships of two skeletal character states can be ascertained from their relative positions on the biogenetic routes depicted in this scheme. Character state polarity of the related skeletons is then determined by their relative distributions. After the analysis of skeletal
SESQUITERPENE LACTONES--ASTERACEAE
149
features, the substitutional patterns superimposed on these skeletons can be compared in terms of the numbers, positions and types of functional groups. Corresponding substitutional features can then be assigned character state polarities using distributional criteria. iva sesquiterpene lactone chemistry was compared to the well-surveyed chemistries of other Ambrosiinae genera, Ambrosia (including Franseria), Hymenoclea, Parthenice, Parthenium and Xanthium to ascertain the polarity of biogenetic trends within the subtribe. The capacity to produce two biogenetic complexity level 3 skeletal types, ambrosanolides (Ambrosia, Hymenoclea, Iva and Parthenium) and xanthanolides (Ambrosia, Iva, Parthenice, Parthenium and Xanthium), is the dominant feature of the subtribal chemistry. Hence, the capacity to synthesize ambrosanolides and xanthanolides presumably existed in the progenitor(s) of these genera and is considered a primitive character state. Inactivation of this capacity is a derived state. In cladistic parlance, the non-Iva genera are the "outgroup" and questions of ancestral derived polarity for Iva sesquiterpene lactones are resolved by examining the extensive data available on the taxa of this outgroup. Based on an evaluation of the outgroup chemistry, the synthesis of complexity level 3 skeletons is a primitive character state. This pattern is superimposed on the typical Helianthoid production of germacranolides (level 1), eudesmanolides and guaianolides (both level 2), all of which occur in the Ambrosiinae but in lower frequency than the ambrosanolides and xanthanolides. Modifications of this primitive pattern generate several synapomorphies (shared, derived character states) which divide taxa into groups, each group being defined by its unique biogenetic capacity. Groups of taxa are further subdivided by synapomorphies resulting from shared substitution patterns introduced onto a common carbon-ring skeleton (Fig. 8). The comparatively facile activation/inactivation of alternative biogenetic routes (Fig. 8) complicates the process of skeletal character state polarity determination by outgroup comparison. Especially if the outgroup consists of all other related members included in the taxon at the next higher hierarchical level (e.g. Ambrosiinae), the likelihood that a derived skeletal character is also expressed in some members of the outgroup is even greater. Thus, parallel expression of a derived character state in one small part of a large outgroup should not invalidate the character state as a possible synapomorphy as long as the remainder of the outgroup synthesizes plesiomorphic homologues. However, as the number of parallel occurrences in the outgroup increases, there is a rapid decline in the possible utility of this apomorphic character state. Outgroup analysis for Iva skeletal types indicates that ambrosanolides, xanthanolides, secoambrosanolides and to a lesser extent guaianolides
150
THE BOTANICAL REVIEW
II
"~
....:.. Q 9. - I I "o
8
--
SESQUITERPENE LACTONES--ASTERACEAE
15!
I
I I
[]
I -
O" I
d
,,}I
~
@
N
9--0 0 ,,I r>O, I
',el2
I
X
.
~
I
S
0I
7-
[] /
z~ \ ~ .-~ N ..~.~ \
\
9~ . ~
9 .I~.,i
\
0
2"''
D
\ O
-
__.
[]
@ '
O
n"
U
~
152
THE BOTANICAL REVIEW
4
A n~ o u
Z
....
I--
.o n~ N .r. o
&
r. o
0
.In
I-4 t,~
iiii!k;!i ~.~.. . . . ' ~.~ " ~
r
:::iN:.
o
/ \ \
2 2 2 2, ,:~...,...3-
\
o o
!
/
/
~.u
C
<
// // // // // // // //
0
E 0 0
//~
/
~l
o. ~- o ~
"-
o C
/'/ /
~ /
X//_
/;,'a
m I to
m
to m
tO to
Lu oo ( D z
to 0 " ~ 4-- .~: , -
Q - - - m-u ,c:c ~
IE c
>m 00 ~--~ >
.~ X
X ~
8~ .C o~
SESQUITERPENE LACTONES---ASTERACEAE
153
are plesiomorphic homologues. Their presence in many Iva taxa does little to reinforce the notion that Iva is monophyletic. Eudesmanolides appear in the outgroup in only three of the approximately 41 Ambrosia species. Secoeudesmanolides are unreported from the outgroup. Assuming that their presence in Ambrosia is of a parallel origin, eudesmanolides and secoeudesmanolides (Fig. 8, A) can be treated as good synapomorphic character states. The cyclopropane guaianolide skeleton (Fig. 8, E) possesses a novel skeletal feature (a 5-6-3 tricyclic system) which is unreported from the outgroup, thus its presence is considered novel. The conformationally unusual melampolide skeleton (Fig. 8, G) is also absent from the outgroup, indicating that its presence is a derived character state. Another possible apomorphy is the presence of C-6 lactonized xanthanolides (Fig. 8, D) which are reported only twice in the outgroup (Parthenice mollis, Parthenium fruticosum). The more common C-8 lactonized xanthanolides (Fig. 8, C) were isolated from Ambrosia, Parthenium and Xanthium. All other skeletons are frequently found in the outgroup. The novel nature of the 17 reaction sequences (Fig. 8, transformation series 1-17) suggests that the apomorphic or derived substitutional character states correspond to the presence of the terminal products of these sequences. Specific details of the substitutional character state polarity determination will be included in a subsequent publication. In summary, most reaction sequence terminal products (substitutional character states) were considered apomorphic (derived) and their absence was considered plesiomorphic (primitive) based on outgroup comparison. The cladogram for Iva sesquiterpene lactone data was constructed in the most parsimonious manner based on the synapomorphies indicated in Figure 9. The code used to indicate a synapomorphy is explained in Figure 8. It should be pointed out that there is no synapomorphy in this data for the genus Iva. Each of the four lines (Fig. 9) has a synapomorphy that is not shared with any other line. Iva is treated in one diagram at this time because the analysis of the sesquiterpene lactone data for the entire subtribe has not been completed. So, resolution of the broader question regarding the disbanding of this genus must await further analysis. In any event, even if the genus is not monophyletic, polyphylesis does not affect the portrayed sister group relationships because the entire subtribe (minus Iva) was used as the outgroup. The four independent groups defined by this analysis are connected at the base by a dashed line indicating the tentative nature of this relationship. The resolution on the rest of the cladogram is good with all sister group relationships being dichotomous except two.
154
THE BOTANICAL REVIEW
The resulting cladogram reflects a preliminary evaluation of only terpene data. A serious phylogenetic systematic study of Iva must also incorporate the accumulated morphological, anatomical, palynological and chromosomal observations into the data matrix which generated the chemical cladogram. The Ira cladogram is contrasted with the phylogenetic tree included by R. C. Jackson in his monograph of the genus (500b) (Fig. 9). Clearly, there are major areas of agreement and points in which the chemistry suggests a refinement of the earlier phylogeny. The chemical synapomorphy shared by I. axillaris and I. microcephala conflicts with Jackson's alignment of these taxa. Although this different interpretation is based on a rather narrow choice of characters, it points to an area where a broader study might yield a revised phylogeny. The Iva cladistic analysis demonstrates how skeletal and substitutional features can be formally evaluated and interpreted phylogenetically, and how sesquiterpene lactone data can be analyzed in a manner consistent with the procedures used for other chemical and non-chemical characters. The greatest strength of the cladistic method outlined above is that infraspecific sesquiterpene lactone variation does not hinder the description o f a species' chemistry. Unlike more narrative approaches, the cladistic method permits the recognition and description of a characteristic biogenetic potential within this variable species chemistry. The method actually profits from the array of variable but biosynthetically related compounds resulting from the intensive populational sampling of a taxon in that the expanded chemistry permits a more detailed and exact description of the species' biosynthetic capacity. T A X O N O M I C L E V E L OF A P P L I C A T I O N
In the preceding discussion skeletal and substitutional features were evaluated as taxonomic characters, principally in terms of their synthetic use. The next important consideration is the definition of the level at which sesquiterpene lactones can be successfully used as analytic characters. Clearly the chemical feature most useful as an analytic character is the taxon-specific complement of compounds (Fig. 7). In order to determine the hierarchical level (i.e. populational, racial, subspecific, specific, etc.) at which these qualitatively uniform chemistries can be expected to demarcate genotypes, all available detailed studies of sesquiterpene lactone variation are reviewed. The emergence of different classes of natural products as taxonomic characters led to an awareness of the level at which each type was most appropriately used. Whereas flavonoid profiles proved most helpful in determining species affinities and in the determination of subgeneric
SESQUITERPENE LACTONES--ASTERACEAE
155
species clusters, volatile terpene patterns were useful in infraspecific populational analyses of hybridization and other speciational events. Such generalizations regarding the applications of sesquiterpene lactones have not been fully realized due to the infrequency of their taxonomic use. Until recently, the relative difficulty of structural identification and the resulting small catalog of known compounds dictated that their taxonomic use be restricted to such intensively examined genera as Ambrosia, Artemisia and Melampodium. The use of sesquiterpene lactones in the study of infraspecific variation in Ambrosia produced some promising results. Unfortunately, the chemical surveys were not always associated with detailed morphological or cytological studies. As a consequence "chemical races" were described which were not always properly related to variation patterns in other characters. Although drawn from a biased sampling of genera, the accumulated evidence does permit several generalizations about the nature and extent of infra- and interspecific sesquiterpene lactone variation. From the structural reports it is apparent that some taxa synthesize few compounds, usually of one or perhaps two skeletal types, while others produce as many as 20 or 30 different compounds representing a variety of skeletal types. Before attempting to explain these extremes of variation, individual cases which span the spectrum between these two extremes will be reviewed and in each instance this chemical variation will be compared to variation in other traits. 1. Ambrosia ambrosioides (Car.) Payne.---Ambrosia ambrosioides is a common shrub in the ravines and arroyos of the Sonoran Desert, as well as along roadsides in the foothills of the Sierra Madre Occidental in the Mexican states of Sonora and Sinaloa. Infraspecific morphological variation is correlated with aridity and thus may reflect phenotypic plasticity. For example, plants collected in xeric habitats had smaller leaves than those from more mesic areas. The author's analysis of 13 collections revealed a transition from the presence of only damsin (1098) in the northern populations, through an intermediate chemistry of damsin and damsinic acid, to a chemistry of damsinic acid (1309) with hydroxydamsinic acid (1310) as a minor constituent in southern populations (835) (Fig. 10). These results are mostly supported by previous chemical reports: one collection from near Kingman, Arizona (Mohave Co.) produced damsin (468); a second collection from Pima Co., Arizona (near #63, Fig. 10) produced damsin and damsinic acid; a third sample from Sinaloa yielded two pseudoguaianolides, damsin and its C-10 hydroxylated, dihydro derivative, franserin (1132) (766). Damsinic acid is biosynthetically closely related to damsin and possibly
156
THE BOTANICAL REVIEW
Relative
percentage
compound
based
on
of each
total
ses-
in extract
quiterpenoids
o <
< Coll.
u
site
"E
E o ~
L
= E
Rod 63
9 42
10C
35
65
1766
o43
i
I00
90
65
35
94
55
45
42
I00
43
I00
loo
100
1838
100
103
l2o
--
50
32
}o
115
2~
~
20
116
100
20
100
Fig. 10. The chemical constituents and localities of Ambrosia ambrosioides populations sampled for sesquiterpene lactones.
serves as a precursor to it. The observed longitudinal transition suggests a clinal variation pattern that is consistent with the absence of discontinuities in morphology or c h r o m o s o m e number (n = 18). The significance of parthenolide occurring as the only constituent in collections # 4 2 and # 4 3 is not k n o w n . 2. Ambrosia chamissonis (Less.) Greene.---Ambrosia chamissonis i s
SESQUITERPENE LACTONES--ASTERACEAE
157
another shrubby diploid (x = 18) ragweed which occurs in North America along the Pacific Coast from Vancouver, B.C., to northern Baja California, and in South America as a recent introduction along the coast of Chile. It is sufficiently variable in leaf and pistillate head morphology to warrant W. W. Payne's recognition of two varieties in the northern portion of the range (705). All of the sesquiterpene lactones isolated from this species are germacrolides which differ only by the position of trans-lactonization and the distribution of hydroxyl or acetoxyl functions at C-3, C-6 and C-8. The sesquiterpene lactone chemistries of a total of 109 North American (705) and 7 South American collections (648) were examined by thin-layer chromatography. Several sesquiterpene lactones occur throughout the collections of the North American portion of the range (Fig. 11), although some consistent differences exist: populations of region A produce costunolide (1) as a major constituent, while, with one exception, populations of the area south of Mendocino Co. (regions B and C) lack this compound. Plants of region B lack costunolide and like region A plants infrequently produce chamissonin (164). One population in San Mateo Co. and all others sampled between there and Baja California (region C) contained chamissonin as a major constitutent and lacked unknown sesquiterpene lactone 6 (Fig. 11). The presence of structures 1, 164 and 166 (Fig. 11) in five Chilean collections complicates the designation of these populations as introductions from any one of the northern chemical groups A, B or C. The most significant chemical division differentiates the region C populations from the more northern population groups A and B. This difference was attributed (705) to the "founder principle" in that the northern boundary of the region C population system, the Monterey Peninsula, lacks suitable habitats (coastal sand dunes) for A. chamissonis. This physical barrier could have impeded the southern migration of the species. The origin of the chemically uniform region C plants was attributed to a limited introduction possibly involving plants from a site at Pescadero State Beach, which represents the southernmost sampled population in region B. The several analyzed plants from this population were chemically distinct from all other more northern collections of region B and were identical to the region C chemotype. These sesquiterpene lactone distributional patterns facilitated the interpretation of the morphological results: populations north of the Monterey Peninsula contained a variety of leaf-forms whereas those south of the peninsula possessed only a uniform leaf type. The combination of chemical and morphological data supports the origin of the region C plants from a limited introduction, possibly involving a genotype characterizing the Pescadero Beach population. 3. Melampodium linearilobum DC. Melampodium linearilobum is
158
THE BOTANICAL REVIEW
Germacranolides
A . . . .
>. c
L
.-
L
c~
~ c
o
Region I
A I 0.73*
o J
~
c
c
'~
m
I.OO
0.93
0.85
1.00
0.51
0.12
BIooo
lOO
lOO
1oo
l OO
0.94
0.05
C
1.00
1.00
1.00
1.00
0.00
.00
0.00
....
*Proportion of the total number of plants in the designated range in which this compound occurs.
Fig. 11. Infraspecific variation in the sesquiterpene lactone chemistry of Ambrosia chamissonis (Heliantheae). Numbers in parentheses refer to Figure 32.
another morphologically variable diploid taxon with a range that extends from southwestern Mexico to Guatemala. Like other Melampodium species, M. linearilobum usually produces compounds with 4- and 5-carbon acid ester sidechains, but unlike the other taxa it produces a mixture of germacrolides and heliangolides, rather than the more typical melampolides (Fig. 12). Three collections from different localities produced germacrolides with the same basic skeleton, but with different combinations of ester sidechains; however, one collection also produced a heliangolidetype germacradienolide. The small sample size does not permit drawing conclusions regarding the sesquiterpene lactone variation in this species; however, it does typify patterns found in other Melampodium taxa wherein variation is found in the types of acids esterified to the ring skeleton, the degree of oxidation of C-14 and C-15 and the stereochemistry of the l(10) and 4(5) double bonds. All of the taxa discussed above are diploid although this has been thoroughly documented only in A. ambrosioides and A. chamissonis. The samples described below represent aneuploid series, polyploid series and polyploid complexes. 4. Gaillardia pulchella Foug.--Eady work on the sesquiterpene lactones of the morphologically and cytologically variable species, Gaillar-
SESQUITERPENE LACTONES--ASTERACEAE
Collection
Compound:
A
B
C
D
E
159
Linearllobin
F
G
H
I
J
t. Oaxaca, Mex. (H.F.
4173)
2. Oaxaca,Mex.
(H.F.4200) 3. Guerrero~ Mex. (H.F.4204)
Structures
AcO~
: Linearilobin A B C D E
'~
~ ~
Linearilobin F G
~I
~2
i-But 2-Mebut H H Mac
H H TIg-4-OH Mac H
~1
~2
~3
2-Mebut 2-Mebut
CH20H COOH
H H
~1
~2
Mac Tig
CH20H CH20H
3
Ac
Linearilobin H I
Fig. 12. Distribution of germacradienolides in three populations of Melampodium linearilobum (Heliantheae). Sidechain abbreviations correspond to structures listed alphabetically in Figure 33,
dia pulchella, documented the following distribution of compounds: individuals from coastal populations of Florida, North Carolina and Texas produced the pulchellidine (1189)-based chemotype (a chemotype is a geographically defined group of populations sharing a qualitatively equiv-
160
THE BOTANICAL REVIEW
alent sesquiterpene lactone chemistry) shown in Figure 13. The Florida collections were morphologically and cytologically identical to populations from the coast of Texas and Louisiana, but distinct from more western inland populations. A collection from Val Verde Co., Texas, produced the helenanolide spathulin (1175), which is structurally similar to the helenanolides from the coastal populations (429). An inland collection from Live Oak Co., Texas, produced exclusively the guaianolides gaillardin (1321), and a related structure. Eastern New Mexico and Arizona populations produced exclusively eudesmanolides, of the pulchellin series (692-695). Although the chemical evidence is fragmentary, these results suggest that the Gulf coastal populations treated by Turner and Whalen as a distinct variety, G. pulchella var. picta (915) are characterized chemically by the unique series of alkaloid-substituted sesquiterpene lactones. The Val Verde Co. population which produced spathulin occurs within the range of G. pulchella vat. pulchella. The unique guaianolide-based chemistry of the Live Oak Co. collection is interesting in that it occurs within the zone of intergradation between Turner and Whalen's varieties pulchella and australis. The eudesmanolide chemistries of the Arizona and eastern New Mexico collections are clearly distinct from the chemistries of the more eastern regions. The taxonomic status of these Arizona and New Mexico populations is unresolved. Turner and Whalen included the western populations in G. pulchella vat. pulcheUa, although these populations correspond to Biddulph's original description of G. neomexicana, which reportedly differed from G. pulchella by its perennial habit, ray color and achene pubescence (61). After reviewing the evidence, Turner and Whalen concluded that G. neomexicana merged imperceptibly into var. pulchella and thus did not deserve specific or varietal ranking. However, Stoutamire (861) found the western populations to be easily separable from those of the central and eastern part of the range. Based on chromosome behavior and pollen stainability, he concluded that the western populations were reproductively distinct. The limited chemical evidence suggests that a distinct boundary exists between the New Mexico and Texas populations. A more intensive chemical sampling may be useful in resolving this and other taxonomic problems associated with the G. pulchella complex. 5. Ambrosia camphorata (Greene)Payne.--The Sonoran Desert shrub, Ambrosia camphorata, is a morphologically variable complex of diploid (n = 18) and tetraploid (n = 36) populations. There are two distinct population systems within the range of the taxon which differ in their pistillate head morphology: one element produces small heads with few (approx. 7) conic or subconic, usually blunt spines and occurs throughout the length
SESQUITERPENE LACTONES---ASTERACEAE
5
161
4 3 2
I,
G
~'~I''~ Pulchell idine
Coastal Chemotype: (1189) Pulchellidine (1219) Neopulchellidine (1173) Pulchellin
H Ac 2. Rio Grande Collection: (1175) Spathulin
AcQ~ N/.~_~
Spathul in 3- Live Oak Co. Collection: (1321) Gaillardin
Gaillardin
4. New Mexico Collection: (694) Pulchellin B (692) Pulchellin C 5- Arizona Collection: (693) Pulchellin E (695) Pulchellin F
R2O- ~ v
Pulchellin
B
Pulchellin C Pulchellin B-F
Fig. 13. The distribution of sesquiterpene lactones within the Gaillardia pulcheUa complex (Heliantheae). Numbers in parentheses refer to structure numbers in Figure 32.
162
THE BOTANICAL REVIEW
of the Baja California peninsula, the other element has pistillate heads with 25 to 60 well-developed, sharp tipped spines and is mostly restricted to a south central portion of the peninsula. Of the 16 populations examined for sesquiterpene lactones (Fig. 14), all diploids produced ilicic acid (6/8) combined with at least two of the following" isoalantolactone (686), costic acid (628) and costunolide (1); tetraploids contained two of the diploid compounds, ilicic acid and costunolide, in conjunction with a third compound, tulipinolide (8). As mentioned above, the taxon's peninsular members can be divided into two main elements based on morphological criteria. Although there is no correlation between ploidy and pistillate head types, ploidy appears to correlate with the reported sesquiterpene lactone chemotypes. The lack of correspondence between morphology and the patterns of chemistry or polyploidy within this taxon, suggests greater speciational complexity than is evident in the morphological patterns alone (832). 6. Melampodium leucanthum Torr. et Gray.--Like A. camphorata, Melampodium leucanthum contains both diploids (n = 10) and tetraploids (n = 20). The tetraploids are restricted to sites in central and southern Texas, while diploid populations extend into Mexico, Arizona, New Mexico, Oklahoma and Colorado. The frequent occurrence of mixed diploid-tetraploid populations prompted Stuessy to assign autopolyploid origins to the n = 20 plants (862). The examination of the sesquiterpene lactone chemistries of nine collections resulted in the identification of 10 melampolides, leucantholides and cis-cis-germacradienolides. The preliminary survey of the distribution of these compounds indicates considerable heterogeneity (Table II). A more exhaustive survey is presently underway, but it seems already clear from an in depth analysis of the Pecos River collection and the thin layer chromatographic (TLC) analysis of plants from adjoining populations, that a distinct chemotype based on the cis, cis-germacradienolide structures (compounds 8-10, Table II) occurs in this area of West Texas (F. Seaman, unpublished). 7. Ambrosia deltoidea (7~qrr.) Payne and A. chenopodifolia (Benth.) Payne.--The eastern Sonoran Desert shrub, Ambrosia deltoidea (n = 18), is replaced in the western part of the desert by a morphologically similar tetraploid (n = 36), A. chenopodifolia. Although the two taxa can ordinarily be distinguished by their pistillate head pubescence and spine shape, these differences break down in certain areas where the ranges of the two taxa overlap (703). Ten collections of A. deltoidea and seven of A. chenopodifolia produced the pseudoguaianolide damsin (1098) as the major constituent (Fig. 15). Three populations of A. chenopodifolia also produced the common germacrolide, parthenolide, while six collections
SESQUITERPENE
LACTONES--ASTERACEAE
163
Relative
percentage
of each
compound
in extract
(by weight)
co ~D v o
o
Collection Site No.
#
t)
u
c
.~
~3
to
to o
-
t.~
t.~
17
5O
I0
3O
IO
217
10
21
57
12
14A
22
45
33
15G
15
60
25
1770
6O
IO
3O
1804
60
10
30
66
26
74
1770 9
O I
-o
~
c r0
.o i--
I
I~
175
72
16
12
174
51
31
18
173
38
14
48
1o6
5
5o
45
107
5
55
4o
171
39
7
54
165
56
44
118 9 Herbarium
14 specimen
86 location
9 Diploid A. camphorata 9 Tetraploid OCounts
~
A. camphorata
not obtained
Region of plants with large, many-spined pistillate heads
Fig. 14. The sesquiterpene lactone chemistries of the sampled populations of Ambrosta camphorata (Heliantheae). Numbers in parentheses refer to structure numbers in Figure 32.
164
THE
BOTANICAL
REVIEW
< L~
~
~-~ 44 0
~
o,
0) (:o
o
-,4
-w
,-t
o I
4J
~,1 c,~
0 ,--4
o
~
-,..t Z
.IA "~
-i(
H H I1} ,-4 B
~
4(
,-'4 0
0
.,-t
O O r~ 0
0
0
rq
(11
9
~4
9
9
CO0~O
I
CN L~
(11 ~M 0 ,~r
O
4J ,~ C,l rr
4J .,-t I.-I 4.1 m C~
9
,-4 o
d
r..)
~
(.)
d
U
,~
m
i
0
0
r"
(,1
rO
9
.~
n.
~,
E.~
E~
E~
0
0
~
m
~
m
m
m
m
~4
14
~
~J
@
~
CJ
~J
~J
o~
o
o o ~
SESQUITERPENE LACTONES--ASTERACEAE
R e l a t i v e percentage of each compound in t o t a l extract
165
9 Ambrosia deltoidea
sesquiterpene
9 Ambrosia chenopodifolia
(by weight)
v o
.-
v
e214
o
Collection
c .-
.~ o
Site No.
~
~
126
45
55
133
60
40
J=
% el33
181
50
50
182
45
55
el82 (I)
el24
o54 e48
047
11255
214
35
54
100
47
45
48
100
164
I00
65
55
1255
5O
5O
1242
60
40
1768
100
1226
70
1237
100
1816
100
177
100
30
Fig. 15. The sesquiterpene lactones of Ambrosia deltoidea and A. chenopodifolia (Heliantheae) and locations of populations sampled. Numbers in parentheses refer to structure numbers in Figure 32.
of A. deltoidea also produced an unknown pseudoguaianolide. The presence of damsin as the dominant feature of the chemistries ofA. deltoidea and A. chenopodifolia supports the close affinity (703, 835) of the two species. 8. Ambrosia confertiflora DC.--The perennial herb Ambrosia confertiflora inhabits the southwestern region of the United States and adjoining parts of Mexico. Extensive chromosome counts reveal the presence of tetraploids (n = 36), pentaploids (n = 45), hexaploids (n = 54) and many
166
THE BOTANICAL REVIEW
Chemotypes: 9
Confertiflorin-type Ambrosanolide I. r
(1109)
2. Confertiflorin,desacetyl 3. Confertin (1137)
(1108)
4. Peruvin (I138) O Psilostachyin-type Seco-ambrosanolide I. Psilostachyin (~150) 2. Psilostachyin B (1153) 3. Psilostachyln C (1152)
~Tamaulipin-Reynosin GermacrolideEudesmanolide I. Tamaulipln A (2) 2.
Tomaulipin B (26)
3. Parthenolide (112) 4. Isotelekin (697) 5, Reynosin (594) 6. Santamarin (568) 7. Epoxysantamarin (573) 9 Chihuahuin-type Germacrolide 7. Chihuahuin (29) 2, Artemisiifolin (169)
Fig. 16. Distribution of the four chemotypes of Ambrosia confertiflora (Heliantheae). Numbers in parentheses refer to structure numbers in Figure 32.
aneuploids in this taxon which its monographer, W. W. Payne, described as " . . . t h e most complex and difficult of the ragweeds, possibly an aggregate species , . . needing considerable further study before useful subgroups can be recognized" (703, p. 421). The degree of sesquiterpene lactone chemical variation parallels the morphological and chromosomal variation. Analysis of 252 collections disclosed four distinct chemistries which were each delimited to part of the overall range of the taxon. The term "chemical race" was used to describe these geographically and chemically-defined clusters (737). However, race formation ordinarily denotes the origin of a genotype that is better adapted to a particular environment and such racial products are classified according to a dominant climatic, edaphic or biotic feature of that environment (344) and not in terms of single phenotypic characteristics. Because there is no firm evidence indicating that one Ambrosia confertiflora sesquiterpene lactone chemistry is more adaptive than another, the term "chemotype" is substituted for "chemical race" in the present treatment. Four major population clusters or chemotypes exist which can be distinguished by their sesquiterpene lactone chemistries (Fig. 16): (1) an ambrosanolide monolactone complement (confertiflorin-type chemotype)
SESQUITERPENE LACTONES---ASTERACEAE
167
characterized by the presence of confertiflorin (1109), desacetylconfertiflorin (1108), confertin (1137) and peruvin (1138); (2) a secoambrosanolide chemistry (psilostachyin-type chemotype) containing psilostachyin (1150), psilostachyin B (1153) and psilostachyin C (1152); (3) a germacrolide-eudesmanolide chemistry (tamaulipin-reynosin chemotype) with the germacrolides, tamaulipin-A (2), tamaulipin-B (26) and parthenolide (112), and the eudesmanolides, isotelekin (697), reynosin (594), santamatin (568) and epoxysantamarin (573), and (4) a germacrolide complement (chihuahuin chemotype) containing only chihuahuin (29) and artemisiifolin (169). In each instance, a major skeletal type characterizes a given chemotype. Although no exhaustive chromosomal study was conducted on the plants used in the chemical study, some correlations were observed between these chemically defined clusters and a limited number of chromosome counts. The ambrosanolide monolactone chemical race was associated with plants containing an aneuploid (n = 66) chromosome complement. The germacrolide-eudesmanolide chemotype contained mostly hexaploids (n = 54). The secoambrosanolide chemotype which stretched in a narrow band from West Texas south into Mexico along the western slopes of the Sierra Madre Occidental mountains, contained a mixture of n = 54 and n -- 66 populations. The complexity of this taxon necessitates a more thorough, coordinated study of morphology, chromosome number and chemistry before speciational patterns can be clarified. 9. The Ambrosia cumanensis HBK.-A. psilostachya DC.-A. artemisiifolia L. Complex.--Based on a variety of criteria, the three taxa, A. cumanensis, A. psilostachya and A. artemisiifolia probably share a common ancestor resembling the Mexican diploid A. cumanensis (627). Ambrosia artemisiifolia developed from the progenitor as a diploid annual especially adapted to temperate mesophytic conditions. Ambrosia psilostachya, a polyploid series (n = 18, 36, 54 and 72), is a coriaceous-leaved, root-proliferating perennial, particularly adapted to the semi-arid regions of central Mexico and western United States. The Mexican populations of A. psilostachya are morphologically similar to A. cumanensis but can usually be distinguished by altitudinal differences. Ambrosia psilostachya populations occur predominantly at altitudes higher than A. cumanensis, although intermediate populations exist in areas of sympatry. Such similarities have led to the suggestion that A. psilostachya be submerged into A. cumanensis at the subspecific level. Both A. artemisiifolia and A. psilostachya are interfertile with A. cumanensis, although the first two taxa are comparatively intersterile. The A. cumanensis-derived hybrid progeny are meiotically stable and fertile. The chromosome number variation in A. psilostachya was not corre-
168
THE BOTANICAL REVIEW
Ambrosanolide Chemotypes: 9 I. Ambrosin (1111) Coronopilin--(To99) Damsin (1098) 3-Hydroxydamsin (1107) Parthenin (1112) - O 2. Ambrosiol (1120) A3.
Cumanin (1141)
Seco-ambrosanolide Chemotype: ~4. Psilostachyin (1150) Psilostachyin B-'(TT53) Psilostachyin C (I-T~-) Germacranolide Chemotype: 9 5. Artemisiifolin (169) Isabelin (179)
Fig. 17. Distribution of the chemotypes of Ambrosia psilostachya (Heliantheae). Numbers in parentheses refer to structure numbers in Figure 32.
lated with the taxon's morphology or sesquiterpene lactone chemistry (702). One hundred and fifty mainland diploid and polyploid collections ofA. psilostachya produced chemistries containing ambrosanolide monolactones, such as ambrosin, coronopilin, cumanln and parthenin (Fig. 17, Canadian and northern U.S. chemistries not shown). Only three mainland collections from the Port Isabel area of Texas produced exceptional chemistries containing the germacrolides artemisiifolin and isabelin. Figure 17 depicts the clustering of the ambrosanolide reports into three illdefined chemotypes. However, the major chemical distinction exists between these ambrosanolide-producing mainland populations and the secoambrosanolide-producing populations of the Texas Gulf Coast Islands. All plants collected on the dunes of Galveston, Matagorda, Musgan and Padre Islands produced only secoambrosanolide dilactones of the psilostachyin series. One mainland population producing the secoambrosanolide chemistry is unique in that it occupies an intrusion of sandy soil and dunes which are similar to the off-shore island habitats. Mabry proposed that this island-based secoambrosanolide chemotype is closely related to several Vera Cruz populations of A. cumanensis which produce the same series of secoambrosanolide structures (594) (Fig. 18). This close relationship was further supported by populational analyses of volatile terpene variation in A. psilostachya and A. cumanensis (720). Also,
SESQUITERPENE LACTONES--ASTERACEAE
169
Skeletal Types Ambrosanolide: Ambrosiol
(1120)
Seco-ambrosanolide: Psilostachyin
(1150)
Psilostachyin B (I~53) Psilostachyin C (1152)
Guaianolide: Cumambrin A (876) Cumambrin B (875)
Fig. 18. Sesquiterpene lactone variation in Ambrosia cumanensis (Heliantheae). Numbers in parentheses refer to structure numbers in Figure 32.
both A. cumanensis and these island populations of A. psilostachya are diploid (n = 18). The co-occurrence of the germacrolides, artemisiifolin and isabelin, in the three southern Texas populations of A. psilostachya and in the bulk of the 21 chemically-studied A. artemisiifolia populations, together with the sympatry of these two taxa in this area of Texas, suggests the possibility of past genetic exchange between these taxa (594). Most of the 21 A. artemisiifolia collections were characterized by these germacrolides, but a few ambrosanolides and secoambrosanolides were reported (Fig. 19). 10. Artemisia tridentata N u t t . - - M a n y genera of the Anthemideae display sesquiterpene lactone variation equivalent to the degree of variation found in the Ambrosiinae. The most intensively studied taxon in this group is Artemisia tridentata. Presently, A. tridentata is subdivided into three subspecies, A. tridentata ssp. tridentata, ssp. vaseyana and ssp. wyomingensis, which are distinguishable by their complements of germacrolides, eudesmanolides and guaianolides. Diploid (n = 18) and tetraploid (n = 36) populations of A. tridentata ssp. vaseyana from Montana and Wyoming can be further subdivided into three chemotypes in which characteristic chemistries correlate with different altitudinal regimes (529) (Fig. 20). A population cluster restricted to the Hot Springs Valley of northwestern Montana (elevation: 800-1000 m) is distinguished by a complement of eudesmanolides, arbusculin A (613), B (582), and C (591) and rothin A (584) and B (592) ( " H o t Springs race"). A second cluster exists in the mountainous portion of the sub-
170
THE BOTANICAL REVIEW
i
9 Germacrolide Chemotype: Artemisiifolin (169) Isabelin (179) Ambrosanolides: 9 Ambrosiol (1120) 9 Coronopilin~99) Seco-ambrosanolide: 9II~Psilostachyin (1150)
\
t
:Sn: ::
Fig. 19. Distribution of sesquiterpene lactones in Ambrosia artemisiifolia (Heliantheae). Numbers in parentheses refer to structure numbers in Figure 32.
species range (elevation: 1830-2740 m) and produces the germacranolide artevasin (417) and the guaianolide, dehydroleucodin (761) ("High Elevation race"). The third group occurs at elevations between 860-1950 m and produces the eudesmanolide series arbusculin A, B and C ("Low Elevation race"). The second and third groups contain both diploid and tetraploid members, but a limited survey of the first group yielded only tetraploid counts. In areas where the low- and high-elevation chemotypes overlap, hybridization apparently results. Several mature plants in a mixed population containing high and low elevation types produced additive chemistries containing artevasin, dehydroleucodin and arbusculinA, -B and -C, and were considered putative hybrids. Seed obtained from one putative F1 parent yielded four low-elevation type progeny and three progeny with hybrid profiles: presumably, these seedlings represent either filial or backcross types. Of 16 seedlings grown from high-elevation seed parents of this mixed population, 13 produced the high-elevation chemical profile and three had low-elevation profiles. Of the eleven seedlings from seed of low-elevation parents, six yielded a low-elevation chemistry, four displayed a high-elevation profile and one had the "hybrid" chemistry. Similar patterns were observed in a second mixed population. Distribution of sesquiterpene lactones in the putative hybrids and non-hybrid individuals suggested to the authors that the sesquiterpene lactones could be divided into three linkage groups: (1) the three arbusculin compounds, (2) rothin-A and -B and (3) artevasin and dehydroleu-
SESQUITERPENE LACTONES---ASTERACEAE
171
Ooo
~~
" ~
~
o
o o
o
o o"
o
~o c~o oo . oo. ~ ~
o
.oo
e,,o
Artemisia tridentata ssp. vaseyana
High Elevation Race Germacranolide Guaianolide -
Artevasin (417) Dehydroleucodi~761)
o Hot Springs Race Eudesmanolide
-
Arbusculin A (613) Arbusculin B ( ~ ) Arbusculin C (591) Rothin A ( 5 8 4 ) - Rothin B (5~-)
o Low Elevation Race Eudesmanolide
Arbusculin A Arbusculin B Arbusculin C
Fig. 20. Distribution of sesquiterpene lactones in the sampled populations of Artemisia tridentata ssp. vaseyana (Anthemideae) in Montana. Numbers in parentheses refer to structure numbers in Figure 32. Redrawn from Kelsey et al. (532).
codin. There was no evidence of introgression o f chemistries in the geographically and topographically separated c h e m o t y p e s except in the comparatively narrow z o n e s o f sympatry. Populations outside the hybrid z o n e s were chemically uniform.
172
THE BOTANICAL REVIEW
In addition to being morphologically distinct (44), A. tridentata ssp. vaseyana form spiciformis has a distinct chemistry consisting of desacetyl-laurenbiolide (166), spiciformin (186), badgerin (447), tatridin-A (435), and tatridin-B (428), a profile which is identical to that of A. arbuscula ssp. arbuscula. The two taxa, however, are morphologically distinct (530). Kelsey (529) analyzed by comparative TLC 105 samples of A. tridentata ssp. wyomingensis from Montana to determine the distribution of sesquiterpene lactones. Eighty-seven percent of the plants produced a "typical" chemistry containing the major constituents, 1/3-hydroxysant3-en-6,12-olide C (635) and 1/3-hydroxysant-4(14)-en-6,12-olide C (649). The remainder produced an "atypical" pattern lacking these two major compounds but containing some of the minor components found in the typical patterns. Populations with the different sesquiterpene lactone patterns grew intermixed and were morphologically indistinguishable. However, the atypical pattern was more common in eastern Montana populations than in western populations. Kelsey's sampling of A. tridentata ssp. tridentata (529) in Montana revealed that plants of that state had a single TLC pattern. The one major constituent, desacetylmatricarin (905) was identified from these collections as well as from two California collections (486). An Oregon collection produced matricarin (906) as well as its desacetyl precursor. One California collection produced germacranolides and eudesmanolides instead of the usual guaianolides (486). This is another instance where syntheses of guaianolides and eudesmanolides in the same plant seem mutually exclusive. Infraspecific chemical variation in Artemisia was also documented in A. verlotorum wherein two distinct "chemovars" were identified: collections from southern Germany and the Tessin Alps of Switzerland yielded three germacranolides--artemorin (413), anhydroverlotorin (418) and verlotorin (419); Australian collections from the Melbourne area produced only the eudesmanolide, vulgarin (654) (295). 11. Ambrosia dumosa (Gray) Payne.---Ambrosia dumosa is a shrubby, dominant member of the Sonoran, Colorado and Mojave Desert floras and contains three widespread, geographically overlapping ploidy levels: diploid (n = 18), tetraploid (n = 36) and hexaploid (n = 54). A total of 169 plants from 99 populations were examined for sesquiterpene lactone chemistry and chromosome number (Fig. 21). At the diploid level, two morphologically indistinguishable cytochemotypes3 (Table III) were
3 The term cytochemotype denotes a geographically and chromosomally defined system of populations sharing a common chemistry.
SESQUITERPENE LACTONES--ASTERACEAE
0 o0
173
~o
9
\
[]
13
0
ioii o a ~IIn a
~~
A
o
o
Diploid: 0 Ambrosiol-coronopilin 9 Burrodin Tetraploid: []Psilostachyin-burrodin
~~
I Burrodin Germacranolide I Germacranolide II Hexaploid: A Psilostachyin-burrodin
......
~\,o~\L
Fig. 21. Distribution of the different cytochemotypes of Ambrosia dumosa (Heliantheae).
174
THE BOTANICAL REVIEW
O
'~
~9
~D
o.~ ~
e~
~9
.~8~
~9
H b;
o~
"8 a~
~9 O
H
t~
C9
~9
~D
?
"8E-
SESQUITERPENE LACTONES--ASTERACEAE
~
175
t"-..
tr
~~
.'.~"o.~.~
~g
~ "=o= '~
"7, O "
.t~
m
176
THE BOTANICAL REVIEW
0
'~
0
9~ ' ~
"6
,~
~
0
~
0
0
9.~ . ~
~,
~.~
o
o~
~'~
~e e. ~
:'=
II
m
~z
~,
9~
~
x~
0
o
.~ .~ .~ ,, u
e
g~ 6 0 ,u
o
"~
.~
.~.~'
SESQUITERPENE LACTONES---ASTERACEAE
177
found. The tetraploid level is divisible into two cytochemotypes, a burrodin-based tetraploid type, which produces the same chemistry as the burrodin diploid type, and a second tetraploid element, the psilostachyinburrodin tetraploid type. The sampling was insufficient to determine the exact geographical boundaries for these two tetraploid groups which overlap in northern Sonora and southern California. Two tetraploid populations, germacranolide I and II cytochemotypes (Table III), differed considerably from all other chemotypes in that they contained only germacrolides. At the hexaploid level one cytochemotype was found which was chemically identical to the psilostachyin-burrodin tetraploid group except for a lower frequency of occurrence of ambrosin (Table III). Earlier biochemical studies showed that amphiploids may combine the chemistries of the two diploid parental species (624). That is, if the chemical constituents from both diploid parents appear in an F1 hybrid, and this additive chemistry remains unchanged as the hybrid undergoes polyploidy, the resulting tetraploid's chemistry will display features of the two diploid chemistries. In A. dumosa, the psilostachyin-burrodin tetraploid and hexaploid elements not only produce compounds found in the two diploid elements, but they also combine two structural features which occur separately in the two diploid elements (Fig. 22): (1) the dilactone or secoambrosanolide skeletal type (psilostachyanolides) and (2) the unusual presence of C-8 lactonized ambrosanolides. Without corroborative data from other sources, it is impossible at this time to determine if the sesquiterpene lactone chemistry indicates a hybrid origin (involving the two diploid elements) for the psilostachyin-burrodin tetraploid and hexaploid elements. But it should be emphasized that the complex sesquiterpene lactone chemistry of the polyploids can be assembled directly from the distinct chemistries of the two diploids. The sesquiterpene lactone chemistries of the A. dumosa populations are the only data which clearly divide the tetraploid level into two distinct entities, a geographically extensive psilostachyin-burrodin element and a more restricted burrodin element. The identical chemistries of the tetraploid and hexaploid psilostachyin-burrodin elements support the origin of the latter from the former. Finally, the chemical and distributional similarity of the tetraploid and diploid burrodin elements suggests this polyploid element's origin from the chemically identical diploid element. The sesquiterpene lactone studies reviewed above can be summarized as follows: The diploid species, Ambrosia ambrosioides, A. chamissonis and Melampodium linearilobum, the taxonomically distinct diploid elements of polyploid complexes, A. deltoidea, A. cumanensis, A. artemisiifolia, and the two diploid chemotypes of A. dumosa, each display limited variabil-
178
THEBOTANICAL REVIEW
AMBROSIOL-CORONOPILINTYPE PSILOSTACHYIN-BURRODIN TYPE DIPLOID TETRAPLOIDAND HEXAPLOID I SEcO-AMBROSANOLIDE
PSILOS~
HO psILO$~ GERMACRANOLIDE
PSIL~ >
<
I
I PARTH
I
H~, I
C-8 LACTONIZEDAMBROSANOLIDE I
<-r--
BURRODIN C-6 LACTONIZEDAMBROSANOLIDE %
APOLUDIN
CORONO
HO','~ AMBROSIOL
8
AMBROSi
~
BURRODINTYPE DIPLOID
SESQUITERPENE LACTONES---ASTERACEAE
179
ity. The extent of chemical variation within the range of these taxa approximates the degree of morphological variation. Although the two morphologically heterogeneous taxa, A. chamissonis and M. linearilobum, display infraspecific chemical variation, this variation does not extend to differences in skeletal types. Instead, the chemistries of collections from different parts of the species range are differentiated by the degree of oxidation of ring carbons or by the identity of acid ester sidechains associated with a single skeletal type. Both A. ambrosioides and A. deltoidea are phenotypically and chemically less variable than A. chamissonis and M. linearilobum. The intergrading diploid taxa of the A. artemisiifolia-A, psilostachya-A, cumanensis complex each display variable but similar chemistries which are compatible with the morphological complexity of the group. Gaillardia pulchella is the only aneuploid series (n = 17, 18) which has been chemically surveyed, albeit incompletely. Predictably, this morphologically and chromosomally variable taxon displays considerable chemical variability suggesting the presence of several distinct chemotypes. The remaining examples, Ambrosia camphorata, Melampodium leucanthum, A. deltoidea, A. chenopodifolia, A. confertiflora, A. psilostachya, Artemisia tridentata and Ambrosia dumosa are either polyploid series or parts of polyploid complexes encompassing other taxa. Based on the analysis of phenotypic variability and/or gross meiotic behavior, the taxa have been described as autopolyploids, segmental allopolyploids or allopolyploids, a practice which has obscured the evolutionary picture regarding these entities. To avoid this type of confusion, Grant (344) recommends that before defining the origin of a polyploid, an initial cytotaxonomic study followed by genetic experimentation must be conducted. In the initial cytotaxonomic phase, the results of the investigation of different phenotypic character states are assimilated and superimposed on the distribution of chromosome numbers. It is evident from such studies that textbook description of a polyploid complex containing a diploid foundation of distinct interfertile entities and a polyploid superstructure comprised of various genomic combinations at the tetraploid, hexaploid and octaploid levels provides an idealized construct which is somewhat difficult to discern in nature. Frequently, these complexes contain morphologically-similar ecotypic or racial elements at the diploid level and a confusing array of derivatives at the polyploid level. Within such complex groups in the Asteraceae, the study of sesquiterpene lactone varia-
Fig. 22. Relationship of the chemistries of the two diploid elements and the chemistry of the tetraploid and hexaploid psilostachyin-burrodin elements of Ambrosia damosa (Heliantheae).
180
THE BOTANICAL REVIEW
tion seems to augment well the more traditional methods of cytotaxonomic analysis of gross morphology and anatomy. The examples discussed above demonstrate that infraspecific genetic variation is reflected in the distribution of chemotypes, and in such cases as Artemisia tridentata ssp. vaseyana the chemotypes seem to correspond to topographically defined ecotypes. In A. dumosa, A. confertiflora and A. camphorata, morphologically indistinguishable population systems were divisible into geographically and chemically defined units. Although many of the collections of A. confertiflora were not examined for chromosome numbers, the limited results of an associated cytological study indicated that these chemotypes correspond to population clusters of characteristic chromosome number. A more thorough chromosomal and chemical study of this taxon may provide well-defined cytochemotypes. Although more thorough populational sampling is desirable, the preliminary results with A. dumosa and A. camphorata indicate that the delimitation of sesquiterpene lactone cytochemotype boundaries is useful in examining speciational events. The above examples suggest that the chemical complement (chemotype) can be used as an analytic character at levels ranging from the presumably ecotypic to the specific. Further, the number of chemotypes per taxonomic species seems to correlate well with the cytological and morphological complexity of the taxon. Not too surprisingly, absolutely uniform chemical patterns are not observed: interpopulational qualitative variation in minor constituents seems commonplace. The correspondence between taxonomic species and the biological reality of evolving population systems has been questioned by both advocates of the biological species concept (344) and by population biologists (588a). The latter group has cautioned taxonomists to heed the idiosyncratic diversity within plant groups and avoid the presumption of some universal code governing species definition. As exemplified by Ambrosia camphorata and A. dumosa, sesquiterpene lactones provide a sensitive method for analyzing speciational processes which are not readily apparent in the morphology. Thus, sesquiterpene lactones permit some insight into the "idiosyncratic diversity" of these and other complex taxa. GOOD VERSUS BAD CHARACTERS
The following properties have been attributed to good taxonomic characters (227): A. Not subject to wide variation. B. Low intrinsic genetic variability.
SESQUITERPENE LACTONES---ASTERACEAE
181
C. Not easily susceptible to environmental modification. I). Show consistency (i.e. usually compatible with a pre-existing natural system of classification which is based on other characters). A. In the 13 examples of infraspecific sesquiterpene lactone variation reviewed above, the degree of variation in sesquiterpene lactones paralleled the degree of morphological and cytological variation. In the more complex taxa, discrete populational systems could be identified (chemotypes) which produced characteristic sesquiterpene lactone chemistries. Thus, sesquiterpene lactones display no more drastic infraspecific variability than would be anticipated based on non-chemical evidence. B. Experimental studies, in which seedling chemistries were compared to parental chemistries, demonstrated low genetic variability. In the analysis of self-fertilizing Ambrosia chamissonis plants, the chemistries of 96 seedlings were compared to the chemistries of 15 parent plants. In most instances, the seedlings produced the same chemistries as the parents (705). In a similar study with Artemisia tridentata, Kelsey (529) found that seedlings grown in the greenhouse had chemical profiles qualitatively identical to those of the parents. The previously mentioned chemical studies of the A. tridentata spp. vaseyana ecotype hybrids and parental type seedlings also support the conclusion that within a given chemotype there is limited genetic variability for these characters. C. In a series of transplant experiments, Renold (737) transferred Ambrosia confertiflora plants from the field and maintained them in greenhouse conditions which varied considerably from those of the plant's natural habitat. After two years, the chemistries of the plants (representing several chemotypes) were analyzed and found to be qualitatively identical to those produced by the plants in the field. A similar but more exhaustive study by Kelsey with Artemisia tridentata (529) produced the same results. Kelsey also found that there was no qualitative chemical variation in tagged specimens of two A. tridentata subspecies during the different seasons or physiological stages of the plants. Furthermore, a comparison of the seedlings ofA. tridentata ssp. wyomingensis with mature plants derived from the same seed parent showed that the immature seedlings did not differ qualitatively from the mature plants. The studies reviewed in Section B above, in which seedlings of plants of natural populations produced the same chemistry as their parents, also demonstrate the low susceptibility to environmental modification. However, there are two published accounts of developmental or environmentally-induced qualitative differences in chemistry between plant tissue collected at different developmental stages. A California collection
182
THE BOTANICAL REVIEW
of Artemisia douglasiana produced mature, flowering fall growth which contained the guaianolides, arteglasin-A (770) and B (794), while its early spring growth contained only the eudesmanolides, douglanine (567), arglanine (609) and ludovicin-B (595) (584). In another instance (292), Ambrosia acanthicarpa from San Diego Co., California produced in the seedling stage during March the following ambrosanolides and secoderivatives: confertiflorin (1109), desacetylconfertiflorin (1108) and psilostachyin (1150). A mature sample from the same population collected in June produced only detectable quantities of the germacrolide, chamissonin (164). Examination of another specimen in June revealed chamissonin as the major constituent, but it co-occurred with psilostachyin C (1152) and confertiflorin. Whether or not these are developmental or environmentally-induced differences, this hazard can be avoided in a biochemical systematic study by analyzing similar plant tissues collected at approximately the same time and developmental stage. D. A good character, when introduced into a study involving many other characters, should agree with the bulk of the other characters. The confidence in the resulting classification system grows as more corroborative characters are added until, ultimately, the system is accepted as a "natural system." The present review of tribal, subtribal, generic, specific and subspecific chemistries documents sesquiterpene lactones' fulfillment of this requirement. Not surprisingly, several instances, where sesquiterpene lactones do not corroborate the current system, involve classifications which are frequently disputed on other grounds. This is especially true in the determination of the generic boundaries of the Heliantheae subtribes and of the Senecioneae. QUALITATIVEVERSUSQUANTITATIVECHARACTERS In most instances where sesquiterpene lactones have been applied to taxonomic problems, they have been used as qualitative characters. Especially at lower hierarchical levels, presence/absence is much more reliably determined than quantitative differences. At higher hierarchical levels, the relative proportions of the different skeletal types can be used as quantitative characters to differentiate tribes, subtribes, etc. Specifically, the proportion of related taxa producing a given skeletal type can be used as a quantitative character to distinguish that group from another cluster of taxa producing a significantly different proportion of that skeletal type. Expectations of absolute chemical distinctions between species groups at higher taxonomic levels reflect an ignorance of the degree of chemical parallelism present in the Asteraceae. Proof of the presence of a compound becomes increasingly difficult as its concentration decreases. Thus, a discussion of chemical differences
SESQUITERPENE LACTO NE S----ASTERACEAE
183
between taxa really concerns differences between compounds with concentrations above the threshold of analytical detectability. Even though this threshold has plummeted in recent years, the unsettling possibility remains that apparently qualitative differences may be only an expression of extreme quantitative variation within a set of related structures. One possible escape from this dilemma concerns the functions of natural products. As noted earlier, sesquiterpene lactones likely serve as feeding deterrents against a variety of predators. Feeding tests reveal that concentrations of sesquiterpene lactones needed for significant activity against herbivores easily fall within the range of detectability. Thus, the complement of identifiable compounds are likely the only sesquiterpene lactones with sufficient individual or collective concentrations to serve as anti-herbivore agents. Although other structures may be synthesized in minute quantities and fall below the level of detection, the argument can be made that selection has operated to accelerate the rate of synthesis of only a part of the total repertoire of structures the plant is capable of synthesizing. Another side to this dilemma of presence/absence concerns the sensitivity of analytical methods. In the usual survey technique for determination of the presence of sesquiterpene lactones the total extract or some chromatographic fraction of that extract is screened by nuclear magnetic resonance (NMR) spectrometry in the search for diagnostic signals or less reliably by TLC co-chromatography. The concentrations of sesquiterpene lactones in the NMR sample is a function of both the concentration in the plant and the determination of the chemist to purify the particular sesquiterpene lactone fraction of the extract. Reports in the literature of the general absence of sesquiterpene lactones or the absence of a particular structure reflect widely varying degrees of analytical thoroughness. The reliability of such reports depends on the number of independent verifications of the absence of sesquiterpene lactones from members of the same taxonomic group. For example, many species of the Astereae have been sampled by different laboratories and to date only two Aster and one Croptilon species have yielded sesquiterpene lactones. Thus, based on the accumulated negative evidence this tribe generally seems to lack sesquiterpene lactones. F U N C T I O N A L VERSUS N O N - F U N C T I O N A L CHARACTER STATES
The infraspecific distribution of sesquiterpene lactones and the existence of discrete chemotypes raises questions about functional differences between these chemistries. Initial experiments indicate that qualitative variation at the infraspecific level is under genetic control. It follows that the variation could represent an adaptive response to pre-
184
THE BOTANICAL REVIEW
dation pressures. Alternatively, such chemical differences might be the product of genetic drift and the random fixation of different genotypes, or they could result from the pleiotropic effects of genes regulating the synthesis of other plant chemicals. Variation in the types or density of herbivores or pathogens can confer different fitnesses in different parts of the range of a taxon with a single species-specific defensive chemistry. Thus, differential predation patterns may generate through selection more than one adaptive chemical response within the species range. This concept is not unique and has been documented in a variety of cases: (1) variation in the terpene content of Satureja douglasii was correlated with herbivore pressure (589b) and light intensity and (2) variation in the distribution of cyanogenic glycosides in the European and Near Eastern populations of Trifoliurn repens and in Lotus corniculatus (507b) was also correlated with herbivore pressure. Thus, quantitatively or qualitatively different chemistries at the infraspecific level suggest the presence of several "adaptive peaks" which develop in response to discontinuous predation. Alternatively, chemical variation may be an effective mechanism to deny the predator (or pathogen) a single, predictable, chemically homogeneous host. A chemically uniform host species facilitates the development of specific insect metabolic detoxification systems through the process of specialization. A complex chemistry that is unpredictable from one population to the next is an effective plant defense against specialization by a herbivore. BIOSYNTHETIC DIVERGENCE AND PARALLELISM
The isolation of two identical compounds from different plant sources should always raise questions about the genetic homology of their respective biosynthetic pathways. Biosynthetic studies with plant phenolics indicate that different enzymes can mediate the same reaction steps yielding the same product in different taxa. Documentation of infraspecific variation in polyphenol oxidase isoenzymes (306) reveals that a priori assumption of strict genetic homology at any taxonomic level is risky, although the risk of non-homology increases at higher taxonomic levels. Evidence from anthraquinone (259, 260, 287) and alkaloid (259, 260) biosynthetic studies indicate that two different major pathways can yield the same or structurally similar products. Although most instances of parallel evolution involving alternative biosynthetic routes are found at the interfamilial level or higher, there is one likely instance of parallel evolution within the Asteraceae. The biosynthesis of eremophilanolides in the Senecioneae (Type B) and the Heliantheae (Type A) probably
SESQUITERPENE LACTONES--ASTERACEAE
1.
m-methylene, y-lactone
185
2. cyclopentenone
H exocyclic
endocycl ic
3. ~,fi-unsaturated
ketone
4. ~,~-unsaturated alcohol
Fig. 23. Sesquiterpene lactone structural features related to biological activity.
occur via different biosynthetic routes from a common germacrane precursor (see discussion on p. 139). The number of individual compounds and skeletal types listed in the present study demonstrates the degree of sesquiterpene lactone biosynthetic divergence. This type of structural diversity is required of any class of compounds which is to be used as a taxonomic character. However, there are factors which tend to channel biosynthesis along parallel lines in different taxa. For example, the biological activity of sesquiterpene lactones is tied closely to the presence of specific structural features (Fig. 23): (1) a-methylene-lactones, (2) cyclopentenone rings in guaianolide and pseudoguaianolide-type structures and (3) a,/3-unsaturated alcohols (358, 554, 748). The significant effect of these functionalities on the biological activity of the structure explains their frequent incorporation into different compounds of distantly related plant groups. An interesting case of parallel evolution concerns the distribution of
186
THE BOTANICAL REVIEW
c~ o r~ -,-t
o~
I
7 4J 9
.,-t t~
7
9'~
~ ,'-4
z E ~4
7 ~
~
o r~
o o
.o ~ 9
T c~ ul
o
r~
I
~
"~
7
7
7
o? r~
g
,
~
g
r~
~
~ ~.~
~
S
~ ~
A
SESQUITERPENE LACTONES--ASTERACEAE
187
the a-methylene, y-lactone moiety in the sesquiterpenes of the plant kingdom (Table IV), wherein the major classes of sesquiterpenes such as the germacranes, eudesmanes and guaianes are widespread. The capacity to incorporate the conjugated a-methylene, lactone ring into these structures is obviously an attribute of more plant families than just the Asteraceae. Thus, this broad distribution of sesquiterpene lactones reflects parallel evolution, probably associated with the adaptive, broad-spectrum toxicity achieved by the introduction of the lactone ring. Another very common form of parallel evolution within the Asteraceae is the loss of the capacity to synthesize sesquiterpene lactones. Mabry and Bohlmann (595) argue that the chemically complex tribes are often primitive, suggesting that early in the evolutionary history of the Asteraceae the tribal progenitors produced a wide array of natural products and that since then there has been a progressive loss of this complex chemistry in many of the derived taxonomic groups. The results of the present study support their view and indicate that the capacity to jointly produce germacranolides, eudesmanolides and guaianolides is probably primitive. Thus, the absence of detectable quantities of sesquiterpene lactones in numerous unrelated taxa indicates widespread parallel evolution. Other more restricted cases of parallel evolution can be seen in the distribution of certain skeletal types in Table II. An example is the cooccurrence of the type B eremophilanolides in one species of Aster and many genera of the Senecioneae. A general rule regarding the relative biogenetic complexity of sesquiterpene lactones is that the more biogenetically simple structures tend to have broader distributions than do the more complex. The biogenetically least complex germacrolide, costunolide, has been isolated from Ambrosia, Artemisia, Centaurea, Chrysanthemum, Cosmos, Critonia, Hymenoclea, Inula, Matricaria, Saussurea and other taxa inside and outside the Asteraceae. As the skeletal and substitutional complexity of the structure increases, the likelihood of its presence in such a broad array of taxa diminishes. Although biogenetically complex structures are usually restricted to a single genus or a group of related genera (e.g. seco-ambrosanolides in the Ambrosiinae), caution should be exercised when attempting to relate disparate taxonomic groups by their mutual synthesis of the same biogenetically advanced skeletal types. We should heed B. L. Turner's advice that " . . . peculiar or out-of-place micromolecular constituents are likely to appear inexplicably in any number of taxonomic groups, much as do morphological characters. And like the latter, they may or may not be homologous . . ." (912, p. i l6). This phenomenon, which Cronquist has
188
THE BOTANICAL REVIEW
termed the "rampant evolutionary parallelism" of the angiosperms (224b), must have contributed to the sporadic co-occurrence of certain skeletal types in different taxa of the Asteraceae. Consequently, the total distributional and substitutional diversity of any shared skeletal type within these taxa must be compared, together with other chemical and non-chemical evidence, before drawing any taxonomic conclusions from the co-occurrence. IV. Subfamilial and Tribal Chemistries
The Asteraceae is a well-defined family in both morphological and chemical terms. Not only is it generally characterized by sesquiterpene lactones but most of the sesquiterpene lactone-producing tribes are typified by a basic tripartite chemistry of germacranolides, eudesmanolides and guaianolides. However, in several tribes, Astereae, Calenduleae, Senecioneae, and Tageteae, these compounds occur very rarely, if at all. Thus, most tribes appear to fall into two categories, one in which there is a well-represented "core-chemistry" encompassing the biogenetic complexity levels l and 2 (Table II) expressed in the tripartite array, and a second in which sesquiterpene lactone occurrence is rare. Members of the first group of tribes achieve some chemical distinction by modification of this tripartite chemistry. Frequently though, when the tribal chemistry exceeds the eudesmanolide- and guaianolide-based level of complexity to produce more biogenetically complex structures, the resulting tribe-specific skeletal type is restricted in distribution and is not truly representative of the entire tribe. For example, secoambrosanolides are considered specific to the Heliantheae but actually they are restricted to a single small subtribe, the Ambrosiinae. Hence, the only reliable method for distinguishing one tribe from the rest is through a comparison of (1) the total complement of unique and shared skeletal types, and (2) the relative frequency and substitutional diversification of the shared skeletal types. This latter point is significant in contrasting such tribes as the Inuleae and the Heliantheae, which contain remarkably similar skeletal types. Although both tribes apparently can carry out the isomerization of the trans, trans-germacrane precursor to yield the configurational germacradienolide isomers, this process is a major characteristic of the Heliantheae chemistry and only a very minor feature of the Inuleae chemistry. With the exception of the Senecioneae, no tribe had been so thoroughly investigated to warrant the claim that it lacks this tripartite biosynthetic pattern. However, most members of the Astereae, Calenduleae and Tageteae do not appear to synthesize sesquiterpene lactones.
SESQUITERPENE LACTONES--ASTERACEAE
1~
SUBFAMILIAL CLASSIFICATION
Given these basic properties of tribal chemistries, the application of sesquiterpene lactone characters to the establishment of subfamilial boundaries is limited. Although several schemes have been proposed to subdivide the tribes (224a), essentially three major subfamilies have been recognized at various times: (1) the group of radiate tribes called the Asteroideae, (2) the discoid tribes termed the Cichorioideae, and (3) the single tribe Lactuceae recognized as a subfamily distinct from the remainder of the tribes. The view that the discoid members of the family, the Eupatorieae, Vernonieae, Cynareae and Mutisieae, are a related group of tribes derived from similar Helianthoid progenitors is supported by the analogous complements of skeletal types of these tribes. All produce the tripartite pattern but mostly lack the capacity to synthesize constituents of the third or fourth level of biogenetic complexity. This advanced biosynthetic capacity seems to be restricted to the Asteroideae. The chemistry of the Lactuceae as shown in Table I does not distinguish it from the discoid or radiate groups. TRIBAL CLASSIFICATION
In Table I the grouping of skeletal types according to degree of biogenetic complexity displays the distribution of biogenetically "simple" and "derived" types in the tribes of the Asteraceae. This summary, which is based on an exhaustive survey of sesquiterpene lactone distribution, will be compared to the results of earlier reviews of sesquiterpene lactone distribution (371,380): A. Previous studies indicated that eudesmanolides occurred less commonly than did guaianolides in all tribes and that eudesmanolides were absent from the Vernonieae, Eupatorieae and Cynareae (294). It is now apparent that the capacity to synthesize both eudesmanolides and guaianolides in addition to germacranolides is characteristic of most tribes. The exceptions, Astereae (no germacranolide reported), Calenduleae, Tageteae, and Liabeae (no eudesmanolides reported), have very depauperate and/or poorly investigated sesquiterpene lactone chemistries (380). Another exception, the Senecioneae, however, does produce both eremophilanolides, which are derived from eudesmane precursors through migration of the C-10 methyl group, and the seco-guaianolide, xanthanolide skeletal type. Further studies may reduce the number of tribes lacking this dual eudesmanolide-guaianolide biosynthetic capacity. Currently, we can say that most sesquiterpene lactone-producing tribes possess the ability to synthesize germacranolides, guaianolides and eudesmanolides,
190
THE BOTANICAL REVIEW
B. In 1977, Herz (380) asserted that sesquiterpene lactones were not common constituents of the Astereae, Mutisieae, Arctoteae and Calenduleae. Although the results of the present survey show that both the Mutisieae and the Arctoteae possess the capacity to synthesize germacrolides, eudesmanolides and guaianolides and that several more reports exist for the other two tribes, Herz's statement is still supported by the large bulk of unpublished and published negative evidence. C. Herz (380) also noted that the Vernonieae, Eupatorieae, Cynareae, and Lactuceae may not possess the capacity to transform lactones beyond the second level of biogenetic complexity. Now, with considerably more reports to examine, his claim is still valid. As he noted, there is one report of an exceptional compound, an ambrosanolide, from Stevia (Eupatorieae). The intensively investigated Anthemideae also produces an abundance of germacranolides, eudesmanolides and guaianolides, which exceed the second level of complexity in only two instances: although the report of an exceptional cadinanolide from Artemisia is included in this treatment, its likely route of synthesis (275) involves a cadinane precursor and, therefore, does not fit into a germacrane-based biogenetic scheme (Fig. 2) which serves as the basis for the definition of sesquiterpene lactones in the present treatment. The second exception, chlorochrymorin (966), isolated from Chrysanthemum morifolium represents the only reported case of a naturally-occurring guaianolide undergoing a ring contraction most likely involving an alkyl shift of C-I from C-10 to C-9 (275). D. The distribution of germacradienolide isomers other than the germacrolides is much broader than originally described, encompassing the Vernonieae, Eupatorieae, Heliantheae, Anthemideae, Liabeae and Arniceae. Thus, the ability to carry out the necessary isomerization reactions to yield, cis, trans-, trans, cis- and cis, cis-germacradienolides, is common to more tribes than to just the Heliantheae, wherein this capacity is most highly developed. i. VERNONIEAE
The examination of 98 species of 15 genera in the Vernonieae produced the following number of reports: 36 germacrolides, 97 non-germacradienolide germacranolides, 31 heliangolides, 42 guaianolides and 3 eudesmanolides (Table V). The taxonomic significance of the distribution of sesquiterpene lactones in the tribe, especially within Vernonia, was first discussed by Mabry et al. (597). Subsequently, Robinson applied sesquiterpene lactone distribution to the delimitation of the Vernonieae subtribes (744).
SESQUITERPENE LACTONES--ASTERACEAE
191
Heliangolides have been reported from Centratherum, Eremanthus, Lychnophora, Piptolepis, Proteopsis and Vanillosmopsis, wherein the major constituents have the same goyazenolide-type furane heliangolide skeleton (Table V). Within this group of taxa individual compounds differ only by the sidechain ester substituents at C-6 and the oxidation level of C-15. The taxonomic affinity of these genera is supported by the cooccurrence of this highly modified structure. The distribution of these furane heliangolides was used by Robinson and associates to define the subtribe Lychnophorinae (which includes
Eremanthus, Lychnophora, Piptolepis, Proteopsis, Vanillosmopsis). Centratherum was placed in a separate subtribe, Centratherinae, despite the presence of goyazenolide-type heliangolides. Furane heliangolides distinguish these two subtribes from the major subtribe, Vernoniinae (744). A possibly misleading earlier report claimed that "Heliangolides with a furanone ring may be characteristic of the genus [Eremanthus] though such lactones have been reported from a few other genera belonging to this tribe: Centratherum, Lychnophora, Mattfeldanthus, Stokesia, Vanillosmopsis and Vernonia" (175, p. 2663). An examination of the cited references indicated that such compounds were not reported from Mattfeldanthus, Stokesia and Vernonia. In the latter two genera, both members of the subtribe Vernoniinae, the hirsutinolide series occur which do possess a furan ring system but which are not heliangolides. Mattfeldanthus yielded only a germacrolide (183). Similar guaianolides are produced by many Vernonieae genera and the distribution of individual compounds is useful in relating taxa. For instance, Eremanthus, Lychnophora and Vanillosmopsis are all characterized by the presence of eremanthine (782). The significance of the distribution of the C-13 acetylated glaucolidemarginatin-type germacranolides has been reviewed (597). Although widespread among New World Vernonia and Stokesia taxa, the glaucolide-marginatin series has been reported from only one Old World member of the Vernoniinae, Erlangea remifolia. The other 80 reports from New World taxa support the view that Old and New World members of this subtribe represent distinct phyletic groups. The hirsutinolide-type germacranolides bear a structural resemblance to the glaucolide A and B series and also possess the C-13 allylic acetate. They are mostly restricted to the Vernoniinae, however, they occur in both Old and New World members: Vernonia hirsuta, V. oligocephala, V. angulifolia (Africa); V. saltensis, V. scorpioides, V. noveboracensis, V. polyanthes, Stokesia laevis (South and Central America). As noted by Robinson (744), the presence of both glaucolide- and hirsutinolide-type compounds in Chresta (Lychnophorinae) indicates a chemical similarity to the Vernoniinae. Nevertheless, the hirsutinolides isolated from Chres-
192
THE BOTANICAL REVIEW
Table V
Distribution
of Similar
Sesquiterpene
Lactones
Skeletal Subtribe
No.
Spp.
la
ic
in the V e r n o n i e a e
Types
1
2
3
7
28
6
2
Lychnophorinae Chresta
1
1
Eremanthus
4
1
13"
5
Lychnophora
6
2
5*
9
Piptolepis
1
2*
Proteopsis
1
4*
Vanillosmopsis
3
1
2**
5*
1
1
Centratherinae Centratherum
1
2*
2
Piptocarphinae Piptocarpha
1
6**
Erlan@ea
3
i**
Heterocoma
1
Mattfeldanthus
1
1
Vernonia
68
26
Stokesia
1
Vernoniinae 2 1
76**
2
21
5**
3
4
2
Elephantopodinae Elephantopus
6
5
Rolandrinae Rolandra
1
4**
ta and Piptocarpha are distinct from those isolated from the Vernoniinae taxa because of the /3-orientation of the C-10 methyl in the two nonVernoniinae taxa and the a-orientation of this methyl in the Vernoniinae. The presence of the C-13 allylic acetate function on the compounds of Rolandra (Rolandrinae) supports Robinson's view that the Rolandrinae was derived from a Vernoniinae progenitor. Many New and Old World Vernonia and Stokesia taxa share repre-
SESQUITERPENE LACTONES--ASTERACEAE
Shared * Goyazenolide-type
193
Skeletal T[pe___ss
~
heliangolides:
~
Piptolepis
Proteopsis
Centratherum Eremanthus
R
Lychnophora Vanillosmopsis ** C-13 allylic a c e t a t e F u n c t i o n s : Glaucolide
series:
aC
R3 Chresta Erlan~ea Stokesia Vernonia
Rolandrolides :
Hirsutinolides:
.-"x--~O~ Stokesia
0
R
OAc
R
Rolandra
Vernonia
Ho,,,L
Chresta
Piptocarpha
sentative compounds of the zaluzanin-C (837)-vernoflexine (839)-dehydrocostus lactone (834) series of guaianolides. In an earlier discussion of phylogenetic trends (597), the distribution of the structurally-related compounds of the glaucolide series and marginatin were used to draw several inferences: (1) the New World Vernonia species are more closely related to each other and to Stokesia than to the Old World Vernonia species and, as a consequence, the major
THE BOTANICAl. REVIEW
194
Table VI D i s t r i b u t i o n of S e s q u i t e r p e n e in the E u p a t o r i e a e
Genus
# Spp.
la
Ib
Lactone Skeletal Types
(Asteraceae).
1
lc
2
3
Ageratina
2
Agrianthus
1
2
Austrobricke]]ia
1
1
Chromolaena
1
Conocliniopsis
1
Critonia
2
Decachaeta
1
Disynaphia
1
Eupatorium
16
22
Grazielia
2
8
Guevaria
1
Hartwrightia
1
Liatris
[i] b 2
1
8
14
2911] 1
2
1 2
13
2
5
ll
ill
11
1
Mikania
6
Oxylobus
1
1
Stevia
4
1
Trichogonia
4
Numbers acids.
8
2
2
1
a
7
(2) a
Lourteigia
Totals
4
414c/7]
59
in p a r e n t h e s i s
3
1 5
[1] ii
8 55
2
12
40
8
53
1
3
12
indicate the number of c o m p o u n d s w i t h C-12
b B r a c k e t s indicate C-8 lactonization; trans to C-6.
otherwise,
lactonization
is
c The number b e f o r e the slash refers to d i l a c t o n e s w i t h the hydroxyl at C-6 l a c t o n i z e d to a C-15 acid and a C-8 cis-lactone; the number after the slash refers to the d i l a c t o n e s w i t h a C-8 trans-lactone.
New World section Lepidaploa represents a distinct phyletic line, (2) the sesquiterpene lactones produced by New World Vernonia species are sufficiently different from those of Old World species to indicate two phytogeographical centers of distribution, one in Africa and the second in South America, (3) the chemical and non-chemical evidence suggests that the North American species are derived from South American pro-
SESQUITERPENE LACTONES--ASTERACEAE
195
genitors and that some of the more advanced taxa contain biogenetically less advanced compounds or no compounds at all as a result of the loss of biosynthetic capacity. The chemical distinctions between New and Old World members of the subtribe Vernoniinae were further reinforced by the reports of elemanolides and vernolide (109)-type germacranolides (Table V) from only Old World members (744). The isolation of novel allenic germacranolides (Table V) from two Vernonia members of the subgenus Lepidaploa suggests that sesquiterpene lactones may prove taxonomically useful at lower hierarchical levels within this genus (744). The distinct chemistries of Elephantopus taxa support their treatment as a separate subtribe, Elephantopodinae. Not only do they lack the chemical features common in other genera, they produce germacranolide dilactones not found elsewhere in the tribe (744). 2. EUPATORIEAE The 17 investigated genera of the Eupatorieae produce mostly C-6 trans-lactonized germacranolides and guaianolides which frequently have C-8/3-ester functions (Table VI). As recognized by Herz, the high incidence of similar heliangolides in genera of this tribe distinguishes it from all other tribes except the Heliantheae (380). However, it should be noted that the Vernonieae and Anthemideae also display the capacity to synthesize heliangolides. C-6 trans-lactonized guaianodienolides also occur commonly within the tribe, with 1(10), 3(4) dienes occurring in Ageratina and Austrobrickellia, and 10(14), 3(4) dienes appearing in Eupatorium and Stevia. Ligustrin (791) is found in both Eupatorium and Stevia. The cooccurrence of the punctatin series of heliangolides in Liatris and Hartwrightia supports the placement of Hartwrightia in the Liatris-related group of genera (95a). 3. ASTEREAE
Despite frequent sampling, sesquiterpene lactones were detected in only two Aster species, Aster tataricus and A. umbellatus, which contained eremophilanolides and eudesmanolides, respectively. A single guaianolide was isolated from Croptilon divaricatum. 4. INULEAE Sesquiterpene lactones are reported from 13 of the approximately 180 genera of the Inuleae (Table VII). Several structural patterns emerge from this limited survey, suggesting that the tribe is characterized by a mixture of C-8 cis- and trans-lactonized compounds and by an unusually high incidence of xanthanolides. In fact, six of the 13 investigated genera, Angianthus, Carpesium, Geigeria, Helichrysum, Inula and Pulicaria, are
196
THE
BOTANICAL
REVIEW
r~ 0
~y 0.~ r~-~ ~0 .,-I I
fxl 0
~ 0
O O~
~
H
~
-,-I
~
~4~ OJ~
U
~ .r4 ~
-,~ rj
m 0
E~
N
~)
0 -,.4 43
~ E~
1.4 4-~ m -,-t
~) ,'-4 ~ .M
~I
r~ 9r~
,-4
~0
6
01'4 O4O ~ 0 ~4
@ ,~ 4~
o.~
m
~--14J
0 0
o
o ~ o
o
o'o
~-I
O
O
O
~0 tM
m
~J m
I1)
~mm
n,
oo
o
,--I
9~
9 ~ ,el 0 ul 4~ 4~
E
~ ,.•
=
~ r~
r'
r~
~
~
~
,.C/
~
r~
-,.4
A4 ~ , ~
~ -,~
~)
SESQUITERPENE LACTONES--ASTERACEAE
197
Biogenetic Complexity Level
Subtribe Ist
2nd
l.Melampodiinae
Germacrolide---~Eudesmanolide Heliangolide Melampolide cis,cis-Germacradienolide
2. Zinniinae
Germacrolide,~Elemanolide
3rd
4th
Guaianolide 3. Ecliptinae
......
4. Verbesininae
Germacrolide~:~ Eudesmanolide HeliangolideN Elemanolide Guaianolide
5. Helianthinae
Germacrolide-Heliangolide cis,cis-Germacradienolide
6. Gaillardiinae
Germacrolide~Guaianolide~ -H e l e n a n o l i d e- ~ Eudesmanolide -m Xanthanolide
7. Coreopsidinae
Germacrolide
8. Fitchiinae
Germacrolide----*Guaianolide
9- Bahiinae
{leliangolide- ~ Eudesmanolide
11.Galinsoginae
Germacrolide Germacranolide Heliangolide
12.Neurolaeninae
Germacrolide~ Germacranolide
L~Eudesmanolide
13.Engelmanniinae
14.Ambrosiinae
15.Milleriinae
Eudesmanolide
_~ lelenanolide
.~ Ambrosanolide
~eco-helenanolide
Eudesmanolide Guaianollde Eudesmanolide----~ Eremophilanolide Guaianolide (Type" A)
Germacrolide~ Melampolide
Eudesmanolide~-- Seco-eudesmanolide G u a i a n o l i d e-~- A m b r o s a n o l i d e Xanthanolide Eremophilanolide (Type A)
5eco-ambroanolide
Germacrolide
Fig. 24. Distribution of sesquiterpene lactone skeletal types in the investigated H eliantheae subtribes (for structures see Fig. 2).
characterized by C-8 lactonized xanthanolides, usually in combination with the biogenetically related guaianolides. C-8 lactonized pseudoguaianolides (including ambrosanolides and helenanolides) also occur commonly, with helenanolides reported from Anaphalis and Telekia and ambrosanolides detected in Carpesium, Inula and Pulicaria. Geigerinin (1228), a pseudoguaianolide from Geigeria, had an undefined stereochemistry at C-10. As mentioned by Harborne (360), the alantolactone (705),
198
THE BOTANICAL REVIEW
t9
< ~D ,.t2
z
19 O
eq
"~ eq
O0
O ,i
i
e~
t",!
eq
i
E
..= 09
2 ,..2
~y: ,.-q
.4
e.,
.~
SESQUITERPENE
LACTONES--ASTERACEAE
199
O~
r'-
r
I"'-
t'q
g-..
!
r
lifo i..i ,,6
t"
r
r
200
THE BOTANICAL REVIEW
'~
o
,"
O
I..
i
Go
I.i e',
O
e', e-,
r
"O e-,
[...
t'q
it
~2
o
~.~
2
e~
g~
~E ~
j
t'~
1r
"d 0
~ o
~ 9
0
E
< .d
.=.~ =~. ~-e~
,.~'~
SESQUITERPENE LACTONES--ASTERACEAE
201
isoalantolactone (686) and dihydroalantolactone (723) series of eudesmanolides are reported from several Inula species and from Telekia. The total structural complexity of the Inuleae rivals the variety of skeletal types found in the Heliantheae. Biogenetically advanced skeletal types such as helenanolides, secohelenanolides, ambrosanolides and xanthanolides, commonly associated with certain Heliantheae subtribes, also occur within the Inuleae. 5. HELIANTHEAE
An examination of the distribution of skeletal types within the subtribes of the Heliantheae discloses a complexity rivaling the total sesquiterpene lactone variation among the other tribes (Table VIII and Fig. 24). The details of each subtribe's chemistry are discussed below. I. Melampodiinae.--The application of sesquiterpene lactone chemistry to the definition of generic boundaries in the Melampodiinae and to the clustering of species groups within Melampodium has recently been described (830). Only the more salient features of that study will be reviewed here. As originally delineated by early monographers, the Melampodiinae was a chemically heterogeneous group. However, two recent revisions of this group by Stuessy (see 863) substantially reduced the level of morphological, chromosomal and chemical variation within the subtribe (Table VIII). The genera of the newly revised subtribe are characterized by the presence of germacradienolides, especially the melampolide isomeric type. There are only three exceptions to the exclusive presence of germacranolides in the Melampodiinae: the first two involve the report of the eudesmanolides, ivalin (690) from Polymnia laevigata (386) and ivalin combined with isoalantolactone (686) from Smallanthus riparius (102), and the third claims the presence of the guaianolide, mikanokryptin (991) in Melampodium divaricatum (408). Mikanokryptin was described as the major component of the species' sesquiterpene lactone extract. The possibility that this M. divaricatum report is erroneous is supported by two lines of evidence: (1) several independent attempts to duplicate this finding yielded negative results, (2) M. divaricatum co-occurs in Panama with the undescribed Mikania species from which mikanokryptin was first isolated as the major constituent; thus, it seems plausible that Melampodium plant material was confused with a Mikania collection. There are 133 reports of a wide variety of germacradienolide isomeric types from this subtribe (Fig. 25). The major structural type, the melampolides (83 reports), is found in Acanthospermum, Melampodium, Smallanthus and Sigesbeckia. The genera Leucocarpus and Espeletia are poorly investigated and to date have not yielded sesquiterpene lactones.
202
THE BOTANICAL REVIEW
O•CH32 ~.-OR 0 : " ~ R1 Ac
Germacrol ides:
Melampolides:
Melampodi um Polymnia
Acanthospermum Melampodium Sigesbeckia Smallanthus Enhydra Tetragonotheca
~
RI
Hel iangol ides:
cis, cis-Germacradienolides:
Me Iampod ium
Acanthospermum Melampodium
N
Fig. 25.
Repandol ides:
Leucanthol ides:
Tetra gonotheca
Mel ampod i um
Distribution of the germacradienolides of the Malempodiinae (Heliantheae).
SESQUITERPENE LACTONES--ASTERACEAE
203
The recent transfer of the bulk of the Polymnia species to Smallanthus reduced the number of Polymnia taxa to two, P. laevigata and P. canadensis (742). Subsequently, it was suggested that the melampolide-producing Smallanthus taxa are allied with the other melampolide-producing genera of the Melampodiinae, Acanthospermum and Melampodium (Stuessy's subtribal Group I members), while the two remaining nonmelampolide-producing Polymnia species are more closely associated with Espeletia, Rumfordia, Sigesbeckia, Trigonospermum and Unxia (Stuessy's Group II) within which melampolides seem to occur less frequently (108). One exception to the chemical distinction between Smallanthus and Polymnia involves the previously mentioned report of the eudesmanolide ivalin from both taxa. Outside this subtribe, melampolides are reported from Iva (Ambrosiinae), Tetragonotheca (Helianthinae), Enhydra and Blainvillea (both of the Ecliptinae). The structure from Iva is distinct in that it contains a C-8 cis-lactone as opposed to all other reported melampolides which possess C-6 trans-lactones. Those melampolides from the other three genera, though, are remarkably similar and in several instances identical to those isolated from the Melampodiinae. Together with other non-chemical features, these results led to the transfer of Tetragonotheca to the Melampodiinae and to a more intensive investigation of the subtribal affinities of Enhydra (830), Blainvillea and other members of the Ecliptinae (190). Examples of Chemical Characterization of Species Relationships Within Melampodium and Tetragonotheca The three species of the Melampodium series Leucantha are named the "white-rayed complex" because they have white ligules instead of the typical yellow ligules of other Melampodium taxa. The entire series produces leucantholide-type germacradienolides (Fig. 25) as the major constituents. In spite of intensive study of this genus, these compounds have not been found outside this series (830). Based on their sesquiterpene lactone chemistries, the four southern U.S. species of Tetragonotheca can be divided into two groups, each containing two species: (1) T. repanda and T. texana produce "repandolides" as the major structural type (Fig. 25) in addition to melampolides, (2) T. ludoviciana and T. helianthoides produce only melampolides. These two subgeneric groupings are compatible with the results of morphological and distributional studies of the taxa (830). Ironically, an intensive flavonoid study of this genus (31) contributed little to the understanding of subgeneric relationships. 2. Zinniinae.--Sesquiterpene lactones of five species of Zinnia were examined and a total of 39 structures reported: 27 elemanolides, 11
204
THE BOTANICAL REVIEW
guaianolides and 1 germacrolide (Table VIII). Although the survey is still rather limited, it appears that Zinnia is characterized by elemanolides, a class of germacradienolide derivatives which are uncommon outside this subtribe. Other elemanolides were found in Artemisia, Centaurea, Eriophyllum, Inula, Mikania, Saussurea, Verbesina and Vernonia (275). 3. Ecliptinae.--Sesquiterpene lactones of one species each of Baltimora, Blainvillea and Enhydra and three species of Wedelia have been investigated (Table VIII). Enhydra fluctuans produced only melampolides, while Blainvillea dichotoma yielded a mixture of germacrolides, melampolides and cis, cis-germacradienolides. Baltimora recta contained C-8 lactonized eudesmanolides and C-6 lactonized germacrolides, and in addition to C-8 lactonized eudesmanolides, Wedelia produced pseudoguaianolides. The possible affinities of Wedelia to other members ofpseudoguaianolide-producing subtribes of the Heliantheae (126), and the similarity of the Enhydra and Blainvillea melampolides to those isolated from Melampodiinae genera (190) have prompted a review of the subtribal affinities of the Ecliptinae genera. 4. Verbesininae.--Eight genera of the Verbesininae have been sampled for sesquiterpene lactones. No characteristic subtribal features can be discerned at this time (Table VIII), although the reports of heliangolides in Montanoa, Podanthus and Zexmenia suggest some affinity with other heliangolide-synthesizing subtribes of the Heliantheae, particularly the Helianthinae. Eudesmanolides are reported from four genera, Dimerostemma, Podanthus, Steiractinia and Zexmenia. 5. Helianthinae.--A total of 28 species of seven genera have been investigated with the result that mostly germacranolides (germacrolides, cis, cis-germacradienolides and heliangolides) and C-8 lactonized eudesmanolides have been reported. The most divergent member, Rudbeckia, was characterized by a mixture of eudesmanolides and ambrosanolides. Three taxa of Encelia produced only C-8 lactonized eudesmanolides, two species of FIourensia produced only eudesmane acids, and the remainder of the tribe yielded a variety of germacranolides (mostly heliangolides). Many of the heliangolides reported from Helianthus, Tithonia and Viguiera are structurally similar (Fig. 26). In his revision of the Heliantheae, H. Robinson removed Encelia and Flourensia from the Helianthinae and transferred them to the Ecliptinae (743). The eudesmane-based chemistries of these two genera are clearly distinct from the predominantly germacranolide chemistries of the other Helianthinae members. However, the infrequent reports of eudesmanolides from Helianthus and Tithonia reveal that the chemical distinction is not absolute. In an earlier treatment of this subtribe, Stuessy (863) divided the taxa
SESQUITERPENE LACTONES--ASTERACEAE
205
2 HO :
OR
RT Helianthus: Atripliciolide(2-methylbutyrate)
(350), RI=H Desangelyl Budlein A -8-isovalerate (345), RI=OH Vigueria:
Helianthus: Niveusin A (326) Tithonia: Orizabin (319)
Budlein A (338), RI=OH
Fig. 26. Distribution of structurally similar heliangolides in the Helianthinae (Heliantheae).
into two groups. The first contains all of the taxa listed in Table VIII with the exception of Rudbeckia. This latter genus was combined with Dracopis, Echinacea and Ratibida in a second group. Attempts to isolate compounds from Dracopis and Ratibida have proved futile. The absence of compounds from these genera and the unusual presence of ambrosanolides in Rudbeckia suggests that this second group is chemically distinct from the first. 6. Gaillardiinae.--As presently constituted (863), the Gaillardiinae represents one of the most thoroughly investigated groups in the Asteraceae. A total of 171 structure reports have been published for six genera of this tribe. The most common structures, C-8 lactonized helenanolides, constitute 70 percent of the total reports. Due to the absence of this skeletal type from other helianthoid subtribes (Table VIII), it represents a distinguishing property of the Gaillardiinae. Secohelenanolides (11 reports) also occur in Hymenoxys and Psilostrophe. Although the presence of helenanolides is a characteristic of this subtribe and can be used to support the argument for the transfer of Balduina from the Galinsoginae (863), the sesquiterpene lactone chemistry alone does not indicate a strong affinity with other helianthoid subtribes. However, helenanolides are a subset of a more general skeletal type, the
206
THE BOTANICAL REVIEW
Balduina
Gaillardia
Helenium
Helenalin ( 1 1 9 5 )
Helenalin
Helenalin Aromatin (1194) Balduilin(1198) etc.
Hymenoxys
Psilostrophe
Linearifolin A (1199) Helenalin
Fig. 27. Distribution of similar helenanolides in the genera of the Gaillardiinae (Heliantheae). Numbers in parentheses refer to the structure numbers in Figure 32.
pseudoguaianolides, which also includes the ambrosanolides, a characteristic skeletal type of another helianthoid subtribe, the Ambrosiinae. In addition to their presence in the Gaillardiinae, helenanolides are reported as a minor skeletal type in the Inuleae and in the Arniceae. Certain biogenetically advanced structures can be found in more than one genus of the Gaillardiinae. Helenalin (1195) and a variety of structural analogs can be found in Balduina, Gaillardia, Helenium, Hymenoxys and Psilostrophe, while paucin (1192), an unusual sesquiterpene lactone glycoside, is found in Baileya and Hymenoxys. Hymenoxys and Psilostrophe share the secohelenanolide, psilotropin (1238). A common structural theme within this subtribe is illustrated in Figure 27. 7. Coreopsidinae.--There are only three reports of C-6 trans-lactonized germacrolides from two genera of this subtribe, Cosmos and Ve-
negasia. 8. Fitchiinae.--The similarities of the Fitchia speciosa chemistry to the Coreopsidinae phenolic and terpenoid chemistries led Bohlmann and associates to suggest a weak association between these taxa (173). 9. Bahiinae.--Analysis of four species of Bahia produced six structural reports: five guaianolides and a heliangolide, all with C-6 trans-lactonization. Picradeniopsis yielded heliangolides, secoheliangolides and
SESQUITERPENE LACTONES--ASTERACEAE
2~
guaianolides. Two species of Schkuhria produced only heliangolides. The presence of heliangolides in Bahia, Picradeniopsis and Schkuhria supports the provisional transfer by Turner and Powell (914) and Stuessy (863) of this subtribe from the Helenieae to the Heliantheae. 10. Madiinae.--At present there are no sesquiterpene lactones reported from the Madiinae. I I. Galinsoginae and 12. Neurolaeninae.--There are two very divergent views regarding the tribal affinity of Isocarpha; one includes it in the Eupatorieae (745), the other places it in the Galinsoginae of the Heliantheae (863). Chemical studies of two Isocarpha species yielded heliangolides, one of which had previously been isolated from Chromolaena (Eupatorieae). This and other structural similarities led to the conclusion that Isocarpha should be placed in the Eupatorieae (123). A subsequent comparison of the two main types of heliangolides isolated from these Isocarpha species with all compounds differing only by a single ester sidechain found in other genera indeed show similarities to both Eupatorieae and Heliantheae chemistries. However, the structural data summarized in Figure 28 demonstrate that the greatest similarity is with the Heliantheae. This is especially true of the atripliciolide-like compounds found only in Calea, Isocarpha (the other chemically-investigated genus of the Galinsoginae) and two genera Of the Helianthinae. Cronquist feels that Isocarpha shares morphological features with members of both the Eupatorieae and Heliantheae, but is most properly assigned to the Heliantheae. As such, it may resemble the helianthoid progenitor(s) of the Eupatorieae (Cronquist, pers. comm.). Calea synthesizes a series of germacranolides which differ by only the ester sidechain at C-8 (or C-9) from the neurolenin series isolated from Neurolaena. Both series have a common structure (452--455). Thus, the presence of this highly oxygenated structure in both the Galinsoginae and Neurolaeninae is compatible with Stuessy's treatment of the Neurolaeninae as a segregate of the Galinsoginae, rather than as a subtribe of the Senecioneae (800). Subsequently, Robinson has transferred most of Calea to the Neurolaeninae (743). Other Calea taxa were transferred to the genus Alloispermum (Galinsoginae). Those taxa retained in Calea were heliangolide-producers, while those placed in Alloispermum were characterized by novel Cl~-acetylenic compounds also found in Bebbia, Galinsoga, Jaegeria, Schistocarpha and Tridax of the Galinsoginae. Chemical investigation of more genera in both the Galinsoginae and the Neurolaeninae will help clarify the subtribal boundaries. For instance, previous to Robinson's treatment Stuessy (863) noted that there were ties between Calea and Zaluzania but concluded that transferring Zaluzania to the Galinsoginae would broaden too greatly the concept of the subtribe. This conclusion is supported by the chemistry of Zaluzania, the only
208
THE BOTANICAL REVIEW
Structure
I socarpha
He} iantheae
I.
Peucephyllum
Eupatorieae
I.
Sidechain: I.
oppositifolia
2.
"
3.
"
4.
(i
5.
"
Chromolaena Schkuhr
i
a
Eupator i um
ff Liatris
II. I.
Sidechain: 6.
7.
atriplicifolia ii
Calea Helianthus
8.
ii
Calea
9.
,i
Calea
I0.
Calee, Viguiera
Structure; I.
II.
AcO~ R Sidechain: I. 2. 3. 4, 5.
i-But Tig-4-OH Tig-4,5-OH Tig-4-OH-5-TIg-5-OH Tig-4-OH-5-Tig
~
R
6. Mac 7. i-But 8. Tig 9. i-Val IO.Ang
Fig. 28. The distribution oflsocarpha heliangolides in the Heliantheae and Eupatorieae. Sidechain abbreviations correspond to structures listed alphabetically in Figure 33.
heavily investigated Neurolaeninae genus, which contains mainly guaianolides and eudesmanolides. Study of more species in both genera and other taxa of the two subtribes may help clarify these subtribal boundaries. 13. Engelmanniinae.---Discussion of the sesquiterpene lactones of this new subtribe (863) is included in the Ambrosiinae.
SESQUITERPENE LACTONES---ASTERACEAE
2~
14. Ambrosiinae.--The intensive investigation of all genera of this subtribe generated numerous chemical characters. The predominant skeletal type, the ambrosanolides, occurs in Ambrosia, Hymenoclea, Iva and Parthenium, while xanthanolides can be found in Ambrosia, Iva, Parthenice, Parthenium and Xanthium (Table VIII). The highly derived secoambrosanolides are reported from Ambrosia, Hymenoclea and Parthenium. Investigations of the two remaining genera not included in the above group, Dicoria (2 spp.) and Euphrosyne (1 sp.) produced no sesquiterpene lactones. As described earlier, the presence of the same compound, especially a biogenetically complex structure, in more than one genus, is unusual. Thus, the co-occurrence of numerous ambrosanolides and xanthanolides in different genera of the Ambrosiinae affirms the cohesiveness of the group (Table IX). Within the subtribe, genera can be differentiated on the following bases: the ambrosanolides of Parthenium can be distinguished from those of other genera by frequent oxidation of C-14 and/or C-15 methyl groups (compounds which collectively are termed "parthenolides") (Fig. 29). Of the 28 different ambrosanolides reported from Parthenium, 20 are oxidized at either or both of these positions. In the ambrosanolides of other genera, oxidation of these two positions is unknown. Xanthium is distinguished by the nearly exclusive presence of xanthanolides. Iva is typified by a chemistry composed largely of xanthanolides, eudesmanolides and guaianolides; only three of the 17 species produce ambrosanolides. In the debate over the subtribal or tribal status of the Ambrosiinae, the chemical distinction of the group has been used to support its removal from the Heliantheae (see 863). However, Stuessy argues that the close morphological and chromosomal ties between Engelmannia (Engelmanniinae) and the Ambrosiinae favors the latter group's subtribal status. Although there are few chemical reports for the Engelmanninae, the discovery of the type A eremophilanolide, dugesialactone, in Dugesia mexicana [with an unusual stereochemistry which Herz (378) has since revised to yield a structure identical to xanthanodiene] is significant, given that the same structure was isolated from Xanthium canadense and named xanthanodiene. These two identical structures constitute the only reports of this type of eremophilanolide and thus suggest a chemical link between the two subtribes. Chemical Evidence as it Pertains to the Inclusion of Franseria in Ambrosia Based on morphological criteria, Payne (703) submerged Franseria into Ambrosia. The extensive sesquiterpene lactone data for these taxa sup-
210
THE BOTANICAL REVIEW
(8[0I )u!so%uau~oz
+
+
(~ZOT) o~-U!ITOmeq~cl
O 4a
+
+
(~EOi)U!iiou~q;~e d
+
O
(gTII)U!uaq~d
0 .,'4
-,-I
+
(iIII)U!so~qm~oaN
+
+
([III)U!Uam~H
+
+
0
(860I)UTSm~g
+
+
+
+ +
+
+
(1) 4J
(660I)UlI!douo~oo
+
+
g-I 0
(tEII)UT~aIUOD
+
+
(TIII)UTSOXqu~f
+
+
+
(889)UTIadS~AI
+
+
+
+
+ +
r~ (1) r [.9 0 0 H
o 0
0 0
O'4
9 m 9 I,-t m 0 4~
0
i
-,4
(I)ap!Ioun~soD
+
+
C -,4 ~4 O
O
.IA -,-t m (1)
~n
0
.,..4
9
0
~ 9
,.~ ~
,.~ 4J
4~ O
,.~ 4J
~4 ~0
SESQUITERPENE LACTONES--ASTERACEAE
Ligulatin A
Ambrosin
Parthenium ligulatum
Ambrosia dumosa
211
Fig. 29. Representative ambrosanolides of Parthenium and Ambrosia (Ambrosiinae).
port Payne's merger. Table X shows the close chemical similarity of the two genera. In both, ambrosanolides and germacranolides predominate, while secoambrosanolides (psilostachyanolides), eudesmanolides and guaianolides occur in about equal proportions. The ambrosanolides, ambrosin (1111), ambrosiol (1120), confertiflorin (1109), coronopilin (1099), damsin (1098) and confertin (1137); the germacranolides, artemisiifolin (169), parthenolide (112), and tamaulipin-B (26); and the secoambrosanolides, psilostachyin (1150), psilostachyin-B (1153) and psilostachyin-C (1152) are shared by Franseria and Ambrosia. The two taxa differ in only minor features: (1) in Franseria several of the eudesmanolides occur with free carboxyl groups, while all are lactonized in Ambrosia, (2) one report of a minor constituent, tomentosin (1041), from A. dumosa (formerly Franseria dumosa) is the only report from either genus of a xanthanolide. It might also be noted that the two closely allied genera Ambrosia and Hymenoclea are also chemically very similar. Species Relationships in Ambrosia The details of the chemical patterns in the subgeneric groupings in Ambrosia are presented elsewhere (835); therefore, only a brief summary will be presented here. Three subgeneric groups composed mostly of former Franseria members could be distinguished by the presence of predominantly ambrosanolides and seco-derivatives in the first, by ger-
212
THE BOTANICAL REVIEW
o
r~
p~uTm~X~ s~!~ds ~o ~ q m n N
o
~p1[ou~solqmv-o~ S o~
o4
m
apTloueq~u~ x
L =o o o
sap~ioueTpn 9 "
~
x c o
~
~
~
~
~
L~
o 0
o
~--~
~p~[ouems~pn~ o
o= ~ p ! [ o u e s o ~ q mV
g
8 <
-4
co
co
v
r~
SESQUITERPENE LACTONE S---ASTERACEAE
213
macrolides and eudesmanolides in the second, and by the absence of sesquiterpene lactones from the "core group" of species in the third. 15. Milleriinae.----A single germacrolide has been reported from the Melampodiinae segregate genus Clibadium (863). Conflicting aspects of Stuessy's (863) and Robinson's (743) revisions of the Heliantheae raise questions concerning the usefulness of sesquiterpene lactones in resolving these differences in subtribal definition. Clearly, the non-controversial subtribes, Gaillardiinae and Ambrosiinae, each attain chemical distinction through production of biogenetically advanced skeleta. Further, the Melampodiinae is distinguished by less-advanced novel germacradienolides, the melampolides. Unfortunately, apart from these, other subtribal patterns are more difficult to discern at this time. However, the chemistry does permit the following observations: A. Robinson's transfer of Sigesbeckia from the Melampodiinae to the Milleriinae conflicts with the chemical similarities of Sigesbeckia to the Melampodiinae taxa, Acanthospermum, Melampodium and Smallanthus. However, the inclusion of Rumfordia and Trigonospermum with the earlier Melampodiinae segregate Milleria (863) in the Milleriinae is compatible with the apparent absence of sesquiterpene lactones in these taxa. B. Members of Stuessy's Zinniinae, Ecliptinae, Verbesininae, Engelmanniinae and Helianthinae were transferred by Robinson to the Ecliptinae. These taxa produce an array of germacrolides, elemanolides, heliangolides, eudesmanolides and guaianolides, together with the less common xanthanolides and helenanolides. Clearly, too few taxa have been investigated to discern reliable patterns of associated compounds, but at present there are no chemical discontinuities which conflict with Robinson's lumping of these taxa. The distribution of skeletal types, especially heliangolides, supports Robinson's view that the Helianthinae and Ecliptinae are closely related. The genus Montanoa was placed by Robinson in the monotypic subtribe, Montanoinae. Funk (280), who has just completed a monograph of the genus, feels that it is appropriately viewed as a member of a related complex incorporating as separate entities parts of Stuessy's Verbesininae, the Helianthinae and Montanoa. Although data are limited, the germacrolide/heliangolide chemistries typical of Helianthus, Montanoa, Podanthus, Tithonia, Viguiera and Zexmenia suggest a possible chemical relationship. C. Treatment by Robinson of Arnica and Chaenactis as members of the Heliantheae subtribe Chaenactidinae, rather than as members of the
214
THE BOTANICAL REVIEW
Senecioneae or the distinct tribe Arniceae, is compatible with the distribution of helenanolides (Table I). The co-occurrence of the germacrolide eupatoriopicrin (11) in Chaenactis and Venegasia supports the placement of the latter genus in the Chaenactidinae. D. The chemical similarities of Isocarpha to Calea, Helianthus, Schkuhria and Viguiera argue for its retention in the Heliantheae. E. The chemistry of one species of the recently described genus Kingianthus consisted of helenanolides and xanthanolides. This suggested an association with the Heliantheae in general and the Verbesininae and Gaillardiinae in particular (194). 6. A N T H E M I D E A E
The sesquiterpene lactone chemistries of 194 taxa of 16 genera of the Anthemideae have been reported (Table XI). Although the germacranolide frequency is low, three of the four configurational types of germacradienolides have been isolated from members of this tribe: germacrolides (9 genera), heliangolides (3 genera) and cis, cis-germacradienolides (2 genera). The remainder of the reported compounds are either eudesmanolides or guaianolides. Most of the eudesmanolides are C-6 translactonized, and all reported guaianolides (137 reports) are C-6 lactonized. Tribal Chemistry In the most recent treatment of the tribe, Heywood and Humphries (467) deferred recognition of subtribes until the completion of a more thorough study. However, they divided the genera into several informal complexes: the Chrysanthemum complex (including Tanacetum), the Artemisia group, the Anthemis group (including Chamaemelum and Matricaria), the African complex (including segregates of Chrysanthemum and Matricaria) and the "Cotuleae" (Cotula). They found two African genera, Osmitopsis and Ursinia difficult to accommodate in their concept of the tribe. The co-occurrence of particular sesquiterpene lactones within the different genera of the Anthemideae is summarized in Table XII. Each member of a biogenetically related series of C-6 trans-lactonized guaianolides (structures 1-5, Table XII) is found in three or more of the following genera: Achillea, Artemisia, Athanasia, Chrysanthemum, Cotula, Lidbeckia, Matricaria, Pentzia and Peyrousia. Thus, many genera of the Anthemideae are linked together by the presence of these structures. The occurrence of the three eudesmanolides, 7, 8 and 9 (Table XII) in both Chrysanthemum and Tanacetum supports the affinity of these members of the "Chrysanthemum complex." However, the affinities of Tanacetum
SESQUITERPENE LACTONES---ASTERACEAE
215
A
io o o~ o'~ o
o ~r~
t~
'-I ~176
F
;.~
,-4
i
-,.~
-O
O
I
o
~ .~ .~ ~ ~
.~ .~
.~.~ ~
~
~
~ ~
~ "~ -~ ~ ~ ~ ~ ;
~ ~
~
~
~
~
-~ ~
~ .! ~ .~ ~ 9 ~
~
~
O
tO
/.4
4J
.~
~.~
o z
216
THE BOTANICAL REVIEW
Table
Distribution
of
XII
Individual
in t h e G e n e r a
of
Sesquiterpene
Lactones
the Anthemideae
Guaianolides Matricarin
Germacrolides
Eudesmanolides
Series a
rq o
9
~
~
.
2
2
1
.
.
.
o
~q
Genus
4b
Achillea
4
Anthemis Artemisia
3
Athanasia
1
13
Chrysanthemum Cotula
6
2
2
1
1
1
1
1
i
i
I
1 1
Handelia Lidbeckia
1
1
Matricaria
2
1
Osmitopsis Pentzia
1
Peyrousia
1 i
Tanacetum Ursinia
a
b
Numbers Total
correspond
number
of
to
the
reports
of
structure this
numbers
structure
in Fig.
from
the
32. genus
with both Chrysanthemum and Artemisia as described by Hall and Clements (357) is also supported by the distribution of these eudesmanolides. Significantly, the genera from which all of these common constituents are absent, Osmitopsis and Ursinia, are the two members of the Anthemi-
SESQUITERPENE LACTONES--ASTERACEAE
III.
Oracunculus
217
Tr identatae
IV. Seriphidium II. Absinthium
- -
Subgen. Artemisia (Polj ~
I. Abrotanum~5
Fig. 30. The four sections of Artemisia (Anthemideae) according to Hall and Clements (357), as modified by Beetle (44), Keck (528) and Poljakov (531).
deae which Heywood and Humphries consider the least compatible with the other genera. Generic Chemistry
Artemisia During the preparation of this manuscript, a detailed review of the sesquiterpene lactones and systematics of Artemisia was published (531). Working with an independently-derived data base, the author, R. G. Kelsey, arrived at many of the same conclusions as those summarized here. His further observations regarding subgeneric relationships will be included below. Adopting Besser's earlier taxonomic treatment of Artemisia, Hall and Clements (357) divided the genus into four sections (Fig. 30). A fifth section, Tridentatae, was recognized first by Rydberg (800) and then by Beetle who segregated from section Seriphidium all North American taxa with affinities to A. tridentata. The North American species of the section Abrotanum related to A. vulgaris have received widely disparate treatments by Rydberg (800), Hall and Clements (357) and Keck (528). Keck treated eleven polymorphic North American species as the subsection Vulgares of the section Abrotanum. As described by Kelsey, Poljakov has combined Abrotanum and Absinthium into the subgenus Artemisia, a treatment which conflicts with the combination made in Flora Europaea of the European members of sections Absinthium and Seriphidium into a single section Artemisia. The distribution of sesquiterpene lactones in the above-mentioned
218
THE BOTANICAL REVIEW
Table
XIII
A. Distribution of the Sesquiterpene Lactone Skeletal Types in the Section Absinthium
(Artemisia)
Skeletal type: 1
la
2
3
1
species absinthium
3
anethifolia
2
1
arborescens
austriaca
1
anethifolia
1
aschurbajevii
1
canariensis
1 2
caucasica jacutica lagocephala lanata
macrocephala rutifolia
sieversiana
subgeneric and sectional groups reinforces Poljakov's view that the sections Abrotanum and Absinthiurn are closely related. Several sesquiterpene lactones, desacetylmatricarin (90b'), tauremisin (654) and achillin (912), are common to both, while other non-identical compounds of the two sections have close biogenetic affinities. Taxa of the sections Absinthium and Seriphidium (Table XIII A and B) are more distinct in their sesquiterpene lactones than would be suggested by the Flora Europaea treatment. C-6 trans-lactonized eudesmanolides predominate in the Seriphidium taxa, while C-6 trans-lactonized guaianolides are the major skeletal type of Absinthium. The only Seriphidium members which produce non-eudesmanolide compounds are A.
SESQUITERPENE LACTONES-.--ASTERACEAE
Table
B. D i s t r i b u t i o n
of S k e l e t a l
Types
XIII
in the S e c t i o n
Seriphidium a
Skeletal Species
219
_l
2_
amoena
Type _3
1
balchanorum
4
cana
1
1 3
caerulescens
2
cina
4
compacta
2
finita
2
fragrans
3
granatensis
2
halophyla
2
hanseniana
3
herba-alba
3
1
hybrida
1
juncea
1
kemrudica
1
1
kurramensis
2
lercheana
1
1
leucodes
1
2
maritima
1
i0
mogoltavica
1
monogyna
4
pauciflora
1
ramosa
2
santolina
3
schrenkiana
2
serotina
1
spicata
1
spicigera
2
szowitziana
1
sublessingiana
2
taur~ca
4
tenuisecta
2
terrae-albae
1
transiliensis
1
tauranica
1
salina
1 9
TOTALS:
a After
removal
of S e c t i o n
Tridentatae
73
species
4
220
THE BOTANICAL REVIEW
Table XIII C. Distribution
of Skeletal
Types in the Section Abrotanum
Skeletal I
species:
m
2
Type: 3
annua californica camphorata franserioides incana judaica klotzchiana princeps stellariana subsection
vulgares:
carruthii (=A. vulgaris wrightii) douglasiana (=A. vulgaris
heterophylla)
ludoviciana (=A. vulgaris
ludoviciana
mexicana (=A. vulgaris
mexicana)
tilesii (=A. vulgaris
tilesii)
verlotorum wrightii (A. vulgaris wrightii) neomexicana
leucodes, A. juncea and A. lercheana. The first two taxa have been treated as primitive members of Seriphidium based on karyotypic, anatomical and morphological criteria (531). Subsequently, they (plus A. lercheana) have yielded a common guaianolide, desacetylmatricarin, which also oc-
SESQUITERPENE LACTONES--ASTERACEAE
221
Table XIII
D. Distribution
of Skeletal
Types
in the Section Tridentatae
Skeletal
Species arbuscula (=A. tridentata
!
2
7
ii
Type: 3
arbuscula)
bigelovii
cana
1
nova
1
rothrockii (=A. tridentata
rothrockii)
tridentata
15
8
8
tripartita
4
3
17
curs in the members of the subgenus Artemisia, the supposedly ancestral progenitor of the section Seriphidium. All other Seriphidium species produce closely related eudesmanolides, with santonin (643, 644), artemin (651) and tauremisin being the most ubiquitous. The section Tridentatae (Table XIIID) contains representatives of both eudesmanolides and guaianolides within different collections of the same taxa and thus differ appreciably from the Seriphidium species. As Kelsey noted, the Tridentatae members are chemically similar, with many compounds, such as the arbusculin and matricarin series, occurring repeatedly. Except for the two guaianolides, deacetylmatricarin and deacetoxymatricarin, which are produced by the three Seriphidium taxa mentioned previously, there are no compounds shared by sections Seriphidium and Tridentatae. The Tridentatae and the N e w World Abrotanum are chemically linked by the co-occurrence of deacetylmatricarin, achillin, matricarin, artecalin and desacetoxymatricarin (903) as well as other biosynthetically similar structures. A further distinction between North American Abrotanum-Tridentatae taxa and those of Seriphidium is that the former species group produces mostly germacranolides and eudesmanolides with C-11 methylene groups (C-1 I-C-13 exocyclic dou-
222
THE BOTANICAL REVIEW
ble bond), while the latter have structures with C- 11 methyl groups. Thus, the sesquiterpene lactones support the view that the Tridentatae display greater affinities for the North American Abrotanum group than for Seriphidium, and that the Tridentatae arose in North America independently of Old World Seriphidium (531). Intensive populational sampling of the Tridentatae taxa (529) revealed that A. tridentata, A. arbuscula, A. tripartita and A. cana contained chemotypes which often corresponded to morphologically defined subspecies. Artemisia tridentata ssp. tridentata, ssp. wyomingensis, ssp. vaseyana and ssp. vaseyana f. spiciformis were chemically different. The structural reports for A. tripartita ssp. rupicola and ssp. tripartita suggest that these two subspecies are distinct: the eudesmanolide, artecalin, is the major constituent of the first subspecies and the guaianolides, matricarin, desacetylmatricarin, achillin, canin, etc. are the major constituents of the second. Kelsey (529) observed that ssp. tripartita could be further separated into two geographically separated chemotypes. Similarly, A. cana ssp. cana was chemically distinct from A. cana ssp. viscidula (529) and the latter subspecies was also divisible into two geographically separated chemotypes. 7. SENECIONEAE Although some of the genera of this tribe synthesize sesquiterpene lactones, Bohlmann and associates' extensive survey reveals that the furanoeremophilanes and biogenetically related skeletal types are the dominant class of terpenoids. Together with pyrrolizidine alkaloids, these furanosesquiterpenes set the tribe far apart chemically from other tribes. The association between generic boundaries and the distribution of these compounds was discussed in earlier reviews (741, 164, 503). The results of these studies will be summarized here and discussed in light of the more complete summary found in the present treatment (Tables XIV, XV and XXIII). Unlike the compilation of sesquiterpene lactone data which continued until the preparation of the final draft of this review, the literature search for furanoeremophilanes and related skeletal types was terminated approximately two years ago. Although they do not receive the same level of emphasis as sesquiterpene lactones, furanosesquiterpenes are included in this review because of their taxonomic significance and the fact that in the large tribe Senecioneae they so obviously displace the biosynthetically related sesquiterpene lactones. In his 1977 treatment of the tribe, Nordenstam (666) excluded a variety of taxa. The transfer of the subtribe Eriophyllinae from the Helenieae to the Senecioneae (914) was unacceptable to Nordenstam, who felt it would be more suitably allied with genera of the newly-erected Arniceae. The
SESQUITERPENE LACTONES---ASTERACEAE
223
Table XIV
The Distribution of Sesquiterpene Lactones and Furanoeremophilanes
Taxa
Eremophilanolides
Xanthanolides
3b
3
Bakkenolides
in the Senecioneae
Furanoeremophilanolides
Aromatic Furano.
Rearranged Furano.
Cacalioids: a Bedfordia
1
Tetradymia
I
Gynoxys
14
Adenostyles
1
2
Cacalia
2
2
7
2
23
14
12
12
Ligularia Farfugium Petasites Homogyne
4
Tussilago
I
2
Senecio
I
34
Senecionoids: Via. Senecio
4
Vlb. Senecio
36
Vld. Senecio
6
VII. Senecio
11
VIII. Senecio IXa. Senecio
2
I
IXb. Senecio
No loci:ones or furanes reported
29
I
5
1
106
8
Gynura Emilio Crassocephalum
i,
11
ii
tl
tl
i,
,i
l,
i~
~,
Kleinia Notonia Lopholaena
I
8
X. Euryops
284
Othonna
52
Unclassified Senecio
18
9
I0
a From Jeffrey et al. (503,504) b
Total number of reports of this skeletal type
two investigated genera of the Eriophyllinae, Lasthenia (eudesmanolides and guaianolides) and Eriophyllum (germacranolides and elemanolides) are chemically distinct from all analyzed members of the Senecioneae. Likewise, the removal of the subtribe Chaenactidinae from the Helenieae
224
THE BOTANICAL REVIEW
Table XV
Distribution
of Furanoeremopholane
Functionalities
Function:
Gynoxys
in the Senecioneae
Cacalioid a Senecio
Senecionoid Senecio
I~OH
16
I~OR
10
2BOH
3
2~OR
2
3~OH 3~OR
Othonna
31
12
7
4
28
7
3
4
7
17
1 4b
2
3~OH 3BOR
Euryops
9
4~OH
1
78
6 31
4~OR 6aOH 68OH
6
6aOR 6~OR
1 14
41
143
75
24
9aOH 9BOH
165
6
9eOR
2
9~OR 108OH/OR
6/0
0/39
8/0
to the Senecioneae (914) is not supported by the germacrolide-based chemistries of the two investigated species of Chaenactis. Cronquist (pets. comm.) suggests that this genus is more closely allied to the Heliantheae, and Robinson (743) has formally transferred the Chaenactidinae to this tribe. The removal of Neurolaena from the Senecioneae (666) and its replacement in the helianthoid subtribe Neurolaeninae is supported by the germacranolide chemistry of Neurolaena lobata. Arnica and other genera of the Helenieae subtribe Arnicinae were transferred to the Senecioneae (914) but subsequently removed by Nordenstam (666) to establish the Arniceae. Both the removal of Arnica and
SESQUITERPENE LACTONES--ASTERACEAE
Function :
Gynoxys
Cacalioid Senecio
Senecionoid Senecio
225
Euryops
12eOH
2
128OH
1
13OR
4
14OH
2
14OR
15
Othonna
2
i,i0 e p o x y 22
IB,10B e p o x y
27
106
1
l~,10e e p o x y
2
7, 8 epoxy 2
23 1
3 )=o 9
>=0
7
i
1
2
25
81
5
91
14
3
C14 HO 5
16
29
4
4
40
20
57
1,2 ene
19
3
2,3 e n e
5
2
10~-H 10~-H
13
Peucephyllum from the Senecioneae is supported by their chemistries (Arnica: helenanolides and xanthanolides; Peucephyllum: heliangolide). The chemical investigation of those genera retained by Nordenstam in the Senecioneae and recognized by Jeffries (503) demonstrates the cohesiveness of the distribution of the eremophilane derivatives, especially the furanoeremophilanes, and their significant role as synthetic taxonomic characters. The single exception to the predominance of eremophilanederived skeletal types is found in Bedfordia which synthesizes a series of guaianolide-based xanthanolides. Bedfordia is considered to have diverged early from the main phylogenetic line of the Senecioneae and is morphologically quite distinct (T. Barkley, pers. comm.). This unusual chemical feature of a peripheral member of the Senecioneae demonstrates
226
T H E B O T A N I C A L REVIEW
Function:
Gynoxys
Cacalioid Senecio
3,4 ene
Senecionoid Senecio
Euryops
4
4,5 ene
3
1,10 ene
8
45
9,10 ene
1
23
5,6 seco
85
3
3-OMe
4
9-OMe
3
6-OR
(aromatic)
2
9-OR
(aromatic)
17
9-OH
(aromatic)
12
4
CI50R CI500R
37
Aromatic Cmpds Total Reports
14
aFrom Jeffrey et al. bTotal
Othonna
number
(503,
52
39
9
199
293
89
504)
of reports of structures with this f u n c t i o n a l i t y
that exceptions to the general rule of an eremophilane-based chemistry exist in the tribe. Thus, it would be imprudent to exclude taxa from this tribe on purely chemical grounds; such an exclusion as in the case of Arnica, Peucephyllum, etc., must be based on a variety of non-chemical and chemical criteria. Recent revisionary treatments of the Senecioneae (666) have dealt with the questions of generic and subtribal boundaries. Anatomical and cytological evidence supports the clustering of taxa within several major generic units. The "Cacalioid" genera are a predominantly New World and Asian assemblage, usually characterized by cylindrical stamen filament collars, continuous stigmatic surfaces of the disc style branches, simple involucres lacking an outer calyculus and a base chromosome number of x = 30. The more cosmopolitan "Senecionoid" taxa, having phytogeographical centers on all major continents, possess discrete stigmatic areas and a base chromosome number o f x = 10. An effort is under way to further subdivide these clusters into smaller phyletic groups (503,
504).
SESQUITERPENE LACTONES--ASTERACEAE
227
The important question regarding the taxonomic use of sesquiterpenes in this tribe is whether these compounds can be used in the definition of generic clusters. A comparison of the chemistries of the Cacalioids and Senecionoids reveals that although the two groups of genera are linked by the presence of furanoeremophilanes, the Cacalioids produce a greater proportion of sesquiterpene lactones (eremophilanolides and bakkenolides) than is found in the Senecionoids. The tendency of the Senecionoids to produce almost exclusively furanoeremophilanes is in sharp contrast to the Cacalioid pattern. The Cacalioids also differ from the Senecionoids in producing fewer aromatic furanoeremophilane compounds. These aromatic constituents have only been reported from two herbaceous Cacalioids, Adenostyles and Cacalia. Both the Cacalioids and Senecionoids contain Senecio species, although more members of this genus were included among the Senecionoids. An examination of the distribution of sesquiterpene skeletal types (Table XIV) reveals that there is greater chemical affinity between the Cacalioid Senecio taxa and the Senecionoid Senecio members than between the former Senecio group and other Cacalioid genera. The chemical complexity of the Cacalioids results from the assortment of skeletal types in the 12 other chemically investigated genera. Within the Senecionoids, the chemistries of the Senecio taxa resemble closely the chemistries of Euryops and Othonna from which only aromatic and non-aromatic furanoeremophilanes and derivatives have been isolated (Table XIV). Generic Considerations Senecio As stated above, Senecio is a chemically homogeneous assemblage of taxa producing almost exclusively furanoeremophilane compounds (269 reports) with an occasional report of eremophilanolides (5 reports). Within the genus it is difficult to discern patterns of chemical variation. However, as noted by Bohlmann et al. (164) and Jeffrey (503), the South African species in group Via produce almost exclusively aromatic furanoeremophilanes in contrast to other groups which produce mostly nonaromatic constituents. These authors also noted that the chemical survey of the "Senecionoid" complex revealed large groups of taxa which lacked furanoeremophilane chemistries. They concluded that chemical evolution has proceeded along two routes within this tribe, one leading to an elaboration of more complex structures (e.g. highly oxidized furanoeremophilanes and bakkenolides) by extension of synthetic ability, and a second leading to an overall structural simplification through loss of the capacity
228
THE BOTANICAL REVIEW
to synthesize such complex eremophilane structures as furanoeremophilanes and eremophilanolides. Loss of biosynthetic capacity may be accompanied by increased synthetic activity involving other natural products such as alkaloids. This loss is correlated with divergence from the perennial herbaceous habit common to many species of the major subtribal clusters. Development of growth forms which are possibly less subject to grazing or browsing pressure, e.g. annuals, climbers, succulents, tough-leaved perennials, seems to be associated with loss of this biosynthetic capacity. In Jeffrey's classification of Senecio, groups which lack furanoeremophilanes and related structures are frequently associated with these advanced habits. For example, group IX(a)j contains a variety of climbers and "specialized insular forms" and group IX(a)k contains succulent members (Table XXIII). A survey of the relative occurrence of different functionalities in compounds reported from all the heavily-investigated genera is summarized in Table XV. In this survey, the minor occurrence of C-1 keto functions within this genus is the only single feature which distinguishes Senecio from other genera. Petasites Petasites is characterized by the presence of roughly equal numbers of eremophilanolides, bakkenolides and furanoeremophilanes. Novotny et al. have applied the distribution of these compounds to taxonomic problems within the genus (677, 678,679). They observed that the sesquiterpene chemistries of the major Eurasian Petasites taxa, P. albus, P. japonicus ssp. giganteus, and P. spurius, are practically identical and therefore not useful in distinguishing sectional and series-level associations (678). However, their studies did suggest a possible application of sesquiterpene data to the study of hybridization. The putative hybrid species P. kablikianus and P. paradoxus (P. hybridus • P. albus) both produce the major constituent, kablicin (1331), which is oxidized at both the C-6 and C-9 positions. While all of the sesquiterpenes isolated from P. hybridus are hydroxylated at C-9 but not at C-6, those from P. albus are hydroxylated at C-6 and not at C-9. Novotny interpreted these results as indicating that the hybrid taxa obtained the genetic capacity for the simultaneous enzymatic oxidation of the C-6 and C-9 positions from P. albus and P. hybridus, respectively. Othonna Robins (741) noted that the furanoeremophilane chemistry of Othonna was characterized by a high frequency of C-15 oxidation and the absence of furanoeremophilanes with keto functions. The present, more exhaus-
SESQUITERPENE LACTONES--ASTERACEAE
229
tive review shows that compounds with oxidation of C-15 have been found in 11 of the 16 examined species and do represent a diagnostic feature of the genus; but in three instances, O. triplinerva, O. lobata and O. euphorboides, furanoeremophilanes with keto functions at C-9 are reported, thus weakening Robins' second proposed chemical distinction. Of the 52 reports of furanoeremophilanes, none was aromatic. A survey of the relative occurrence of different functionalities in compounds of Othonna is summarized in Table XV. Although 3a- and 3/3ester functions appear sporadically in structures of most other genera, 3fl-ester functions characterize 78 of the 89 structure reports for Othonna. Othonna can also be distinguished by the unusual absence of either an epoxy or double bond function linking C-1 and C-10. Table XV also demonstrates the diagnostic nature of the presence of C-15 acids and esters.
Euryops The total of 293 reports of furanoeremophilanes from 34 species of Euryops reveals a very close resemblance between the chemistry of Euryops and Senecio (Tables XIV and XV). Despite the many chemical links between the Senecionoid genera, Euryops does differ from both Senecio and Othonna by the presence of C-9a-hydroxyl groups, whereas only 9flhydroxyls have been reported from the latter two genera. Also, in Euryops all reported C-10 hydroxyls are esterified, while in Senecio and Othonna the C-10 hydroxyl groups are free. Euryops is further differentiated from Othonna (but not Senecio) by the frequent presence of either a/3epoxy or double bond function between C-1 and C-10 and by the occasional presence of a C-1 ester function. All of the heavily-investigated genera listed in Table XIV commonly produce furanoeremophilanes with C-9 keto or C-6/3-ester functions. 8. CALENDULEAE
Only one compound of undetermined structure has been reported from Calendula. 9. ARCTOTEAE The limited sesquiterpene lactone analysis of five genera does not help delimit the Arctoteae. The still unresolved status of Platycarpha vis-hvis the two tribes Arctoteae and Cynareae is not clarified by the single chemical study of P. glomerata. Past treatments of the Arctoteae as a subtribe of the Cynareae, although discounted by subsequent workers, suggest a possible explanation
230
THE BOTANICAL REVIEW
Table XVI
Distribution of Sesquiterpene Lactone Skeletal Types in the Arctoteae
(Asteraceae)
Structural Type Genus
No. Taxa
la
Arctotis
4
2/0
Berkheya
1
2/0
Gazania
1
Platycarpha
1
Venedium
2
aNumbers inside brackets refer pounds; those outside indicate number before the slash refers stituents; the number aftr the lactonized compounds.
2
3 5/0 [i/0] a
2/0 2/0
1/0
to reports of C-8 lactonized comC-6 lactonized constituents. The to the total trans-lactonized conslash refers to the total cis-
for the similarities between the tribal chemistries (Tables XVI and XVII). Both tribes produce mostly C-6 trans-lactonized guaianolides and germacrolides and rarely yield eudesmanolides. The guaianolide grosshemin (870) has been identified in Venidium decurrens of the Arctoteae, and in Cynara scolymus, Chartolepis intermedia, Grossheimia macrocephala, G. ossica and Amberboa lippii of the Cynareae. The arctiopicrin (49)salonitenolide (48)-type germacranolides which were isolated from many of the investigated Cynareae genera have also been isolated from Berkheya and Platycarpha. 10. CYNAREAE C-6 trans-lactonized guaianolides and germacrolides and occasionally elemanolides were detected in I 1 genera of the Cynareae (Table XVII). Several compounds occur in different genera within this tribe and rarely outside its boundaries, suggesting that they may be useful in determining tribal limits (Table XVIII). The structures of the germacrolides arctiopicrin (49), salonitenolide (48), onopordopicrin (50), and cnicin (52) differ only by the ester function at C-8 (structure 1, Table XVIII). Members of this series of compounds occur in five genera: Arctium (A. minus, A. lappa, A. nemerosum, A. tomentosum), Centaurea (C. diffusa, C. mi-
SESQUITERPENE LACTONES----ASTERACEAE Table
Distribution
XVII
of Sesquiterpene
Skeletal Types in the Cynareae
Structural Genus
No. Taxa
231
la
Lactone (Asteraceae)
Type 2
3
7
Carduinae: b
7/0
Acroptilon
1
Arctium
4
Cirsium
1
2/0
Cynara
2
5/0
Jurinea
5
4101110]
Onoperdon
3
5/O
Ptilostemon
2
Saussurea
6
5/0
7/0
2/0 4/0 a
3/0
4/0,3
Centaureinae: Amberboa Centaurea Cnicus
astereochemistry
7/0
2 25 1
101017/0]
2/0
30/1
5/0
210
of C-6 lactone Unassigned
b
Numbers inside brackets refer to reports of C-8 lactonized compounds; those outside indicate C-6 lactonized constituents. The number before the slash refers to the total trans-lactonized constituents; the number after the slash refers to the total cislactonized compounds.
cranthus, C. ovina, C. salonitana, C. stoebe), Cnicus (C. benedictus), Jurinea (J. maxima), and Onopordon (0. acanthium, O. tauricum). The guaianolide cynaropicrin (structure 3, Table XVIII) co-occurs in Cynara cardunculus, C. scolymus, Amberboa muricata, Centaurea americana, C. canariensis and Saussurea amara. The chlorinated series of guaianolides, chlorohyssopifolin A through E (859-862) and chlorojanerin (864), and the related unchlorinated structure, muricatin (863), are found in Acroptilon repens [chlorohyssopifolin-C (829)], Amberboa muricata
232
THE
BOTANICAL
Table
The
Co-0ccurrence
Genera
of
the
of
REVIEW
XVIII
Guaianolides
Subtribes
Carduinae
and
Germacrolides
and
Centaureinae
Within (Cynareae)
Structures
0
~
~
r--
,m~
9
I ~I
.,-I
Oe,l
oo ~ -,"1 ~
9,~
g4 o
.,.4 ~ O
~, IZ
0
o~
t~ U3 tnoo
OO .,--I t.o
~ ~
0 :,.4
A~ oq -,-I t',3
0 ~
~n 9
I
0
Z
,-4 ,.--I u:~
0
-,.4 ~
~ E ~ .
Otooo
4J
O 9
o
Taxa: +
Acroptilon Arctium
+
+ +
Cynara Jurinea
+
Onopordon
+
+
Saussurea Amberboa Centaurea
+
Cnicus
+
+
+
+
~-
(muricatin), Centaurea hyssopifolia (chlorohyssopifolin A through E), C. nigra (chlorohyssopifolin A) and C. solstitialis (chlorohyssopifolin A). Various esters of l l(13)-dehydromelitensin (1053) (structure 4) can be found in Onopordon leptolepsis, Centaurea melitensis and C. pullata. As mentioned earlier, the guaianolide grosshemin (structure 2) occurs in four genera of this tribe. 11. MUTISIEAE Preliminary chemical results suggest that members of the subtribe Nassauviinae are distinct from those of the Gochnatiinae (Table XIX). Analysis of three species of Trixis (169) of the Nassauviinae showed a chemically uniform sesquiterpene lactone pattern based on isocedrene-derived
SESQUITERPENE LACTONES--ASTERACEAE
Table
The D i s t r i b u t i o n
XIX
of S e s q u i t e r p e n e
in the M u t i s i e a e
# Taxa
la
Cnieothamnus
1
2/0 a
Dicoma
2
[2/0]
Dinoseris
1
Gochnatia
2
Moquinia
1
Pertya
1
Trixis
3
Wunderlichia
1
Lactone
Skeletal
Types
(Asteraceae).
Skeletal Genus
233
Type: id
2
3
20
1/0 2/0 [0/i]
[7/0]
[i/0] 2/0 i/0 ii
0/1
a
The number b e f o r e the slash refers to the total reports of t r a n s - l a c t o n i z e d constituents; the n u m b e r after the slash refers to the total c i s - l a c t o n i z e d compounds. N u m b e r s inside brackets refer to reports of C-8 l a c t o n i z e d compounds; those outside indicate C-6 l a c t o n i z e d constituents.
sesquiterpene lactones (Fig. 31), while the usual array of germacrolides, guaianolides and eudesmanolides was isolated from Cnicothamnus, Dicoma, Dinoseris, Gochnatia, Moquinia, Pertya and Wunderlichia of the subtribe Gochnatiinae. Bohlmann and associates (100) argue that this capacity to produce germacrane-based sesquiterpene lactones is compatible with the view that the Gochnatiinae is most primitive and that the chemistry indicates a relationship to the Cynareae and the Vernonieae. The lactonic and non-lactonic isocedrene derivatives of Jungia, Perezia, Proustia and Trixis (158a and 158b) of the Nassauviinae clearly distinguish this subtribe from the Gochnatiinae. 12. LACTUCEAE
A series of structurally related C-6 trans-lactonized guaianolides and their 1l(13)-dihydro-derivatives predominate in the seven examined genera of the Lactuceae (Table XX). Each of three related structures, lac-
234
THEBOTANICAL REVIEW Representative
Nassauvi inae:
Structures
Mutisi inae and Gochnati inae:
0
~ Trixikingol
,OR 3 I-IO ~
U-~
8- (2~Me thy | b u t y r y | oxy) s a l o n i tenol icle
U
ide S e r i e s
C1-Cyc I ocos t
un~II ~ ~
Fig. 31. Sesquiterpene lactone skeletal type differences between the Nassauviinae and the other investigated subtribes of the Mutisieae.
tucin (972; Cichorium, Lactuca), lactucopicrin (973; Cichorium, Lactuca, Taraxacum) and jacquinelin (983; Hypochaeris, Sonchus), occurs in two or more genera of this tribe. Picridin (777) and dihydropicridin (936), close structural analogues of the above compounds, were isolated from
Picridium. 13. TAGETEAE No sesquiterpene lactones have been reported from the Tageteae. 14. LIABEAE Limited chemical sampling of five genera of the Liabeae (Table XXI) produced mainly C-6 trans-lactonized guaianolides. Various C-6 and C-8 lactonized germacranolides were also reported.
15. ARNICEAE Various aspects of the sesquiterpene lactone chemistries of the Arniceae (Table XXII) have been previously discussed, especially regarding the generic boundaries of the Senecioneae. There is some indication that
SESQUITERPENE LACTONES--ASTERACEAE
235
Table XX The D i s t r i b u t i o n
of S e s q u i t e r p e n e
in the L a c t u c e a e
# Taxa
Cichorium
1
Hypochoeris
2
Lactuca
3
Picridum
2
Sonchus
6
Taraxacum
1
Urospermum
1
Skeletal
Types
(Asteraceae).
Skeletal Genus
Lactone
Type: la
2
3 2/0 a
i/0
7/0,1 3/0,3 4/0,1
i/0,i
5 1
2/0
a
The number before the slash refers to the total reports of transl a c t o n i z e d constituents; the number after the slash refers to t--~ total c i s - l a c t o n i z e d compounds. Number u n a s s o c i a t e d with slashes indicate u n d e f i n e d s t e r e o c h e m i s t r y of lactone.
Arnica and Eriophyllum show infrageneric chemical consistency (Arnica: helenanolides; Eriophyllum: germacranolides, secogermacranolides and secoeudesmanolides). The single heliangolide isolated from Peucephyllure is structurally similar to those from Eriophyllum, and both Chaenactis and Eriophyllum produce the germacrolide, eupatoriopicrin (11). The transfer by Robinson (743) of the members of the Arniceae to the subtribe Chaenactidinae of the Heliantheae is supported by the germacrolide, heliangolide and helenanolide chemistries of these genera. V. Accumulated Sesquiterpene Lactone Reports of the Asteraceae The available published and unpublished reports of sesquiterpene lactones are listed in Table XXIII. Information is also provided about structural features of the molecule in addition to the name of the taxon from which it was isolated. Each report is referenced and the number of the corresponding structure in Figure 32 is included. Structures for all sesquiterpene lactones are included in Figure 32, but due to the close structural similarity of the numerous eremophilane-derived furanoeremophilanes~ of the Senecioneae, only selected structures are provided. Furanoe?emophilanes of Figure 32 correspond to the common structures
T H E B O T A N I C A L REVIEW
236
T a b l e XXI The D i s t r i b u t i o n of S e s q u i t e r p e n e in the L i a b e a e
# Taxa
Types
(Asteraceae).
Skeletal Genus
L a c t o n e Skeletal
Type:
1
la
ic
3
Cacosmia
1
7/0 a
Ferreyanthus
1
1/0
Glechoma
1
[i]
Liabum
3
2/0
Munnozia
1
[0/1]
[i/0]
2/0 i/0
a
See footnote,
Table
20.
to which trivial names have been applied. The names given furanoeremophilane structures are usually a mixture of trivial and chemical nomenclature. Thus, by combining the information included in Figure 32 with the structures of the common acid sidechains listed in Figure 33, the total structure of most reported furanoeremophilanes can be assembled from compound names provided in Table XXIII. %71. Conclusions
Currently the two most significant areas of biochemical systematics research are (1) the taxonomic exploitation of natural products classes heretofore considered too structurally complex for analysis, and (2) the development of methodologies for handling chemical information which maximize the retrieval of taxonomically useful data from complex structures. Further, the biochemical systematist must find a common language for the communication of these newly-defined chemical characters to the broader plant systematics community. This review is an attempt to summarize the progress made in the development of sesquiterpene lactones as taxonomic characters in the Asteraceae. The major conclusion of this exhaustive treatment is that these compounds can be applied at various taxonomic levels if the appropriate analytical approach is used. As described, cladistics or Hennigian phylogenetic systematics provides a satisfactory tool for breaking-down complex sesquiterpene lactone struc-
SESQUITERPENE LACTONES--ASTERACEAE
237
Table XXII The Distribution of Sesquiterpene Lactone Skeletal Types in the Arniceae
(Asteraceae).
Skeletal Types: Genus
# Taxa
Arnica
3
Chaenactis
2
Eriophyllum
3
Lasthenia
2
Peucephyllum
1
la
lc
2
3
5
7
9
[0/ll] a
i0 [0/3]
2/0 4/0[2/0]
4/0
i/0 (i)*
[0/2]
[3/0]
I/0
a See footnote,
Table 20.
tures into basic carbon-skeletal and substitutional features which can then be translated into character states. Earlier, three obstacles to the use of sesquiterpene lactones as taxonomic characters were listed. These were: (1) infraspecific variation in the distribution of compounds, (2) the inappropriate role of sesquiterpene lactones as simple presence/absence-type characters and the consequent need to define a biogenetically based methodology for their taxonomic use, and (3) the ease with which sesquiterpene lactone synthesis is inactivated and alternative terpenoid pathways activated. In retrospect, these three factors have acted less as impediments and more as forces canalizing the route towards effective taxonomic use. 1. Attempts to distinguish taxa by species-specific sets of compounds were complicated by qualitative infraspecific variation. However, the application of more sophisticated methods to the analysis of these variable species chemistries permits the sorting-out of skeletal and substitutional information and the definition of species chemistries according to biogenetic criteria. In the example of the cladistic analysis of Iva (Ambrosiinae) sesquiterpene skeletal and substitutional features, the study generated species-level chemical patterns and a proposal of phylogenetic relationships based on these patterns. Although doubtful as taxonomic characters at the species level and above, taxon-specific chemical profiles have been found at the subspecific
238
THE BOTANICAL REVIEW
level. The description of sesquiterpene lactone variation in the 13 examples showed that infraspecific variation in complex taxa can frequently be resolved into chemotypes at the local level and that these chemotypes may be useful in recognizing ecotypic, racial, varietal or subspecific differentiation. 2. The structural complexity of sesquiterpene lactones and the frequent differentiation of one compound from another by single minor substitutional differences clearly indicate that such analyses as paired affinity indices, based purely on identity/non-identity character states ignore most of the taxonomically useful structural information. Alternatively, biogenetically based systems which sort out and evaluate skeletal and substitutional features maximize the retrieval of such useful information. At present, full use of this biogenetic approach is hindered by the paucity of experimental biosynthetic studies supporting the details of the proposed biogenetic routes. Although most sesquiterpene lactone biogenetic routes are inferred from chemical mechanistic arguments, the distribution of biogenetic series of skeletons in related taxa supports the proposed routes. Lacking experimental proof of biosynthetic routes, these distributions are the only available evidence supporting biogenetic interpretations and, thus, should be evaluated very carefully. 3. Biogenetic cladistic analysis seems to be the best solution to problems associated with (1) infraspecific variation and (2) the retrieval of taxonomically useful information from complex molecules. But, if cladistics (or a similar approach) is adopted for handling sesquiterpene lactone data, what is the impact of terpene biosynthetic flexibility on the use of this methodology? First, the need to establish the primitive/derived polarity of character states in the absence of experimental biosynthetic input dictates that considerable chemical distributional data be gathered for the group being surveyed as well as for related plant groups. Distributional patterns disclose much about the ancestral derived polarity of the different character states. This approach is hindered by the frequent inactivation of sesquiterpene lactone biosynthesis and the replacement of these compounds by terpene constituents other than germacrane-derived sesquiterpene lactones. The resulting discontinuous patterns of sesquiterpene lactone distribution reduce the confidence level of the proposed polarities. Second, this flexibility is an impediment because cladistic data matrix analyses require complete data sets for all taxa included in the study. If analysis is restricted to sesquiterpene lactones, the absence of these compounds must be encoded onto the data matrix as the only character state ascribable to deficient taxa. Unfortunately, evidence gleaned during the preparation of this review suggests that loss of sesquiterpene lactone
SESQUITERPENE LACTONES---ASTERACEAE
239
biosynthesis is a common occurrence. Consequently, parallel chemical losses by taxa could result in misleading taxonomic conclusions if the joint loss caused by parallel chemical evolution is treated as a shared character state. These problems can be avoided by limiting cladistic analysis to sesquiterpene lactone-rich groups. For example, the high frequency of sesquiterpene lactones within Iva and related genera of the Ambrosiinae permitted a complete analysis without including sesquiterpene lactonedeficient taxa. But if the range of cladistic analysis is to be extended beyond the few sesquiterpene lactone-rich subtribes and tribes, what must be done? The obvious course to follow involves the expansion of the analysis to encompass all sesquiterpene and diterpene biogenesis. When sesquiterpene lactone biogenesis is displaced by production of other terpene components, the latter group's structural features could be encoded as character states into the expanded data matrix instead of the potentially misleading report of sesquiterpene lactone absence. Before this goal becomes attainable, diterpene biogenesis in the Asteraceae must be codified into a workable biogenetic scheme and its relationship to sesquiterpene biogenesis characterized. One opportunity created by this expanded approach would be the study of those sesquiterpene lactone-depauperate tribes (Astereae, Calenduleae) which are rich in diterpene structural diversity. The two goals for the preparation of this review were, first, to describe how sesquiterpene lactone structural information can be interpreted to yield the most satisfactory taxonomic results and, second, to explain how these chemical characters can be best utilized at different taxonomic hierarchical levels. Obviously, the views expressed herein reflect a preliminary evaluation of a far from complete set of data. But the reader should note that at the present publication rate, the complex terpene chemistries of a significant portion of the Asteraceae will be reported by the end of this decade. Hopefully, this review will help accelerate the taxonomic utilization of this valuable set of new characters.
VII. Acknowledgments Among the many colleagues who contributed to the preparation of this review several should be singled out for their very special contributions. Doctors Tom Mabry and Klaus Fischer provided the necessary assistance and encouragement during the several years of the manuscript preparation. Special appreciation is due to Dr. Fischer, who shared his extensive sesquiterpene lactone files. Another important contributor, Dr. Ferdinand Bohlman~, is currently the most active proponent of the taxonomic utility of terpenoid characters in the Asteraceae. Other colleagues who contrib-
240
THE BOTANICAL REVIEW
uted to this taxonomic overview of sesquiterpene lactone distributions are: Drs. Art Cronquist, Billy L. Turner, Werner Herz, Vicki A. Funk, Eloy Rodriguez, Tod Stuessy, Harold Robinson, Mick Richardson, Walter Renold, Hirosuke Yoshioka and Leo Quijano. I am also indebted to the many natural products chemists who labored tirelessly to amass the wealth of chemical data summarized in this review. The complex chemical nomenclature pervading this article speaks eloquently about the significance of the contribution made by Miss Bernice Winkler who typed the various drafts of the manuscript.
Fig. 32. The structures of all sesquiterpene lactones and selected furanosesquiterpenes isolated from the Asteraceae. The numbers in parentheses are the structure numbers included with each compound name listed in Table XXIII.
SESQUITERPENE LACTONES--ASTERACEAE
(1) Costunolide; RI=R2=H (2) Tamaulipin A; RI=~OH, R2=H (3) Eupaserrin, desacetyl; Rl= s-OH; R2=B-OSar (4) Eupaserrin; RI=~-OH, R2=6OSarac (5) Eupatolide-8-O-angelate, 2~hydroxy; RI=~-OH, R2=~-O-Ang (6) Costunolide, 8-hydroxy; Rl= H ,R2=~-OH (7) Eupatolide; Rl= H,R2=B-OH (8) Tulipinolide; RI=H, R2=~-OAc (9) Tulipinolide, desacetyl; RI= H, R2=~-OH (I0) Tulipinolide, epi (=Chamissanthin); Rl= H,R2=B-OAc (If) Eupatoriopicrin; RI=H,R2=B-O Sar-4-OH (12) Liacylindrolide; RI=H,R2= Tig-5-OTig-5-OH (13) Ursinolide,3-desacetoxy; Rl= H,R2=B-O-2-Mebut-2-OH-3-Ac (14) Costunolide, 8B-[5-hydroxytiglinoyloxy]; RI=H, R2=BO-Tig-5-OH (15) Costunol~de, 86-[5-acetoxytiglinoyloxy]; RI=H, R2=B-OTig-5-Ac
241
(16) Costunolide, 86-tiglinoyloxy RI=H, R2=B-O-Tig (17) Eupaserrin, 8~-hydroxy, 8~desacyl-desacetyl; RI=~-OH, R2=B-OH (18) Eupaserrin, 86-[2,3-epoxy-2methylbutyryloxy]-86-desacyldesacetyl; RI=~-OH, R2=~-Oepoxyang (19) Eupaserrin, 8B-[2,3-epoxy-5hydroxy-2-methylbutyryloxy]86-desacyl-desacetyl; RI=~OH R2=6-O-epoxysar (20) Germacrolide le; RI=~-OH, R2 =dih-Sar-5-OH-3-SH (21) Germacrolide If; RI=~-OH, R2 =(2-OH-Et)Acr
,,OR 2
0-', (22) Costunolide, 7~-hydroxy-8~acetoxy-96-[2',3'-epoxy-2'methylbutyryloxy]; RI=OH, R2= OAr R3=epoxyang, R4=H (23) Costunolide, 7~-hydroxy-8~[2',3'-epoxy-2'-methylbutyryloxy]-9~acetoxy; RI=OH, R2= O-epoxyang, R3=Ac,R4=H (24) Montafrusin; RI=H R2=OMac, R3=H, R4=OH
242
THE BOTANICAL REVIEW
RI
(25) Hanphyllin RI=~-OH,R2=R3=H (26) Tamaulipin B; RI=~-OH, R2= R3=H (27) Novanin; RI=B-OAc , R2= R3=H (28) Costunolide, 3B-Isovaleryloxy; Rl=B-OiVal , R2= R3=H (29) Chihuahuin, RI=~-OH , R2=~OAc, R3=H (30) Chromolaenide, 4,5-trans,3desacetyl,20-tiglyl; RI=B-OH , R2=B-OTig-4-OH-5-Tig,R3=H (31) Costunolide, 3~-hydroxy-8~tiglinoyloxy; RI=~-OH , R2=BO-Tig, R3=H (32) Liacylindrolide, 3B-hydroxy; RI=~-OH, R2=Tig-5-OTig-5-OH , R3=H (33) Costunolide, 3B,9~-dihydroxy, 8B-[2-methylbutyryloyloxy]; RI=B-OH , R2=~-O-2-Mebut,R3=H (34) Costunolide, 3B,9~-dihydroxy, 8B-angeloyloxy; RI=B-OH,R2= ~-OAng, R3=~-OH (35) Haageanolide; RI=R2=H, R3= b-OH (36) Costunolide, 9B-propionyloxy; RI:R2=H, R3=B-OPro
(37) Costunolide, 9~-isobutyryloxy; RI=R2=H, R3=~-O-i-But (38) Costunolide, 9~-isovaleryloxy; RI=R2=H, R3=~-O-i-Val (39) Costunolide, 9B-(2-methylbutyryloxy); RI=R2=H, R3~~O-2-Mebut (40) Costunolide, 8~-[2',3'-epoxy2s toxy; RI=H , R2=~-OEpoxyang , R3= ~-OAc (41) Tomentosin; RI=B-OH, R2=~OAng, R3=~-OH
R2- y (42) Mollisorin A; RI=OH, R2=H, R3=OAng (43) Mollisorin B; RI=OH, R2=H, R3=OEpoxyang (44) Costunolide, 3~-isovaleryloxy; RI=R3=H, R2=O-i-Val (45) Hiyodorilactone A, RI=H, R2= OAc, R3=Tig-4,5-OH (46) Hiyodorilactone B, RI=H, R2= OAc, R3=Tig-4-OH (47) Hiyodorilactone C, RI=H, R2= OAc, R3-OH (47.5) Eupaserrin, 3B-hydroxy; RI=R2=OH, R3= OSarac
SESQUITERPENE LACTONES--ASTERACEAE
243
(62) Salonitenolide, RI=~-OH, R2 =H, R3=OH (63) Salonitenolide, 8~-[4-hydroxymethacryl]; R1=~-O-Mac -4-OH, R2=H, R3=OH (64) Costunolide, 15-hydroxy8~-[~-methylacryloyloxy]; Rl=~-OMac, R2=H, R3=OH (48)Salonitenolide; Rl=a-OH, R2= (65) Costunolide, 15-hydroxyH, R3=OH 8~-[isobutyryloxy]; Rl=~-i(49) Arctiopicrin; Rl=~-Oibut-4-OH~ But, R2=H, R3=OH R2=H, R3=OH (66) Salonitenolide,8-desoxy,15(50) Onopordopicrin; RI=~-OMac-4(3-hydroxy-2-methylacryloxy); OH, R2=H, R3=OH RI=H, R2=H, R3=O-Mac-4-OH (51) Costunolide, 14-hydroxy-8~(67) Salonitenolide,8-desoxy,15(4-hydroxy-tiglyloxy) ; RI=I3(2,3-epoxyisobutyryloxy); O-Tig-4-OH, R2=H, R3=OH RI=H, R2=H, R3=O-Epoxymac (52) Cnicin, Rl=~-O-(l,2-OH-Et) (68) Salonitenolide,8-desoxy,15ACr, R2=H , R3=OH (3-hydroxyisobutyryloxy); (53) Alatolide; Rl=~-O-i-But, R2 RI=H, R2=H, R3=O-i-But-4-OH =R3=OH (69) Salonitenolide,8-desoxy,15(54) Pectorolide; Rl=~-OMac, R2= (2;3-dihydroxyisobutyryloxy); R3=OH RI=H, R2=H, R3=O-i-But-2,3(55) Jurineolide; Rl=~OAng-4-OH, OH R2=R3=OH (70) Salonitenolide-8(O)-[2-meth(56) Albicolide; RI=H, R2=R3=OH ylbutyrate]; Rl=O-2-Mebut, (57) Salonitenolide, 8-desoxy; R l R2=H , R3--OH =R2=H, R3=OH (71) Costunolide, 15-hydroxy-8~(58) Costunolide, 15-isovaleryl[~-methylacryl]; Rl=OMac , oxy; RI=R2=H , R3=O-i-Val R2=H, R3=OH (59) Costunolide, 15-senecioyl(72) Costunolide, 15-hydroxy-8~oxy; RI=R2=H, R3=OSen isobutyryl; Rl=O-i-Bu, R2 (60) Costunolide~ 15-isobutyryl=H, R3=OH (73) Linearilobin A; RI=~-OH, R2= oxy; RI=R2=H, R3=i-But (61) Costunolide, 15-[2-methylO-i-But, R3=OAc (74) Linearilobin B; RI=~-OH, R2= butyryloxy], RI=R2--H, R3= 2-Mebut O-2-Mebut, R3=OAc
244
THE BOTANICAL REVIEW
(75) Linearilobin C; RI=B-O-Tig4-OH, R2=OH, R3= OAc (76) Linearilobin D; Rl=~-OMac, R2=OH, R3=OAc (77) Linearilobin E; RI=~-OH, R2= OMac, R3=OAc (78) Linearilobin F; RI=8-OH, R2= O-2-Mebut, R3=OH (79) Albicolide, 8~-[2-methylbutyr- (89) Germanin A; Rl=O-2-Mebut, R2= COOH, R3=H yloxy]; Rl=~-O-2-Mebut, R2= (90) Urospermal A; RI=~-OH,R2=CHO, R3=OH R3=OH (91) Urospermal B; RI=~-OH,R2=CHO, R3=OH (conformer of 90) (92) Vernopectolide B; Rl=~-OMac,
RI'"~
R2=CHO, R3=OH
(80) Eriofertopin; RI=OH , R2=~OMac , R3=OH (81) Eriofertin; RI=OH , R2=~-O Ang, R3=OH (82) Eupatolide-8-O-angelate, 2~hydroxy-14-acetoxy ; RI=~-OH, R2=~-OAng, R3=OAc (83) Eriofertopin, 2-O-Acetyl; R l =OAc, R2=~-OMac, R3=OH (84) Costunolide, 14-hydroxy; Rl= R2=H, R3=OH (85) Budlein B; RI=H, R2=~-OH,
R3=OH (86) Ovatifolin, RI=H, R2=~-OH, R3=OAc (87) Ovatifolin, desacetyl; RI=H, R2=~-OH, R3=OH (88) Ovatifolin acetate; RI=H, R2= ~-OAc, R3=OAc
(93) Elephantopin, deoxy; RI=~-H, R2=~-OMac (94) Elephantopin, isodeoxy; RI=H, R2=OMac (95) Blainvilleolide, 8B-senecioyloxy; RI=~-H, R2=8-OSen (96) Blainvilleolide, 8~-[2-methyl butyryloxy]; RI=~-H , R2=8O-2-Mebut (97) Blainvilleolide, 8~-hydroxy; RI=~-H, R2=~-OH
SESQUITERPENE LACTONESIASTERACEAE
245
R
(98) Taraxin acid-1'-O-B-D-glucopy ranos ide; R=G 1u
(99) Eupatorium seratinum germacrol ide 3 i
(iol) Vernopectolide A; Rl=~-OMac, R2=OAc, R3=OH (io2) Tithifolin, 8~-Angeloyloxy; Rl=B'OAng, R2=R3=H (103) Tithifolin~ 8H-[2,3-epoxy2-methylbutyryloxy]; Rl= BO-Epoxyang, R2=R3=H (104) Tithifolin, 8B-angeloyloxy14-hydroxy; RI=B-OAng , R2= OH, R3=H (Io5) Tithifolin, 8B-angeloyloxy14-acetoxy; RI=B-OAng, R2= OAc, R3=H (I06) Tithifolin, 8B-[2,3-epoxy 2-methylbutyrylo• acetoxy; R|=~-OEpoxyang, R2=OAc, R3=H (IO7) Sphaerocephalin; Rl=~-OMac,
Rz=OAc, R3=H (lO0) Linearilobin G; R=O-2-Mebut
n g : "
246
THE BOTANICAL REVIEW
(108) Costunolide, 3B-acetoxy-8~(118) Eupahyssopin; RI=B-O-Tigangeloyloxy-I ,lo-dihydro4-OH, R2=OH, R3=OH laplOB-epoxy (published (llg) Eupassofilin; Rl=B-O-Tig-4structure disagrees with name) O-Stear, R2=H, R3=OH (120) Parthenolide, 9~-acetoxy; RI=R3=H, R2=~-OAc (121) Parthenolide, 9B-acetoxy; RI=R3=H, R2=B-OAc
(I09) Vernolide, R = OMac (llO) Vernolide, 8~-hydroxy desacyl; R = OH (Ill) Vernolide, hydroxy; R=OMac4-OH
2
1
122) Deltoidln A; Rl=Ang, R2=H (123) Deltoidin B: Rl=Ang, R2=OH (124) Deltoidin C; Rl=Tig, R2=H (=Parthenolide, 815-tiglinoy 1oxy)
H (~2) Parthenolide; RI=R2=R3=H (113) Stizolin; RI=OH, R2=R3=H (1~4) Lanuginolide, ll,13-dehydro; RI=~-OAc , R2= R3= H (115) Lipiferolide; RI=B-OAc, R2=
R3=H (116) Eupassopilin; RI=B-Tig-4-OH, R2=R3=H (I17) Stizolicin; Rl=O-Tig-4,5-OH, R2=R3=H
(125) Melfusin; Rl=Epo• C02CH3
q
' R2=
SESQUITERPENE LACTONES--ASTERACEAE
247
(134) Marginatin; Rl= H, R2=OTig , R3=OAc (135) Glaucolide G; RI=H , R2=OAng , R3=OAc
0 (126) Elephantopin; R =OMac (127) Elephantin; R =OSen (128) Elephantopin, 3'-dihydro; R = O-iBut
OH
0 (136) Blainvilleolide, l16,13-dihydro-8~-hydroxy;
(129) Costunolide diepoxide; R=H (130) Tulipinolide, epi, diepoxide; R = OAc
RI
2
(137) Costunoli.de, ll,13-dihydro; RI=R2=H,R3=~-H (138) Artabin; RI=OH , R2=H , R3=
(]3~) Glaucolide El RI=OAcj R2= OMac, R3:OAc (]32) Glaucolide E acetatej 8-0desacyl; Rl=OAc , R2=OAc, R3=OAc (133) Glaucolide D; RI=OAc , R2= OEpoxymac, R3:OAc
(139) Millefin; RI=R2=~-OAc,R3=H (140) Carmelin; Rl=~-OAc , R2= ~OAc, R3=~-H (141) Balchanolide; RI=H , R2=~OH, R3=~-H (142) Balchanolide acetate; Rl=M , R2=~-OAc, R3=B-H
248
THE BOTANICAL REVIEW
(143) Balchanolide, hydroxy; Rl= H, R2=a-OH , R3=B-OH (144) Laserolide, RI=H , R2=OAng , R3~OAc
(148) Herbolide B
I
(149) Parthenolide, dihydro; RI= (150) i145) Herbolide A; Rl=~-OAc , R2=H (146) Salonitenolide, ~-ll,13-dihydro-8-desoxy; RI=H , R2=OH
(151) (152) (153)
R2=R3=R4=H Euperfolitin; RI=~-OH , R2= ~-.OH, R3=~-OTig , R4=H Euperfolin; RI=R4=H , R2= BOH, R3=B-OTig Lanuginolide; RI=R2=R4=H, R3=~-OAc Herbolide C: RI=R2=R3=H, R4 =B-OAc
aC
(147) Taraxin Acid-1'-O-~-O-glucopyranoside, ll,13-dihydro; R=Glu (154) Elephantopin, dihydro
SESQU1TERPENE LACTONES..--ASTERACEAE
(155) Ursiniollde A; Rl=Epoxyang, R2=OAc (156) Ursiniolide B; Rl=2Mebut-2OH-3-AC, R2=OAc (156.5) Ursinolide B, 3-desacetoxy; Rl=2-Mebut-2-OH-3-Ac, R2=H (157) Ursiniolide C; Rl=Epoxyang, R2=OH
249
(161) Costunolide, 9-oxo-11,13-dihydro-7,ll-dehydro(=Germac rone analog lactone)
(162) Costunolide, 9-oxo-ll,13dihydro-7,11-dehydro-l,lOdihydro-l~-1OB-epoxy
(158) trans, trans-Germacra-l(IO), 4-dien-cis-6~12-olide Cmp. 2a (r59) trans, trans-Germacra-I(lO), 4-dien-cis-6,12-olide Cmp. lea (t6o) trans, trans-Germacra-l(10), 4-dien-cis-6~12-olide Cmp. 4a
(163) Costunolide, 9-oxo-I,I0-4, 5-11,13-tri(dihydro)-l~,lOB -4~-5~-diepoxy-7,11-dehydro
250
THE BOTANICAL REVIEW
R2 (164) Chamissonin; RI=R2=0H (164.5) Chamissonin diacetate; RI=R2=0Ac (165) Chamissarin, RI=0H, R2=0Ac (166) Laurenobiolide, desacetyl; (=Chamissellin) RI=H, R=0H (167) Laurenobiolide; RI=H, R2= 0Ac
OR
(173) Artemisiifolin-15-0-sarracinate; RI=0H, R2=H , R3= 0Sar (174) Artemisiifolin-15-0-[4hydroxytiglate]; RI=0H , R2= H, R3=Tig-4-0H (~75) Artemisiifolin-6-0-[4hydroxytiglate]; RI=Tig-4OH, R2=H, R3=0H (~76) Scabio]ide; Rl=0-i-But-2,3 -OH, R2=H , R3=0Ac Dicomanolide, 14-acetoxy; (177) RI=0H, R2=R3=0Ac
AcO
(168) Polymniolide; R = H (178) Dicomanolide, 14-oxo
(~69) Artemisiifolin, RI=R3=0H, R2=H (17o) Artemisiifolin, C-15 acetyl; RI=OH, R2=H, R3=0Ac (171) Artemisiifolin diacetate; RI=0Ac, R2=H, R3=0Ac (172) Artemisi ifol in-l 5-0-acetylsarracinate; RI=0H, R2=H, R3=Sarac
(179) Isabelin
SESQUITERPENE LACTONES---ASTERACEAE
251
(186) Spiciformin; R = H (187) Chamissonin, 4,5-epoxy; R = OH
HO,,,~ (180) Pyrethrosin; RI=H, R2=OAc (181) Chamissonin, l(lO) epoxy; RI=R2=OH (182) Tanacin; RI=H, R2=OAng
(188) 8aileyin
,,.0
~"0~
0
~~-o
Ho,''-f'y ~ (188.5)
(183) Mikanolide, deoxy; R = H (184) Scandenolide; R--OAc
Balchanolide, 3c~-hydroxy-
iso
(189) Laurenobiolide, 6-desacet(|85) Mikano!ide
~"~"O~1=: O
R'"~
oxy, dihydro; RI=R3=H, R2= 13-H (190) Balchanolide, iso; RI=OH, R2=6-H, R3=H (t91) Salonitolide; RI=OH, R2=~" H, R=OH 3
252
THE BOTANICAL REVIEW
,o...-T v
~
(192) Innunolide, 3-c~-(13-D-gluco-
(197) Inunolide, If3, lOc~-epoxy,
pyranoside); R = Glu l~lO-H
(~98) Inunolide, 413,Sc~-epoxy,
(193) Mikanolide, dihydro
4,5-H
(194) Scandenolide, dihydro
(199) Simsiolide
~3
(200) Glechomanolide
(195) Inunolide, RI=R2=R3=H (196) Vernudifloride; R l = R 3 R 2 = OSen
=
H
SESQUITERPENE LACTONES--ASTERACEAE
(201) Inunolide, dihydro
0--
%
(202) Polymatin A; Rl=OAng, R2=OH (203) Polymatin B; Rl=OAng , R2=
OAc (204) PoIymatin C (see 261)
253
(216) Tetraludin H; R1=O-2-Mebut2,3-0H, R2=OAc (217) Tetraludin l; Rl=O-Epoxyang; R2=O2-Mebut-30H (218) Tetraludin J; Rl=O-2-Mebut2,3-0H, R2=O-2-Mebut (219) Tetraludin K; R1=O-2-Mebut2,3-0H, R2=O-2-Mebut (220) Tetra]udin L; R1=O-2-Mebut2,3-0H, R2=O-i-But (221) Tetraludin M; Rl=O-2-Mebut-2,3-0H, R2=O-i -But (222) Tetraludin N; Rl=O2-Mebut2-OH- 3=o,R2=O2-Mebut-3-OH
(205) Tetrahelin A, Rl=O-2-Mebut-
2,3-Ac, R2=OAc
Q~CH 3
(206) Tetrahelin C; R =O-2-Mebut-
2-OH-3Ac, R2=O-2-Mebut (207) Tetrahelin D; Rl=O-2-Mebut-
2-OH-3Ac, R2=OAc (208) Tetrahelin E; Rl=O-2-Mebut-
.o,,
2-OH-3Ac, R2=O- i-Va1-3-OH (209) Tetraludin A; Rl-=O2-Mebut-
2,3-0H, R2=OAc (210) Tetraludin B; Rl=O2-Mebut-
2,3-0H, R2=O2-Mebut-3-OH (211) Tetraludin C; Rl=O2-Mebut-3 -OH, R2 =02-Mebut-2,3-OH (212) Tetraludin D; Rl=O2-Mebut2-0H-3=0, R2=O-2-Mebut (213) Tetraludin E; Rl=O-2-Mebut2-0H-3=0, R2=O-2-Mebut (214) Tetraludin F; Rl= 2-Mebut2-0H-3=0, R2=O- i-But (215) Tetraludin G; Rl-= O-2-Mebut -2-0H-3=0, R2=O- i-But
(223) Leucanthinin; R = Epoxyang
Q:::::i,/OCH3
R3-
,-,
(224) Melampolidin; Rl=O2-Mebut2-OH-3-Ac~ R2 =R3 =H
254
THE BOTANICAL REVIEW
(225) Uvedalin; Rl=OEpoxyang , R2= OAc, R3=H (226) Polydalin; Rl=2-Mebut-2-OH3=0, R2= OAc, R3=H (227) Longipin; Rl= OEpoxyang, R2= H, R3=OAc (228) Uvedalin, iso; RI=OAr , R2= OEpoxyang, R3=H (229) {230) (231) Orientalide; Rl=OMac , R2=OAc R3=OH (232) Orientalide, 9~-methoxy-desacetyl; Rl=OMac , R2=Me , R3= OH Acanthospermolide-14-acid(233) methylester, 9~-hydroxy-8~angeloyloxy; Rl=OAng , R2=OH , R3=H (234) Tetrahe|in B; Rl=2-Mebut-2,3 -Ac, R2=OAc , R3=OH (235) Tetrahelin F; Rl=2-Mebut-2 , 3-Ac, R2=OAc, R3=OH
Oh (236) Acanthospermal A, Rl=O-iBut, R2=~-O-i-But-2-OH
(237) Acanthospermal B; Rl=O-2Mebut, R2= ~-OAc (238) Acanthamolide; RI=OH , R2= ~-NH-i-But (239) Acanthospermolide, 9~-Acetoxy-8~-(2-methylbutyryloxy) -14-oxo; Rl~0-2-Mebut OAc ,R2=~OAc (240) Acanthospermolide, 8~-[2methylbutyryloxy]-9Bhydroxy-14-oxo; Rl=O-2-Mebut, R2=~-OH
)
cH2o b (241) Acanthospermal B; Kl=2-Mebut R2=OAc, R3=CHO (242) Acanthospermolide, 15-hydroxy-8~(2-methylbutyryloxy)-14-oxo; Rl=2-Mebut , R 2 = H, R=CHO (243) Acanthospermolide, 15-hydroxy-8B-(isovaleryloxy)-14oxo; Rl=iVal, R2=H , R3=CH0 (244) Acanthospermolide, 9~,15dihydroxy-8~-(2-methylbutyryloxy)-14-oxo; Rl=2Mebut , R2=OH, R3=CHO
SESQUITERPENE LACTONE S----ASTERACEAE
(245) Acanthospermolide, 9~-acetoxy-14,15-dihydroxy-8~-(2methylbutyryloxy)-14-oxo; Rl=2-Mebut , R2=OAc, R3= CH20H (246) Acanthospermolide, 9a-palmitoyloxy-8B-(2-methylbutyryloxy)-15-hydroxy-14-oxo; Rl=2-Mebut , R2=OPalm, R3= CHO (247) Acanthospermolide, 9~stearoyloxy-86-(2-methylbutyryloxy)-15-hydroxy-14oxo; Rl=2-Mebut, R2=OS%ear, R3=CHO (248) Acanthospermolide, 9~-linoloyloxy-8B-(2-methylbutyryloxy)-15-hydroxy-14-oxo; Rl=2-Mebut, R2=0Linol, R3= CHO (249) AcanthospermoIide, 9a-lino ]enoyloxy-8B-(2-methylbutyryloxy)-15-hydroxy-14-oxo; R)=2-Mebut, R2=OLinolen, R3=CHO (249.5) AcanthospermoIide, 86angeloyloxy-9~-acetoxy-14oxo; Rl=Ang, R2=OAc, R3= CHO (249.6) Acanthospermolide 14-acid methylester, 86-angeloyloxy -9~-acetoxy; Rl=Ang, R2=0Ac R3=CO2CH3
{249.7) AcanthospermoIide 14-acid methylester, 86-epoxyangeloyloxy-9~-acetoxy; Rl=EpoxY ang, R2=OAc, R3=CO2CH 3
255
(249.8) Acanthospermolide, 8~methacryloyloxy-9~-acetoxy, 14-oxo; Rl=Mac, R2= OAc, R3=CHD
(250) Melampodin A;
Rl=OEpoxyang,
R2=OH
(25]) Melampodinin,
9-desacetyl; R1=O-2-Mebut- 20H-3-Ac, R2=OH {252) Vtelampoctin A acetate; RI= OEpoxyang, R2=OAc (253) Melampodinin B; RI= OEpoxyang, R2=O-2-Mebut (254) Melampodin in, R1=O-2-Mebut2-OH-3-Ac, R2=OAc
O~CH 3
(255) Melampodin A, lla,13-dihydro-9-~-methylbutyrate; Rl=OEpo• R2=O-2-Mebut
256
THE BOTANICAL REVIEW
o,';iL~ "
o~OCH 3
R
(255.5) Melampodin A, lI6,13-dihydro; R =2-Mebut-2-0H-3Ac
(262) Leucanthin A; R = Epoxyang
N3
(263) Leucanthin B; R = Epoxyang
(256) Longipilin; Rl=OAng, R2=OH (257) Fluctuadin; RI=OMac, R2=OAc
(258) Fluctuanin; Rl=OAng, R2=
0 Z CHO OH
OAc
(259) Maculatin; Rl=0Epoxytig, R2=OAc
(260) Enhydrin, Rl=OEpoxyang, R2 =
OAc
(261) Polymatin C; RI=OAc, R2= OEpoxyang
(264) Acanthospermolide, 8B-[2Methylbutyryloxy]-gB-hydro• l,lO-dihydro; R = 2-Mebut
HO"'~O
SESQUITERPENE LACTONES--ASTERACEAE
o•CH3
257
(273) Baileyin (revised) (265) Melnerin A; Rl=O-i-But, R2 --H,
a3=OH
(266) Melnerin B; Rl=O-2-Mebut, R2=H, R3=OH (267) Melnerin A, 9-acetoxy; Ri= O-i-But, R2=OAc , R3=OH (268) Melnerin B, 9-acetoxy; Rl= O-2-Mebut, R2= OAc, R3=OH (269) Melnerin A, 2',3t-dehydro; Rl=OAng, R2=H, R3=H (270) Melnerin A, 9c~-hydroxy-2', 3'-dehydro; Rl=OAng , R2=OH , R3=H (271) Melnerin A, 9c~-hydroxy-8 desacy loxy-SI3- isova Iery Ioxy ; Rl=OiVal, R2=OH
0
(274) Cinerenin; Rl=OEt , R2=O H (275) Melampodin B; Rl=OAc , R2=OH (276) Melampodin C; Rl=O-i-But , R2=OH (277) Melampodin D; Rl=O-2-Mebut , R2=OH
H
(272) Frutescin (278) Melampodin B, 4,5-dihydro
258
THE BOTANICAL REVIEW
3
(279) Germacranolide, 4,5-ci___ss,3-
6-hydroxy; RI=B-OH, R2=R3=H (280) Nobilin, 3-epi; RI=~-OH, R2
=~-OAng, R3=H (281) Nobilin; RI=~-OH, R2=~-
OAng, R3=H (282) Eupaformonin; Rl=~-OAc, R2=
6-OH, R3=H (283) Eupaformosanin; Rl=~-OAc, R2=6-O-Tig-4,5-OH, R3=H (284) Chromolaenide, 3-epi, 20acetoxy; Rl=~-OAc, R2=6-O Tig-4-OH-5Ac, R3=H (285) Peucephyllin; RI=B-OAr R2= 6-O-i-But, s (286) Chromolaenide; Rl=6-OAc, R 2 =6-O-Tig-4-OH, R3=H (287) Chromolaenide, 20-tiglinoyloxy; Rl=6-OAc, R2=B-O-Tig -4-OH-5-Tig, R3=H (288) Eucannabinolide; Rl=6-OAc, R2=~-O-Ti g-4,5-OH, R3=H (289) Provincial in; RI=B-OAc, R2= B-O-T ig-4-OH- 5-T ig- 5-OH, R3=H (290) Eupatocunin; RI=~-OAc, R2=6 -OAng, R3=OH (291) Eupatocunoxin; RI=6-OAc, R2 =OH, R3=OEpoxyang (292) Provinc,alin, desacetyl-4'desoxy; RI=BOH, R2=6-O-Tig-
5-O-Tig-5-OH, R3=H (293) Provincialin, 4'-desoxy; Rl= 6-OAc, R2=6-O-Tig-5-O-Tig5-OH, R3=H (294) Provincialin, 4'-desoxy-3desacetoxyl-3~-hydroxy; Rl= H, R2~B-O-Tig-5-O-Tig-5-OH , R3=H (295) Provincialin, 4'-desoxy-3epi; RI=H, R2=6-0-Tig-5-OTig-5=OH, R3=H (296) Eucannabinolide, 3-[2"hydroxyisovaleryloxy]-3desacetoxy; Rl=6-O-i-Val-2OH, R2=~-O-Tig-4,5-OH, R3=H (296.5) Eucannabinolide, 3-isovaleryloxy-3-desacetoxy; Rl=B-O-i-Val, R2=B-O-Tig4,5-OH, R3=H (296.6) Eucannabinolide-5'-sarracinate, Rl=~-OAc, R2=6-OTig-4-OH-5-OSar, R3=H (297) Eupatorium recurvans heliangolide; RI=B-OA~, R2=BOH, R3=B-O-2--Mebut
~ (298) Ngbilin, 3-dehydro
Ang
SESQUITERPENE LACTONES--ASTERACEAE
(299) Euparhombin; RI=~-OMac, R 2 =OH (300) Costunolide, 4,5-cis, 14hydroxy-8~-( 4-hydroxytiglinoyloxy); Rl=B-O-Tig, R2= OH (301) Costunolide, 4,5-cis,14acetoxy-8~-(4-hydroxytiglinoyloxy); RI=B-O-Tig-4-OH, R2=OAc
c
(302) Linearilobin H; R =OMac (303) Linearilobin I; R = OTig
259
(304) Eriophyllin B; RI=R2=OH, R3=B-OMac (305) Eriophyllin; Rl=OAc, R2=OH, R3=B-OMac (306) Erioflorin; RI=OH, R2=H, R3 =~-OMac (306.5) Heliangin; R|=OH, R2=H, R3=B-OTig (307) Nobilin, l,lO-epoxy; RI=OH, R2=H, R3=~-OAng (308) Leptocarpin; RI=OH, R2=H, R3 =B-OAng (309) Leptocarpin, 17, 18-dihydro; RI=0H, R2=H, R3-B-O-2-Mebut (310) Viguestenin, 8~-[2-methylbutyryloxy]-8-desacyl; Rl" OAc, R2=H, R3=~-O-2-Mebut (311) Viguestenin, 8~-isovaleryloxy-8-desacyl; RI=OAc, R2z H, R3=OiVal (312) Tagitinin E, RI=OH, R2=H, R3= B-O-i-But (313) Erioflorin acetate; Rl=OAc, R2=H, R3=H-OMac (314) Erioflorin methacrylate; RI= OMac, R2=H , R3=B-OMac
~ (315) Eriophyllin C
Mac
260
THE BOTANICAL REVIEW
(316) Liscundin; RI= OAng, R2=OH (317) Eleganin; Rl=O-Ang-4-Ac ' R2=OH (3~8) Liscunditrin; Rl=OSarac, R2 = OH
(325) Woodhousin; RI=H , R2=B-OAc , R3=OH, R4=B-O-i-But (326) Niveusin A, Rl=a-OH, R2=H , R3=a-OH, R4=OAng (327) Niveusin B, RI=R2=H, R3=aOH, R4=OAng (328) Niveusin C, RI=~-OH, R2=H, R3=~-OH, R4=OAng (329) Woodhousin, 8B-tiglinoyloxy8~-desac], RI=H , R2=B-OAc , R3=OH, R4=~-O-Tig Woodhousin, 8B-[2-methyl(330) butyryloxy]-8B-desacyl; RI= H, R2=B-OAc, R3=OH, R4=~O-2-Mebut
Mac
"
(319) Orizabin; R|=a-OH, R2= H, R3 =OH,
R4=~-O-i-But
(320) Orizabin-8B-angelate, desiso-
(321)
(322) (323)
(324)
butyryl, des-3a-hydroxy; Rl= a-OH, R2=H , R3=H, R4=OAng Orizabin-8~-angelate, desisobutyryl; RI=~-OH, R2=H, R3=~-OH , R4=OAng (=Niveusin A) Zexbrevin B; Rl=a-OH, R2=H, R3= OH, R4=8-OMac Zacatechinolide, l~-acetoxy; Rl=S-OAc, R2=H, R3=OH, R4= B-OMac Tagitinin B; RI=H, R2=B-OH, R3=OH, R4=~-O-i-But
(331) Zacatechinolide, 1-oxo
3
(332) Ciliarin; Rl=6-Ooi-But , R2 =H, R3=H (333) Atripliciolide, isobutyrate; Rl=B-O-iBut, R2=H, R3=H
SESQUITERPENE LACTONES--ASTERACEAE
(334) Calaxin; Rl=~-OMac , R2=H , R3=H Atripliciolide-(2-methyl(335) acrylate; Rl=B-OMac , R2=H , R3=H (336) Atripliciolide isovalerate; Rl=B-O-iVal, R2=H, R3=H (337) Atripliciolide tiglate; Rl= ~-OTig, R2=H , R3=H (338) Budlein A; Rl=B-OAng, R2=OH R3=H (339) Atripliciolide-8-O-[2-methylacrylate], 9~-hydroxy; Rl=B-OMac, R2=H, R3=~-OH (340) Atripliciolide-8-O-[2-methylacrylate]-9 ~-isovaleryloxy-15-hydroxy; Rl=B-OMac , R2=OH, R3=~-OiVal (341) Atripliciolide-8-O-[2-methlyacrylate], 9~-senecioyloxy-15-hydroxy; Rl=~-OMac , R2=OH, R3=~-OSen (342) Atripliciolide-8-O-[2-methylacrylate],9~-angeloyloxy15-hydroxy; Rl=B-OMac , R2= OH, R3=~-OAng. (343) Atripliciolide-[2-methylacrylate], 15-hydroxy; Rl= 8-OMac, R2=OH , R3=H (344) Atripliciolide-tiglate, 15hydroxy; Rl=8-OTig , R2=OH , R3=H (345) Budlein-A 8B-isovalerate~ desangely]; Rl=B-OiVal , R2 =OH, R3=H (346) Atripliciolide-angelate, Rl=~-OAng, R2=R3=H
261
(347) Atripliciolide-8-O-angelate, 9~-Hydroxy; Rl=B-OAng , R2=H , R3=~-OH (348) Atripliciolide-8-O-tiglate, 9~-hydroxy; RI=~- OTig, R2= H, R3=~-OH (349) Atripliciolide-8-O-methacrylate, 9~-hydroxy; RI=B OMac, R2=H , R3=~-OH (350) Atripliciolide-(2-methylbutyrate), Rl=B-O2Mebut , R2=R3=H (351) Conoprasiolide 5'-O-acetate; RI=~-OTig-5-OH,R2=H, R3=~OH (352) Conoprasiolide, Rl=~-OTig- 5 -OH,R2=H, R3=~-OH (353) Viguiepinin; Rl=8-O-i-But , R2=OH, R3=H
Hd
o
(354) Heliangolide lOa; R=i-Val
%'"
----
262
TIlE BOTANICAL REVIEW
(355) Liatrin; RI=~-OH , R2=OSarac (356) Tagitinin F; RI=~-OH , R2= O-i-But, C-146
4 (362) Punctatin (=Punctaliatrin); Rl=Sar, R2=OH (363) Punctatin, 15, 5'-Bis-deoxy; Rl=Ang, R2=H (364) Punctatin, 15-deoxy; Rl=Sar, (357) Tagitinin A; RI=Rz=~-OH, R3=6-H , R4=6-0-i-But (358) Tirotundin ethylether; Rl= H, R2=~-OEt, R3=~-H, R4=BO-i-But, C-14~ (359) Tirotundin; RI=H, R2=~-OH, R3=~-H , R4=~-O-iBut , C-14~
Rz~H
~
R2
0 Mac
(360) Zexbrevin
(361) Liatripunctin; R=O-Sar-4-OH
(365) Viguiestenin, desac~tyl; RI=OH, R2=O-i-But (366) Viguiestenin; RI=OAc, R2= O-i-But
SESQUITERPENE LACTONES---ASTERACEAE
(367) Eremantholide A; R= -CHMe 2 (368) Eremantholide B; R= CH(Me)CH2-Me (369) Eremantholide C; R= -C(Me)=
263
RI I
CH2
(370) Eremantholide, 16~-[l'methyl prop-IE-enyl]; R= -C=CH
II
Me Me (371) Eremantholanolide, 16-~-[lmethylprop-IZ-enyl];
(376) Atripliciolide-8-O-angelate, ll-hydroxy-13-chloro-ll,13dihydro; Rl=Ang , R2=H
Me I R= -C=CH
(377) Atripliciolide-8-O-tiglate,
I
ll-hydroxy-13-chloro-II,13-
Me (372) Eremantholanolide, 16~-[lmethyl-l,2-epoxypropyl];
dihydro; Rl=Tig , R2=H (378) Atripliciolide-8-O-angelate,
9~, ll-dihydroxy-13-chloro-
Me
ll,13-dihydro; Rl=Ang , R2=OH I
Me
~I #
II([) 0~'-;oH (379) Atripliciolide-8-O-angelate,
(373) Eremantholanol ide, 16~-isoprop.yl-4~,5H; R=CHMe2
(374) Eremantholanol ide, 16~-i sopropenyl-4B,5H; R=C(Me~= CH 2 (375) Eremantholanol ide, 16~-[l 'Methylprop-IZ-enyl]-48,5H; R= -CH=CH I
I
Me Me
5-Myrtenyl-4,5-11,13-tetrahydro-ll,13-epoxy; R=Ang
264
THE BOTANICAL REVIEW
-
.~"
R1
(380) Atripliciolide angelate, II, 13-dihydro-ll,13-epoxy; Rl=Ang, R2=H (381) Atripliciolide tiglate, ]l, 13,-dihydro-ll,13-epoxy; R1=Tig, R2=H (382)Atripliciolide methacrylate, ll,13-dihydro~ll,13-epoxy; Rl=Mac, R2=H (383) Atripliciolide-8-O-angelate, 9~-hydroxy-ll,13-dihydroll,13-epoxy; Rl=Ang, R2=~OH (384) Atripliciolide-8-O-tiglate, 9~-hydroxy-ll,13-dihydroll,13-epoxy; Rl=Tig, R2=~OH (385) Atripliciolide-8-O-methacrylate, 9~-hydroxy-ll,13dihydro-ll,13-epoxy; Rl= Mac, R2=~-OH
(386) Liabinolide
(387) Goyazensolide, 15-deoxy; Rl=OMac, R2=H (388) Goyazensolide; R]=OMac, R2= OH (389) Goyazensolanolide,6~-tig]inoyloxy; Rl=OTig , R2=H (390) Goyazensolanolide, 6~-[2methylacryloyloxy]; Rl= OMac, R2=H (391) Lychnopholide; Rl=OAng , R2=H (392) Centratherin; Rl=OAng , R2= OH (393) Goyazensolanolide, 6~-[2,3 -epoxybutyryloxy]; Rl= OEpoxyang, R2=H (394) Goyazensolanolide, 6~angeloyloxy (=Lychnopholide)~ Ri=OAng , R2=H
(395) Goyazensanolide, 5~-hydroxy-6~-methac ryloyl oxyA4,15-iso
SESQUITERPENE LACTONES--ASTERACEAE
H - -
R
(396) Secoheliangoiide lla; R = Tig
265
(400) Acanthospermolide, 15hydroxy-8~-[2-methylbutyryloxy]-14-oxo-4,5-cis; Rl= 2Mebut, R2=H, R3=CHO, R4=OH (401) Acanthospermolide, 15-hydroxy 8B-[isovaleryloxy]-14-oxo4,5-cis; Rl=i-Val , R2=H, R3=CHO, R4=OH (402) Acanthospermolide, 15acetoxy-8B-[2-methylbutyryloxy]-14-oxo-4,5-cis; Rl= 2Mebut, R2=H, R3= CHO, R4=OAc (403) Acanthospermolide,15-acetoxy -8~-[isovaleryloxy]-14-oxo~,5-cis; Rl=i-Val, R2=H, R3= CHO, R4=OAc
(397) Costunolide, cis, cis, 2~hydroxy; RI=OH , R2= R3= H (398) Costunolide, cis, cis, 3~acetoxy-8-~-hydroxy; RI=H ~ R2= OAr R3=OH
(404) Melcanthin D; Rl=Mac , R2=~OAc, R3=CO2CH3, R4=OH (405) Me]canthin E; Rl=i-But , R2= ~-OAc, R3=CO2CH3, R4=OH (406) Melcanthin F~ Rl=2-Mebut , R2=~-OAc, R3=CO2CH 3, R4=OH (407) Melcanthin G; RI=Ac , R2=~O2-Mebut, R3=CO2CH3, R4=OH
~III~ 3
(399) Acanthaspermolide, 8~-I2methylbutyryloxy]-9B-hydroxy -14-oxo-4,5-ci_ss; Rl=2-Mebut , R2=~-OH, R3=CHO, R4=H
(408) Melcanthin C; R l = R4 R2=O-iBut, R3= OAc
=
OH,
266
THE BOTANICAL REVIEW
(409) Melcanthin B; R l = R4 = OH, R 2 =OAng, R 3 =OAc (410) Melcanthin A; R l = H, R 2 = OAng, R 3 =OAc, R4 =OH
(413) Artemorin; RI=B-OH , R2= R 3 =H (414) Costunolide, l-peroxy; Rl= ~-OOH, R2= R3= H (415) Ridentin; Rl= R2=~-OH , R3=H (416) Dentatin B; RI=~-OH , R2=H , R3=~-OH (417) Artevasin; Rl= H, R2= R3= OH
(411) cis, cis-Artemisiifolin-6-Otiglate, 14-hydroxy; RI=R2= OH, R3=Tig
(418) Verlotorin, anhydro
H
(412) cis, cis-Artemisiifolin, 15-desoxy
(419) Parthenolide, l-peroxy (=Verlotorin);
R = H
(420) Ferolide, l peroxy; R = OAc
R
SESQUITERPENE LACTONES--ASTERACEAE
267
,,OAn g
HO
(421) Ridentln, iso
(424) Nobilin, iso, hydroxy
N
(425) Tamirin; R = OH (426) Chrysanolide; R = OAc (422) Gallicin
I-4
(427) Germacrene D Lactone
(423) Ridentin, dihydro
(428) Tatridin B
268
THE BOTANICAL REVIEW
~ ,,,OH HOI~
o
(435) Tatridin A (429) Cordifene; R = Ang
o~
~ (436) Maroniolide
(430) Cordifene, 4,]5-epoxy-4,]5 -dihydro; R = Ang Z -
OH
CH 3 3
(431) Repandin C; RI=B-OH, R2= OEpoxyang, R3= O-i-But (432) Repandin D; RI=B-OH, R2= OEpoxyang, R3=O-2-Mebut (433) Repandin A; RI=B-OH, R2= OSar, R3=O-i-But (434) Repandin B; RI=B-OH, R2= OSar, R3=O-2-Mebut
(437) Artgentiolide A
(438) Argentiolide B
-
OAng
SESQUITERPENE LACTONES----ASTERACEAE
,,,OH
269
(439) T a t r i d i n C
(445) Compound 7a; RI=R2=OH, R3=H, R4=OH (446) Compound 7c; RI=OH, R2=R3=H, R4=OH
OH
OH (440) Tanachin
~
OH OH (447) Badgerin
3
(441) Eurecurvin, 15-deshydroxy; RI=H, R2=H, R3=2-Mebut (442) Eurecurvin, RI=OH , R2=H , R3 =2-Mebut (443) Eupatorium mohr{i germacranolide 7~; RI=H, R2=OAc, R3= 2-Mebut (444) Eupatorium mohrii germacranolide 7b; RI=OH, R2=OAc, R3= 2-Mebut
(448) Ze• 86-angeloyloxy; R =B-OAng (449) Zexbrevin-tiglate, demethacryloyl; R =6-O-Tig (450) Zexbrevanolide, 8~-[2-methylacryloyloxy]; R =~-OMac (451) Zexbrevanolide, 8~-tiglinoyloxy, R =~-OTig
270
THE BOTANICAL REVIEW
Q
O-
-
OR2
%
b
(452) Caleine A; RI=OAr , R2=OAng (453) Caleine B; Rl=OAng , R2=0Ac (454) Neurolenin A; Rl=0-i-Val, R2=H (455) Neurolenin B; Rl=0-i-Val , R2=OAc
(462) Caleurticolide-angelate, 2~, 3~-epoxy-2,3-d ihydro; Rl= Mac, R2=Ang (463) Caleurticol ide-i soval erate, 2~, 3~-epoxy-2,3-d ihydro; Rl=Mac, R2=i-Val (464) Caleurticolide-[2-methylacrylate], 2a,3cz-epoxy-2,3dihydro; Rl=R2=Mac (465) Caleurticolide-isobutyrate, 2~, 3~-epoxy-2,3-d ihydro ; Rl= Mac, R2=i-But (466) Caleurticolide-acetate, 2~, 3c~-epoxy-2,3-d ihydro; Rl= Mac, R2= Ac
(456) Caleurticolide-acetate; Rl= OMac, R2=OAc (457) Caleurticolide, 86-tigloyl9~-acetyl-de-[2-methacryloyl]; Rl=0Tig , R2=OAc H0" . V = O ~An (458) Caleurticolide, 86-angeloyl9~-acetyl-de-[2-methacryloyl]; Rl=0Ang, R2=OAc (459) Caleurticolide-[2-methylacryl- (467) Piptolepolide ate]; Rl=0Mac, R2=OMac (460) Caleurtico!ide-angelicate; Rl=OMac, R2=OAng Caleurticolide-isobutyrate; Rl=OMac , R2=O-i-But
~
(46~)
g
SESQUITERPENE LACTONES---ASTERACEAE
271
. , D R 2
m2) +o (469) Ineupatolide; Rl=2-Mebut , R2=OAng (467.4) Arucanolide;
Rl=Ac , R2=
Mac (467.5) Juanislamin; Rl=R2=Mac
-
R
(4ZO) Ineupatorolide A; R=2-Mebut (471) Ineupatorolide B; R =Ang
(467.6) Juanislamin, 2,3-dihydro, 2(~,3c~-epoxy ; Rl =R2=Mac
~ ~ ~ \0 ~3Ac
89 -~
RI (472) Hirsutinolide 13-O-acetate, 813-acetoxy-lOB-hydroxy ; R l= H, R2= Ac 1473) Hirsutinol ide
l ,13-O-di-
acetate, 813-acetoxy - lOB-hydroxy ; RI =R2=Ac (468) Viguilenin; Rl= 2-Mebut,R2= H
(474)
Hirsutinolide
13-O-acetate,
813-prop iony loxy- lOI3-hyclfoxy ; Rl= H,
R 2 = Pro
272
THE BOTANICAL REVIEW
(475) Hirsutinolide
],13-O-di-
acetate, 8~-propionyloxy]OB-hydroxy; R l = AC, R 2 = Pro (476) Hirsutinolide 13-O-acetate, 8~-propionyloxy-lO~-hydroxy, l-O-methyl; RI=CH3, R2=Pro
(480) Hirsutinolide, 8B-(2-methyl2,3-epoxypropionyloxy); RI= OH, R2=OEpoxymac, R3=R4=H (48l) Hirsutinolide, 15-hydroxy, 8B-(2-methylacryloyloxy); RI=OH, R2=OMac, R3=OH, R4= OAc (482) Hirsutinolideol3(O)acetate, 8~(2-methylacryloyloxy);
R
RI=OH, R2=OMac, R3=H, R4= OAc
~,~OAc .-"
Ac
(477) Hirsutinolide-13-O-acetate, 8~,lO~-diacetoxy-l~-O-methyl; R l = Ac, R2 = Me (478) Hirsutinolide-13-O-acetate,
(483) Hirsutinolide- 13(O)-acetate, 8B-(2-methyl-2,3-epoxypropionyloxy); R l = OH, R 2 = OEpoxymac, R3=H, R4=OA c (484) Hirsutinolide-13(O)-acetate, 8~-(2-hydroxymethylacryloyloxy), RI=OH, R2=OMac-4-OH, R3= H, R4 = OAc
8~,lOB-diacetoxy-l~-OH~ R l = Ac, R 2 = H (478.5) Hirsutinolide-13-O-acetate, 8~-acetoxy-l~,lOB-dihydroxy;
ac
R l = R2 = H
""\--(C~ 1DAc H" "--R3 (485) Hirsutinolide-13(0)-acetate', iso, 813-(2-methylacryloyloxy)
(479) Hirsutinolide, 813-(2-methylacryloyloxy); R]=OH, R2= OMac, R3=R4--H
~"~
OAc
SESQUITERPENE LACTONES---ASTERACEAE
273
(486) Hirsutinolide-13-O-acetate, 8B,IO~-diacetoxy-18-Omethyl; RI=Ac, R2=Me (487) Hirsutinolide-13-O-acetate, 88,10B-diacetoxy-lB-OH; RI=AC, R2=H
(496) Fasciculide B
RH~
%
(488) Hirsutinolide-13-O-acetate,
10B-hydroxy-8~-tiglin~ |oxy-|~-O-methyl~ Rl=OTig, R2=Ac, R3=~-OMe (489) Hirsuti-nol~de-13"O'~acetate, 108-hydroxy-8~-tiglinoyloxyl~-O-methy~;.Rl=OTig, R2=Ac. R3=~-OMe (490) Piptocarphin A; Rl=Mac, R2= Ac, R3=~-OH (49~) Piptocarphin B; Rl=Tig, R2= Ac, R3=~-OH (492) Piptocarphin C; R|=Mac. R2= H, R3=~-OH (493) Piptocarphin D; RI=H, R2=Ac, R.=~-OH (494) Piptocarphin E; R =Mac, R2= Ac, R3=~-Et (495) Piptocarphin F; Rl=Mac, R2= Et, R3=~-OH
H
o\ oRI
(497) Rolandrolide~ R]=H, R2=Mac (498) Rolandrolide, 13-acetoxy; Rl=AC. R 2=Mac
(499) Rolandrolide, iso; RI=H, R2=Mac (500) Rolandro|ide, %3-ethoxy iso; RI=H, R2=Mac
274
THE BOTANICAL REVIEW
H O ~ Ang O ' Mac (507) Tifruticin, deoxy
(50l) Phantomolin
"•
AcO,,,/~OAng RI
-
.
R
(502) Chapliatrin; RI=OH, R2=OAc, R3=OSarac (503) Chapliatrin, iso; Rl=OAc, R2=OH, R3=OSarac (504) Chap]iatrin, acety|; RI= OAc, R2=OAc, R3=OSarac
(507.5) T i f r u t i c i n ,
(50~) T a g i t i n i n
acety]
C~ R = i - B u t
H O ~pH Ang (505) Molephantin; R]=OH., R2=OMac (506) Mo]ephantinin; RI=OH , R2= OTig (505) T i f r u t i c i n
SESQUITERPENE LACTONES---ASTERACEAE
~OOH
"3
275
A ng
O
(510) Eupacunin; RI=OH ~ R2=OAc ,
(515) Germanin B
R3=H, R4=OAng (511) Eupacunoxin; RI=OH , R2=OAc , R3=H, R4=OEpoxyang (512) Eupacunolin RI=OH , R2=OAc , R3=OH, R4=OAng (512.5) Eupacunin, desacetyl; R l =R2=OH, R3=H~ R4=OAng
(515.5) Elephantol
(513) Vernomygdalin; R = i-But
H
1516) Orientin
en
QAc
(514) Balsamin
Ac
276
THE BOTANICAL REVIEW
(520) Glaucolide B-8-O-proprionate, 8-O-desacetyll RI= OPro, R2=OAc, R3=OAc
~517) Confertolide
I
:'0~
DAc
(518) Chrestanolide; RI=AC , R2= Tig
HO'"~ (521) Pelenolide. hydroxy
gAc
C
(522) Pelenolide A, keto~ RI=~H, R2=~-H (523) Pelenolide B, keto; RI=~-H, R2=H
(519.0) Disyfolide
I%
"R3
(519.1) G]auco]ide B; (519.2) Glaucolide A; R2=R 3=OAc (519.3) G1aucolide A, Rl =OMac-4-OH ,
RI=R2=R3=OAc Rl=OMac, 19-hydroxy; R2=R3=OAc
(524) (525)
Eriolin;
R = H
Eriolin,
hydroxy;
R = OH
SESQUITERPENE LACTONES~ASTERACEAE
HO j~,' HO'"~
277
,,OAc
Mac
oAc (529) Vernonallenolide, 4~-hydroxy
(526) Zexbrevin C
-4,5-dihydro-5,6-dehydro
HO,,,~R / 6-~oA c (530) Costunolide, 2~-hydroxy-8B(527) vernonallenolide
~
angeloyloxy; R = Ang (530.5) Costunolide, 2~, 86-dihydroxy; R = H (530.6) Costunolide, 2~-hydroxy8B-[4-hydroxymethacryloyloxy], R = Mac-4-OH
Ac HQ'~OR 2
(528) Vernonallenolide, 4a, 5~epoxy-4,5-dihydro
"r (531) Costunolide, 2e-hydroxy-86[5-hydroxyangeloyloxy] ; Rl= H, R2=Sar
278
THE BOTANICAL REVIEW
(538) Costunolide, 86-[3,4-epoxy-
O
isovaleryloxy]-96-hydroxy; R = Epoxyang {539) Costunolide, 86-[4-stearoyloxyisovaleroyloxy]-96hydroxy; R =i-Val-5-O-Stear
(532) Grazielolide, 86-angeloyloxy; R = Ang (533) Grazielolide, 86-[2,3-epoxy2-methylbutyryloxy];
Mo oR2
R =
Epoxyang (540) Balchanolide,
~
3~-hydroxy-
iso; R} = R 2 = H
ng
Q
R ng
(534) Ovatifolin-8-O-angelate,
14-
O-desacetyl; R = CH2OH (535) Grazielia acid; R = COOH
(541
H
Acanthospermolide. angeloyloxy-14-oxo;
(542) Acanthospermo}ide,
8~R = H 86-angel-
oyloxy-9~-hydroxy-14-oxo; R
(536) Costunolide, 8#-angeloyloxy96-hydroxy; R = Ang (537) Costunolide, 86-isovaleryloxy- s
R = i-Val
= OH
SESQUITERPENE LACTONES-IASTERACEAE
279
H R2 I
(547) Atr ipl iciol ide-8-O-meth(543) Acanthospermolide,
8B, 9~-
diangeloyloxy-14-oic acid; R l = R 2 = Ang
acrylate, 9~-hydroxy; R 1 = H R 2 = Mac
(548) Atripl iciol ide-8-O-angelate, 9L~-hydroxy; kl=H ,-R2=Ang
(549) Atripl iciol ide-8-O-meth-
H
acrylate, 913-acetoxy ;
ng
R l=Ac, R2=Mac
(550) Atripliciolide, 913-metho acryloyloxy; R] = Mac, R2 = H
(55~) Atripliciolide, 913-[4'acetoxy-angeloyloxy] ; R l = (544) Zexbrevanolide, 8B-angeloyl-
Ang-4-Ac, R2 = H
oxy-913-hyd roxy
RI
(545) Atripliciolide-8-0-methacrylate, 9B-hydroxy-ll~,13 -epoxy; R]=H, R2=Mac (546) Atripliciolide-8-O-methacrylate, 9B-acetoxy-lIB, 13-epoxy; Rl=AC, R2=Mac
(552) Acanthospermolide, 8B,9~diangeloyloxy-15-hydroxy14-oxo-4,5-cis
280
THE BOTANICAL REVIEW
Tig
(553) Disyhamifo~ide
(560) Trichosalviolide, 8B-[2methyl-2,3-epoxybutyryloxy] 5~,9B-dihydroxy; RI=H, R2= Epoxyang, R3= o-OH (561) Trichosalviolide, 8B-[2methyl-2,3-epoxybutyryloxy] -SB, 96-dihydroxy; RI=H,
R2=Epoxyang,R3=B-OH
H~OAng (554) Trichosalviolide, 9~-acetoxy -8~-angeloyloxy-5~-hydroxy; Rl=AC, R2=Ang, R3=~-OH (555) Trichosalviolide, 9~-acetoxy -S6-angeloyloxy-5B~hydroxy, RI=Ac, R2=Ang, R3=B-OH (556) Trichosalviolide, 9S-acetoxy -83-[2-methyl-2,3-epoxybutyryloxy]-5~-hydroxy; R}=Ac, R2=Epoxyang, R3=~-OH (557) Trichosalviolide, 9B-acetoxy -8~-[2-methyl-2,3-epoxybutyryloxy]-5~-hydroxy; R l = Ac, R2=Epoxyang, R3=6-OH (558) Trichosa|violide, 83-angeloyloxy-5~,gB-dihydroxy; R I =H, R2=Ang, R3=~-OH (559) Trichosalviolide, 85-angeloyloxy-5~,96-dihydroxy; R l =H, R2=Ang, R3=3-OH
(562) Pycnolide
R 0~., ~Z)Ac
(563) Trichogoniol ide-9-O-acetate, iso
_-~RI~.~R
SESQUITERPENE LACTONES-IASTERACEAE
281
(564) Trichogoniolide; RI=H , R2= Mac (565) Trichogoniolide-9-O-acetate; R l = Ac, R 2 = Mac
(572) Ludovicin A; RI=~-OH , R2=H , epoxide cis,~ (573) Santamarin, epoxy; RI=6-OH , R2=H, epoxide cis, (574) Pluchea lactone; Rl=~-OAng
R2=~-OH, epoxide cis, 6 (566) (567) (568) (569)
~-Cyclocostunolide; RI=R2=H Douglanine; RI=~-OH, R2=H Balchanin; RI=B-OH, R2=H Ludalbin; RI=~-OH, R2=G-OAc (570) Balchanin, 8B-angeloyloxy; RI-=H, R2=8-OAng (57l) Balchanin, 86-[2,3-epoxy-2methylbutyryloxy]; RI=H, R2 =6-OEpoxyang
R20.
o":I n (575) Dimerostemmolide-l-O-[5hydroxyangelate], 4-iso; RI=H, R2=Ang-5-OH
R20
,(3
(571.5) Critonilide, iso (Probably opposite stereochemistry at C-7)
(576) Bimerostemmol ide; R]=R2=I-I
282
THE BOTANICAL REVIEW
(577) Dimerostemmolide-l-angelatel RI=H, R2=Ang (578) Dimerostemmolide-l-[5-hydroxyangelate],8-O-angeloyl; Rl=Ang, R2=Ang-5-OH (579) Dimerostemmolide-l-[5-hydroxyangelate],8-O-[2-methylbutyryl]; Rl=2-Mebut, R2= Ang-5-OH (580) Dimerostemmolide-l-O[5-hydroxyangelate], RI=H, R2=Sar (5~]) Dimerostemmolide-l-O-[2methyl-2,3-epoxybutyrate]; RI=H, R2=Epoxyang
R
Ac
(587) Montathanolide
(588) Ludovicin C; RI=~-OH, R2=H (589) Armexifolin; R l or R2 = OH, RI or R 2 = H
(582) Arubusculin B; RI=R2=H (583) y-Lirioden olide; RI=~-OH, R2=B-OAc (584) Rothin A; RI=H, R2=~-OH (53~) Arbusculin B, 8B-angeloylo• l~-hydro• RI=OH, R2=~-OAng (586) Arbusculin B, 8B-[2,3-epoxy-2-methylbutyrylo• hydroxy; RI=OH, R2=~-OEpoxyang
(590) Tanacetin; RI=R2=OH, R3=H (591) Arbusculin C; RI=R3=H , R2= OH !592) Rothin B; RI=H, R2= R3=OH
SESQUITERPENE LACTONES--ASTERACEAE
283
(604) Cyclocostunolide, 8~-hydroxy -l~-[2-(hydroxymethyl)acryloyloxy]; RI=~-O-Mac-4-OH , R2=H, R3=~-OH
(593) 6-Cyclocostunolide; RI=R 2 = R3=H (594) Reynosin; RI=6-OH , R2=R3=H (595) Ludovicin B; RI=R2=~-OH, R3=H (596) Ridentin B; RI=R2=B-OH, R3=H (597) Alantolactone, l~,8~-dihydroxy; RI=~-OH,'R2=H, R3=~OH (598) Alantolactone, 8~-hydroxyf~(2-hydroxymethylacryloxy);
RI=~'OMac-4-OH , R2=H , R3=~OH (599) Alantolactone, l~-hydroxy8~-(2-hydroxymethylacryloxy); Ri=~-OH, R2=H, R3=~-OMac-4OH (600) Dentatin A; RI=6-OH, R2=H , R3=c~-OH (601) Reynosin, 83-angel'oy]oxy; RI=~-OH, R2=H, R3=3-OAng (602) Arturin(=l~-hydroxy-8~angeloyloxy-eudesman-4(15), ll(13)-diene-6,12-olide); RI=6-OH, R2=H, R3=B-OAng (603) Cyclocostunolide, 8~-hydroxy-l~-(isobutyryloxy); Rl=~Z-O-iBut, R2=H, R3=~-OH
(604.5) C r i t o n i ] i d e (Probably opposite stereochemistry at C-7)
Ang (
< (605) Badkhys in in
(606) Gazaniolide; R = H (607) Gazaniolide, 8 ~ - i s o v a l e r y oyloxy; R = O-i-Val
284
THE BOTANICAL REVIEW
(608) Tuber iferin
(615) Armexin diacetate: RI=R2 = OAc
HO
(609) Arglanine; RI=OH' R2=H (610) Artemexifolin; RI=R2=OAc
RI
(616) Artecalin
~
OAc
(617) Gerin (611) Arbusculin, IB-hydroxy; RI= OH, R2=~-OH , R3=H (612) Vahlenin; RI=OH , R2=0H , R3= OMac (613) Arbusculin A; RI=R3=H , R2= s-OH (614) Arbusculin A, 4-epi; RI=R3= H, R2=B-OH (6]7.5) Costus Acid, 3-oxo-iso
SESQUITERPENE LACTONES--ASTERACEAE
(625)
285
Costus Acid, 3B-isovaleryloxy-ll,13-dihydro;
R =
i-Val (626)
Costus Acid, 3B-hydrocinnamoyloxy-ll,13-dihydro; R = HCinn
(618) llicic Acid; R = H (619) Arbusculin E~ R = OH
~H ~H ~H
(627) Costus Acid, I-oxo
(619,5) Vachanic Acid
(628) Costus Acid (=Costic acid)
H (620)
Costus Acid, 3B~hydroxy ll-13-dihydro; R = H
(621)
Costus Acid, 3B-senecioyloxy -ll,13-dihydro;
R =
Sen (622)
Costus Acid, 3~-angeloyloxy-ll,13-dihydro;
(623)
R = Ang
Costus Acid, 3~-tiglinoyloxy-ll
13-dihydro; R =
Tig (624)
Costus Acid, 3B~isobutyryl oxy-ll,13-dihydro;
R=i-But
(629) Costus Acid, 4,15-dihydro3,4-dehydro
286
THE BOTANICAL REVIEW
~N (629.5) Costus Acid, Iso
(634) Inucrithmolide; R = Ang
R2~R 3 (630) Costus Acid, l~-angeloyloxy; RI=H, R2= OAng (631) Costus Acid, l~-hydroxy; RI=H, R2=OH
_IR
(632) Santamarin, dihydro (=lI3hydroxy-sant-3-en-6, 12olide C); RI=B-OH , R2=H , R 3 =8-H (636) Decipienin H; Rl=a-OH , R2= OH, R3=6-OH (637) Decipienin G; Rl=aOH , R2= OH, R3=B-OAng
(632) Costus Acid, ll,13-dihydro; R l = R2 = H (633) Costus Acid, l~-hydroxyz ll,13-dihydro; RI=OH, R2=H (638) Artesin; RI= ~-OH, R2=~-H
SESQUITERPENE LACTONES---ASTERACEAE
(639) Eudesm-4-en-6,12-olide, lhydroxy-66-7~,116-H; RI=OH, R2=~-H
(640) Taurin, R = H (64]) Eudesm-4-en-6,12-o) ide, I-
287
(646) Santonin, ll-oxy; RI=H, R2= OH (647) Decipienin A; R]=H, R2=OAng
(647.5) Santonin, desrnotropa
oxo-6~,7~IB-H; R =~-H
(648) 13-Cyclocostunolide, dihydro; RI= R2= R3 =H, R4=~-H
(642) Sanl:onin, 1,2-dihydro
(649) Sant-4(14)-en-6~12-olide C, I~-hy-~ro~y ~RI=~-OH, R2=R3=H, R4=~-H (650) Arsubin; RI=I~-OH, R2=H, R3= OH> R4=~--H (651) Artemin; RI=B-OH, R2=H, R3= OH, R4=S-H
(652) Erivanin; Ri~: R2=(~-OH, R3= H, R4=~-H (643) ~-Santonin; RI=H, (644) B-Santonin; Rf=H, (644.5) Santonin; RI=H, (645) Artemisin; RI=OH,
R2=6-H R2=~-H R2=H R2=~-H
288
THE BOTANICAL REVIEW
(653) Badkhysid in (657) Arsantin; RI=~-OH , R2= B-H, R3=H (658) Arsanin; R 1 =B-OH, R 2 =B-H, R 3 =H (659) Arabsin; R l = H, R 2 =s-H, R 3 =s-OH
R1 il H ~)~R 3
(660) Taraxacolide-[l'-O-B-D-glucopyranoside];
Rl=Glu, R2=
B-H, R3=H (654) Tauremisin
(=Vulgarin); Rl=
OH, R 2 = H, R 3 = ~ - H
R
(655) Tabarin; R l = R 2 = OH, R 3 = B-H
R
Ill
1661) Ridentin B, 4~.15,11B.13tetrahydro; R = H
(656) Colartin
SESQUITERPENE LACTONES--ASTERACEAE
(668) Cyclocostunolide,
(662) Finitin;R = H, Cl3~ (663) ~-Santonin,
deoxy; R = H,
289
ll~,13-
dihydro-8~-hydroxy-l~-[2 ~ (hydroxymethyl)acryloyloxy];
CI3B (664) ~-Santonin;
R = OH, Cl3~
R l = Mac-4-OH
(665) Arbusculin D (669) Alkhanin
HO
(666) Reynosin, dihydro (670) Torrent in
Ro
~
,,OH
(667) Cyclo~ostunolide,
llB,13-
dihydro-8~-hydroxy-l~-(2methylacryloyloxy);
R=Mac
(671) Monogynin
290
THE BOTANICAL REVIEW
(676) ~-Cyclopyrethrosin; Rl= OH, R2 = OAc (677) Chrysanin; RI= OH, R2= OAng
(672) Mibulactone
( possibly
identical with artemin)
(678) B-Cyclopyrethrosin,
dihydro
(673) Ivangustin, iso, 8--epi
HO
' n OAng
R (679) Tanaps in
R (674) Ivangustin,
l-desoxy,8-epi;
R = H (675) Ivangustin, 8 -epi; R = OH (680) Pinnatifidin, R = H (681) Pinnatifidin,l~-hydroxy; R = OH
SESQUITERPENE LACTONES--ASTERACEAE
291
R
(682) Pinnatifidin, l~-hydroxy- 2dihydro; R = OH (683) Pinnatifidin, l~-acetoxy-2dihydro; R = OAc (683.5) Pinnatifidin, 2-dihydro; R =
(684) Ivangustin, Rl= R2=H (684.5) Ivangustin, 6B-tiglinoyloxy; Rl=OT[g, R2 = H (684.6) Ivangustin acetate, 6Btiglinoyloxy; Ri=OTig, R2= Ac
(685) Yomogin
(686) A]antolactone, iso; RT= R2= R3= R4=H (687) Asperilin; RI=80H , R2= R3= R4 =H (688) Ivasperin; R]=c~-OH, R2=OH , R3= R4=H (689) Granilin; Rl= R3=~-OH , R2= R4=H (69o) Ivalin; Rl= R3= R4=H, R2= OH (69~) Iva~in acetate; R] = R3= R4= H, R2=OAc (692) Pulchellin C; Rl= R4= H, R2=OH , R3 =B-OH (693) Pulchellin E; RI= R4= H, R2=OH, R3=B-OAc (694) Puichellin B; R]= R4= H, R2= OAc, R3=~-OH (695) Pulchellin F; Rl= R4= H, R2= ~-OAng, R3=I3-OH (696) Alantolactone, iso, 3~-hydroxy-2~-senec ioyloxy; R l= H, R2= OSen, R3=I3-OH, R4=H (697) Telekin, iso; Rl= R2= R4= H, R3=~-OH Telekin, 3-epi-iso; R]= R2= (698) R4=H, R3=~-OH (699) Telekin; Rl= R2= R3= H, R4= OH
292
THE BOTANICAL REVIEW
R2~" (700) Encelin (705) Alantolactone; RI= R2= H (706) Alantolactone, 16-hydroxy; RI=OH, R2=H (707) Alantolactone, 2~-hydroxy; RI=H, R2=OH
(701) Telekin, iso, dehydro;
(708) Ivangustin, l-desoxy-8-epi
(702) Telekin, 3-epiiso-l,2-dehydro; R = H (703) Telekin acetate; 3-epiiso1,2-dehydro; R = Ac
(709) Alantolactone, 2-oxo
(704) Telekin, 3-epiiso, 11,13dihydro
(710) Meridianone
SESQUITERPENE LACTONES--ASTERACEAE
293
(717) Oxidoisotrilobolide-6-Oangelate; RI=Ac, R2=Ang (718) Oxidoisotrilobo]ide-6-Omethacrylate; Rl=AC, R2=Mac
(711) Ursialpinolide
HO (71.9) Carpesin
(712) Microcephalin
(720) Graveolide
(713) Trilobo]ide-6-O-isobutyrate (714) Trilobol ide-6-O-angelate (715) Trilobolide-6-O-methacrylate
o_~
(721) Virginin; R = H (722) Farinosin; R = OH
(716) Oxidoisotri lobol ide-6-O-isobutyrate; RI=AC, R2=i-But
(723) Alantolactone, dihydro
294
THE BOTANICAL REVIEW
(724) Alantolactone, neo
(731) Eudesma-4(15),7(ll)diene8B-12-61ide (=8-epiasterofide) (732) Asterolide, 8-epi
(725) Alantolactone, iso, dihydro; RI=R2=H, R3=~-H (726) Ashurbin; RI=R2=~-OH, R3=~ -H (727) Hybrifarin; RI=H, R2=B-OH, R3=OH
(733) Eudesma-5,7(l l)-diene-8B, 12-olide; R=H (734) Eudesma-5,7(l l)-diene-13ol-8B,12-olide; R =OH
(735) Asterolide, 8,9-dehydro (728) Ocotealactol; RI=~-OH, R2= OH (729) Asterolide; RI=R2=H (730) Asterolide, 8B-hydroxy; Rl= H, R2=OH (736) Asterolide A, iso, R=c~-Me (737) Asterolide B, iso; R=~-Me
SESQUITERPENE LACTONES.--ASTERACEAE
295
Mac
(743) Secoeudesmanolide precursor 7a; R = Glu-6-Ac
(]38) Vernodesmi n
OH
(744) Disecoeudesmanolide ]a; R = Glu-6-Ac
(739) Lumisantonin
~
(745) Disecoeudesmanolide 3a; R = Glu-6-Ac
89 (740) Eriolanin; RI=CH2OH, R2= OMar R3=OH (741) Eriolangin; Rl= CH2OH, R2= OAng, R3= OH (742) Ivangulin; RI=CO2CH3, R2= R3=H
(746) Secocrispiolide
296
THE BOTANICALREVIEW
~
O
(747) Secomacrolide, 6~-angeloyloxy; RI=OH , R2=H , R3= Ang (748) Secomacrolide, 8-epi-6~angeloyloxy; RI=H, R2=OH , R3=Ang (749) Secomacrotolide, 6B-tiglinoyloxy; RI=OH, R2=H, R3=Tig (750) Secomacrotolide, 8-epi-6Btiglinoyloxy; RI=H, R2=OH, R3=Tig (75~) Secomacrotolide, 6B-isovaleryloxy; RI=OH , R2=H, R3= i-Val (752) Secomacrotolide, 8-epi-6Bisovaleryloxy; RI=H , R2~OH R3=i-Val
~
Ac
,,,OR
(754) Athamontanolide, 8~-acetoxy4-anhydro; R = Ac (755) Athamontanolide, 8~-isobutyryloxy-4-anhydro;R=i-But
OAc
(756) Athamontanolide, 8a-acetoxy; RI= Ac, R2= OH, R3= Me (757) Athamontanolide, 8a-isobutyryloxy; RI= iBut, R2= OH,
R
(753) Zuubergenin; R = Ac (753.5) Zuubergenin, desacetyl; R = H
R3= Me (758) Athamontanolide, 8~-acetoxy -4-epi.; Rl= Ac, R2= Me, R3= OH (759) Athamontanolide~8~-isobutyryloxy-4-epi; Rl= iBut, R2= Me, R3= OH (760) Athamontanolide, 8~-[2-methylbutyryloxy]-4-epi; Rl= 2Mebut, R2= Me, R3= OH
SESQUITERPENE LACTONES--ASTERACEAE
297
(767) Parishin-A
),,,OH 0-.
(761) Leucodin, dehydro; Rl= R2=H (762) Matricarin, ]l,13-dehydro; R l = OAc, R2= H (763) Lactucin, 8-deoxy; RI=H , R2 = OH
(768) Ayanin
(••,
(764) Matricarin, ll,13-dehydrodesacety|; Rl= H, R2= H
,%1
O (769) (77o)
kudartin;
R 1 = R2 = H
Arteglasin
A; R t = 0 A c ,
R2
=H (771)
(765) Eupasessifolide B, Rl= Tig, R2= H (766) Eupasessifolide B, 5~-
Subacautin;
R 1 = OH, R2=
OAng (772)
Berlandin;
R 1 = OAng, R 2 =
0Ac
hydroxy; Rl= Tig, R2= OH
3~
OSen
298
THE BOTANICAL REVIEW
(773) Guevariolide)
"'OAc
~0 (777) Picridin
0 (774) Yomogiartemin
O
(775) Estafietin, isoepo•
~2~I
III~,I
(778) Rupicolin A; R]= OH, R2= H (779- Rupicolin A, 15-acetoxy-|B780) hydroxy-8-(2~-acetoxyethyl) acrylate; Rl=O-(2-AcEt)Acr , R2= OAc
O,.. _O~..-" o
(776) Chrysartemin A (781) Euperfolide
SESQUITERPENE LACTONES---ASTERACEAE
%
299
RI
(782) Eremanthinel R] = H, R2= H (783) Vanillosmin, 8~-senecioyloxy; Rl=OSen , R2= H (784) Eremanthine, 8~-isovaleryl--
OR
(788) Rupicolin A, ]-desoxy-l~peroxy; R = H (788.5) Rupicolin A-8-(O)-acetate, l-desoxy-l~-peroxy; R = Ac
oxy; Rl= i-Val, R2= H (785).Eremanthine, 36-.angeloyloxy; Rl= H, R2= OAng (786) Eremanthine, 36-senecioyloxy;
>
Rl= H, R2.= OSen
-: H- y=_ AcO,,,~"~' ,,R Ac 0""Y"H~"~__
(789) Eregoyazin
R2
(787) Rupicolin A, 3~, 4~-diacetoxy-3,4-dihydro-8(2~-acetoxyethyl)acrylate; R=O-(2-AcEt) Acr
O (790) Rupicolin B; Rl= R2=~-OH (791) Ligustrin; RI= H, R2=6-OH (792) Ligustr in- [4' ,5'-dihydroxytiglate], RI=B-H, R2=BTi cj-4,5-OH
300
THE BOTANICAL REVIEW
(793) Rupicolin B, ]-desoxy-leperoxy; RI=~-OOH , R2=~-OH (793.5) RupicoTin B-8-O-acetate, l-desoxy-la-peroxy; RI=~-
(798) Estafiatin, 8~-[2-methyiacryloyloxy]
OOH, R2=e-0Ac
-
"
OR
Ac
(799) Gua anolide 4a; R = 2-Mebut (799.5) Guaianolide 4b; R = i-Val (794) Arteglasin B
~
-IoA c
(800) A p r e s s i n
(795) Estafiatin; RI=R2=R3=H (796) Eupatundin; Rl= R2= OH, R3= OAng
H ".,'O
(797) Eupatundin acetate; Rl-=OAc, R2= OH, R3=OAng
,,,OPlac
(8Ol) Eupasessifolide A; R = Tig
SESQUITERPENE LACTONES--ASTERACEAE
301
R H
(802) Euparotin;
R I = R 2 = OH, R 3
=OAng (803) Preeupatundin,
8B-tiglinoyl-
oxy,lO,15-epoxi.de;
(809) Bahia
I; R = OH
(810) Bahia
II; R = O-Sar-4~OH
(Sll) Bahifolin;
R = O-Fur
RI= OH,
R 2 = H, R 3 = OTig (804) Graminiliatrin,deoxy;
Rl= OH
3
R 2 = H, R 3 .= O-Ang-4-Ac (805) Euparotin acetate;
R I ~ OAc,
~OAng
R 2 = OH, R 3 = OAng (806) Spicatin;
R l = OAc, R 2 = H, . . - - , . .
R 3 = O-Tig-5-O-Tig-5-OH (807) Spicatin,
desacetyl;
R I = OH,
R 2 = H, R 3 = O-Tig-5-O-Ti 95-OH
(812) Guaiagrazielolide, 8Bangeloyloxy
H ~
oH
~
OTig
H~
0 I808) Agriantholide (813) Osmitopsin,
4,5-epoxy
302
THE BOTANICAL REVIEW
R~-R4 9
=
R3
(8~4) Eupatoroxin; RI= R2= OH, R 3 = OAng, R4= H (8~5) Graminiliatrin; Rl= OH, R2= H, R3= O-Ang-4-Ac, R4= H (8~6) Spicatin, epoxy; Rl= OAc, R2= H, R3= O-Tig-5-O-Tig-5OH, R4=H (8~7) Guaianolide 6a_; Rl= OH, R2= H, R3= 2-Mebut, R4= H (818) Guaianolide 6_b; Rl= OH, R2= H, R3= iVal, R4= H (819) Agriantholide, 3c~,4G-epoxy; Rl= OH, R 2 = H, R 3 = Tig, R4= OH
Ac
O"~F6H~ (82]) Eupatoroxln, ]O-epi; R= H (822) Preeupatundin-2-O-acetate, 86-angeloyloxy-5~-hydroxy3,4,lO,]4-diepoxy; R = Ac
.O-~I,,,OH HO,,~ _ OR
(823) Guaiananolide la; R=2-Mebut (824) Guaiananolide Ib; R=i-Val
~ R ),,,RI
(820) Preeupatundin-2-O-acetate, 86-tiglinoyloxy-5~-hydroxy10,14-epoxy; R = Tig
(825) Zaluzanin C, dehydro; RI=H , R2= H (826) Cynaropicrin, dehydro; Rl= OMac-4-OH, R2= H (827) Zaluzanin C, dehydro, 9Bhydroxy; Rl= H, R2= OH
SESQUITERPENELACTONES----ASTERACEAE
303
(834) Costus Lactone, dehydro;
Rrk
) 'R2
o$ 0 (828) Repin; RI=B-OH , R2=OEpoxymac (829) Acroptilin; RI= OH, R2=O-iBut-2-OH-3-Cl (Chlorohyssopifolin C) (830) Repin, 8-desacyl; RI=B-OH, R2= OH
Rl= R 2 = R3 = H Costus Lactone, dehydro, 8~(835) senecioyloxy; R~ = R2= H, R3 =OSen (836) Zaluzanin C, 3-epi; RI=~,-OH, R2 = R3 =H (837) Zaluzanin C; RI=B-OH, R2= R3 =H (838) Zaluzanin D; Rl=~-OAc , R2= R3= H (839) Vernoflexine; (=Zaluzanin C -senecioate) RI=B-OSen, R2= R3= H (840) Vernoflexuoside; Rl=~-OGlu, R2= R3= H (841) Cynaropicrin; RI=B-OH , R2= H, R3=OMac-4-OH (842) Zaluzanin C, 7~-hydroxy-3 desoxy; Rl= R3=H, R2=OH (843) Zaluzanin C angelate, Rl= B-OAng, R2=R3=H
(831) Subluteolide; R|=OH, R2=OEpoxy-n-But,C-15B (832) Subluteolide, 8-desacyloxy8~-[2-methylacryloyloxy]; RI=B-OH, R2=~-OMac, C-15B (833) Janerin; RI= OH, R2=OMac-4OH
(844) Cynaropicrin, deacyl; RI=BOH, R2= H, R3=~-OH (845) Zaluzanin C, 8~-acetoxy; R l =B-OH, R2=H, R3=~-OAc (846) Zaluzanin D, 8~-acetoxy; R l =~-OAc, R2= H, R3=~-OAc (847) Aguerin A; RI=B-OH, R2=H, R3=~-OiBut (348) Aguerin B; RI=B-OH, R2= H, R3=~-OMac (849) Linichlorin B; RI=B-OH, R2 =H, R3=~-O-iBut-2-OH-3-Cl (850) Vernoflexine, 17,18-dihydro; Rl=~-OiVal , R2= H, R3= H
304
THE BOTANICAL REVIEW
(851) Zaluzanin C, desoxy (=Dehydrocostuslactone); Rl= R 2 = R3= H
(852) Zaluzanin C-isovalerate; R l =B-OiVal, R2= R3=H (853) Zaluzanin C-[2-methylbutyrate]; Rl=B-O-2-Mebut , R2= R3= H (854) Costus lactone, 8~-isovaleryloxy-dehydro; Rl= R2=H , R3=~-O-iVal
OMac
(857) Cyclocostunolide, 9~-senecionyloxy; R = Sen (858) Cyclocostunolide, 9~-angeloyloxy; R = Ang
HRI~',,R3 'I
(855)Costus lactone, 2,3-dihydroxy -8~-me thac ry Ioy Ioxydehyd ro
(859) Chlorohyssopifolin B; RI= R3=~-OH, R2=~-OH, R4= C1 (860) Chlorohyssopifolin E; Rl= OH, R2=~-OH , R3= O=i-But-2, 3-OH, R4= Cl
RO
(861) Chlorohyssopifolin D; RI=OH , R2=~-OH , R3=O-i-But-3-OH2-O-Et, R4=CI (862) Chlorohyssopifolin A; Rl=
(856) Glucozaluzanin C; R = Glu
R2=~-OH , R3=O-iBut-2-OH- 3CI, R4=CI (863) Muricatin; RI=B-OH , R2=B-H , R3= OMac-4-OH, R4=H (864) Janerin, chloro; Rl= R4=OH , R2=CI, R3=OMac-4-OH
SESQUITERPENE LACTONES--ASTERACEAE
305
(865) Linichlorin A; RI=B-0H, R2= OH, R3=a-OMac, R4=CI, C-15~ (866) Linichlorin C; Rl=~-OAc, R2= OH, R3=~-O-IBut-2-OH-3-CI, R4=0H, C-15~ (867) Elegin; RI=B-OH, R2=OH, R3= ~-OMac; R4=CI, C-158
N
Ac
(871) Artefransin
H~,,,OR )--R3 (868) Acrorepiolide; R=Mac-4-0H
,R
(869) Zaluzanin C, 4B-14-dihydro3-dehydro; R = H (870) Grosshemin; R = OH
(872) Eupachlorin; RI= R2=R4=OH, R3=13-OAng, R5=C] (873) Eupach]orin acetate; R|=OAc, R2 = R4 =-OH, R3 =l~-OAng, R5 =CI (874) Spicatin hydrochloride; RI= OAc, R2= H, R3=I3-O-Tig-5-OTi9-5-Oll, R4=OH , R5=CI (875) Cumambrin B; Rl= R2= R5=H, R3=~-OH , R4= OH (876) Cumambrin A; Rl= R2 = R5=H, R3=~-OAc , R4= OH (877) Cumambrin B, B-deoxy; Rl= R2= R3= H, R4=OH, R5=H (878) Spicatin hydrochloride, desacetyl; RI=OH, R2=H, R3=I3-0 Tig-5-O-Tig-5-OH, R4=OH, R5= CI
306
THE BOTANICAL REVIEW
(879) Spicatin-14-O-cis sarracen-
ate, desacetyl; RI=OH, R2= H, R3=~-O-Tig-5-O-Tig-5-OH, R5=O-Tig-5-OH (880) Cumambranolide, 8~-isobutyryloxy; RI= R2= H, R3=~-iBut, R4= OH, R5= H (88~) Cumambranolide, 8~-[2-methylacryloyloxy]; RI= R2=H, R3=~-OMac, R4=0H, R5=H (882) Cumambranolide, 8~-tiglinoyloxy; RI= R2=H, R3=~-OT:ig, R4=OH, R5=H
(884.5) Hyporadio]ide-8-O-[2methylacrylate], ll,13-dihydro
(885) Arbiglovin
(883) Hyporadiolide-8-O-cinnamate; R l = H, R2= Cinn
(886) Diospheno] guaianolide 9; R = Tig
(884) Hyporadiolide-8-O-[2-methylacrylate]; Rl= H, R2= Mac
IOAng )'"OMac
,,R1
-H~ (887) Athanadregeolide; Rl= H, R2= Me, R3= OH
SESQUITERPENE LACTONES--ASTERACEAE
307
(888) Athanadregeolide, 8~-hydroxy; RI= OH, R2-- Me, R3=OAc (889) Athanadregeolide; lO-epi;
-\/1.
Rl= H, R2= OH, R3= Me
(896) Rupin A; RI= R2=OH (897) Rupin B; RI= OAc, R2=OH
(890) Eupachloroxin; RI= R2= R4= OH, R3=H-OAng, RS= C1 (891) Graminichlorin; RI= R4= OH, R2= H, R3=H-O-Ang-4-Ac, R5= C1 (892) Cumambrin B 3,4-oxide; Rl=
(898) Trifloculoside
R2= R5= H, R3=~-OH, R4=OH
(893) Artecanin; both epoxides, (894) Canin; both epoxides cis,B (895) Chrysartemin B; both epoxides cis,B
(899) Zaluzanin C, ll,13-dihydro7.1l-dehydro-3-desoxy; R=H (900) Zaluzanin C, 13-acetoxy-ll, 13-dihydro-7,11-dehydro-3desoxy; R = OH
308
THE BOTANICAL REVIEW
O [301) Prutenin; RI-=~-H, R2=H, R3= B-OAng (902) Petiolaride; R)= H, R2= OSar-4-OH, R3=~-H
(911) Eremanthine,
8~-hydroxy-ll~,
13-dihydro
R~]~I'''R2 (911.5) Eremantholide, (903) Matricarin,
desacetoxy;
R! =
ll~,13-di-
hydro
R2= R3= H (904) Parishin C; R l = OH, R 2 = R3 = H (905) Matricarin,
desacetyl;
RI =
R 3 = H, R 2 : OH (906) Matricarin; =
R l = R 3 " H, R 2
OAc
(907) Laferin;
RI = H, R 2 = OAng,
R 3 = OAc (908) Ta~assin B; R~ = H, R 2 = (912) Achillin;
R = H
(913) Achillin,
hydroxy;
0Ang, R 3 = O-i-But (309) Pruteninone,
8-acetoxy;
(914) Grossmisin; H, R 2 = O A c , (910) Pruteninone,
R 3 = OAng 8-angeloyloxy;
R] = H, R 2 = R 3 = OAng
R = OH
R] (915) Achillin,
R = OH
acetoxy;
R = OAc
SESQUITERPENE LACTONES--ASTERACEAE
%
309
r
i
0..
0 (916) Montanolide, iso; Rl= R4= H, R2= Ac, R3= Ang (917) Montanolide; RI= R4 = H, R 2 = Ac, R3= Sen (918) Montanolide, isoacetyl; R l = H, R2= R4= Ac, R3= Ang (9~9) Polhovolide; R l = H, R2= R4= Ac, R3= i-But (920) Gradolide; Rl= R4= H, R2= R 3 = Ang
(928) Ludartin, dihydro; R]= R2= H (929) Christinin; Rl= R2= OAc, Cl3-~ (930) Christinin If; Rl= O-i-But, R2= OAng (931) Christinin Ill; Rl= O-i-But, R2= OAc
(92]) Archangolide; R l = OAng, R 2 = R4= Ac, R3= 2-Mebut
(932) Arborescin; R = H,c~-epoxide (933) Globicin; R = OAc
(922) Artilesin B; R]=~-OAc, R2= H (923) Badkhysin; Rl.=~-OAng, R2= H (924) Olgin; Rl=e-OAc, R2= OMac (925) Oferin; Rl=~-OMac, R2= O~i But (926) Olgoferin; Rl=e-OMac, R2= OMac (927) Talassin A; Rl=~-OAng, R2= OAng
310
THE BOTANICAL REVIEW
(934) Achillin,
l.,lO-epoxy; R = H
(935) Achillin,
l,lO-epoxy, 8~-
hydroxy; R = OH
:•.
,,,OAC
O (939) Jurmolide
O
|Ill
(936) Picridin, dihydro
) HO.. ~.~OTig
I-t0'
mH~.
(940) Eregoyazidin
(937) Eufoliatorin
(941) Ligustrin,
NOj
" ~
(938) Euperfolide,II~,13-dihydro
ll~,13-dihydro
SESQUITERPENE LACTONES--ASTERACEAE
311
H >'"R --
~IIII
(942) Viscidulin C; R = OH (943) Viscidulin B; R = OAc
(946) Costus lactone, dehydrodihydro; R =~-H (947) Mokko lactone; R = H
I-IO
,,,OMa C ~IIII
(944) Subluteolide, 8-desacyloxy8~-[2-methylacryloyloxy]ll~,13-dihydro
(948) Solstitial in A; RI= R4= OH, R2= H, R3=~-OH (949) Solstitial in acetate; RI= OH, R2= H, R3=c~-OH , R4= OAc
(95o) Zaluzanin C, 7~-hydroxy-3-
H
desoxy-I lB, 13-di hydro; Rl= ,,
'OAc
R4= H, R2= OH, R3 =B-H
~1111
(945) Viscidulin A
~'"01-I bltt|
312
THE BOTANICAL REVIEW
(951) Zaluzanin C, 8~-hydroxy,llB,
(956) Estafietone,
dihydro;
R =
H, C-13~ (Zaluzanin C, 4B,15
13-dihydro-3-dehydro
lIB,13-tetrahydro-3-dehydro) (957) Amberboin,
iso; R = OH,C-13~
(958) Amberboin;
R = OH, C-13B
IL
"'OAc IIII
(952) Zaluzanin C, 3-dehydro-4~15, ll~,13-tetrahydro-9hydroxy; R = OH (953) Zaluzanin C, 3-dehydro-4~15,11~,12-tetrahydro;
(959) A c h i l l i c i n
R = H
)" 'OH
~960) Isophotosantonic (954) Lippidiol,
lactone
iso; C-13~
(955) Lippidiol; C-13B
lJll
(961) Artabsin
SESQUITERPENE LACTONES--ASTERACEAE
313
O~,,,, 9
H
~
(962) Hypochaer in (965) Anabsinthin
HO_.~
'OAc CI,,,~ y
C•O (963) Handelin
pH U ~
~
HID" ", % (966) Chlorochrymorin
H~
H
/
(967) 0smitopsin (964) Absinthin
314
THE BOTANICAL REVIEW
(968) Osmitopsin, 1,8-epoxy
(971) Ivaxillarin
iiii
3
(969) Iva•
anhydro
I
(972) Lactuci_n~ RI=R2=OH (973) Lactucopicrin; RI=O-p-OHPhe-Ac, R2=H
%'% AcO
(970) Axivalin
(974) Preeupatundin, 8B-angeloyloxy; RI=OH, R2=H, R3=OAng (975) Preeupatundin-2-acetate, 8B -angeloyloxy-5a-hydroxyl Rl= OAc, R2= OH, R3=OAng
SESQUITERPENELACTONES--ASTERACEAE
315
(976) Preeupatundin, 5~-hydroxy-. 86-tig]inoyloxy; Rl= R2=OH, R3=OTig (976.5) Preeupatundin, 5~-hydroxy -8~-angeloy}oxy; RI=R2=OH, R3=OAng
(982) Yejuhua lactone
(977) Saurin; RI= R3= OH, R2= H (978) Saupirin; Rl= H, R2= OH, g3 =OMac-4-OH (979) Ferreyanthus lactone; H-16
H
(983) Jacquinelin
H-5~,H-6B; Rl= R2= H, R3= ~-OTig (980) Costus lactone, dehydro, 1epi, 8~-senecioyloxy, H-16,
H-5~, H-66; R = R = H, R = l 2 3 ~-OSen
,
,,OAng
(984) Badkhysin, iso
(98]) Cumambrin B, iso
'
316
THE BOTANICAL REVIEW
(985) Chrysostomalide acetate; R
=
Ac
(986) Chrysostomalide
(990) Xerantholide;
R = H
(991) Mikanokryptin;
R = OH
isobutyrate;
R = i-But
II I
HO'
(992) Inuviscolide, 4~,5~-epoxy, IO~,I4-H
(987) Inuvi scol ide
(993) Helisplendiolide
(988) Arctolide
TigO
~
(394) Eufoliatin (989) Thieleanin;
ACQH II I
H
SESQUITERPENE LACTONES--ASTERACEAE
(995) Puberolide
(]000) (fOOl)
317
Ivalin, pseudo;
R = OH
Ivalin, pseudo,
acetate;
R = OAc
(996) E ] e h i r t a n o ] i d e ; R = H
, O HO'~
(997) E i e h i r t a n o l ide, 3 ~ - i s o v a l e r y l o x y ; R = OiVal
(1002) Inuchinen0}ide B
Aco
(998) Z i n i o l i d e
(I003) Gaillardin,
neo
HO~~ (999) V i r g i n o l i d e
(]004) F ] o r i l e n a l i n
RI,,' / ~ R3
318
THE BOTANICAL REVIEW
(1005) Ivalin, pseudo, dihydro; RI= H, R2= OH, R3= H2 (1006) Carolenalone; RI= R2= OH, R3= O, C-13B
(lOl2) Geigerin
(1007) Carolena]in; RI= R2= OH (1008) Carolenin; RI= OAng, R2= OH (1009) Ziniolide (see structure no. 998) (lOl3) Puberol ide;
HO~~ (lOlO) Florilenalin, dihydro (I0]3.5) Hymenosignin
FIO~~ (lOll) Pleniradin (revised) (lOl4) Halshalin; R]= R2= OH (I015) Helenium lactone; Rl= H, R2= OH
SESQUITERPENE LACTONES..--ASTERACEAE
319
(I021) Pari shin-B (1016) Calocephalin
(1017) Akihal in
(I021.5) Aciphylla Acid (Guaian12-acid, Ia-H-4-dehyclroa-)
(I018) Zaluzanin A; R = OH (lOlg) Zaluzanin B, R = OAc (~022) Ivambrin; RI= R2= OH (I023) Apachin; RI= OAc, R2= OH
(I020) Tanamyrin; position of lactone uncertain
320
THE BOTANICAL REVIEW
(1024) Parthemoll,in, RI=OH , R2= H (1025) ParthemoIlin, acetyl; Rl= OAc, R2=H (I026) Ivalbatin; Rl= H, R2= OH
(I03.3) Xanthinosin; R = H (I034) Xanthinin; R = OAc
C
(1035) Xanthinin, 2-desacetoxyI l[~,]3-dihydro
(1027) Fruticosin
(I036) Inuchinenolide A
(I028) Xanthanol; Rl= OAc, R2= OH (I029) Xanthanol, iso, Rl= OH, R 2 OAc (I030) Xanthanol, desacetyl; Rl= =
H, k2= OH (I031) Xanthanol-2-acetate, desacetyl; Rl= OAc, R2= OH (I032) Xanthanolacetate; Rl= R2= OAc
(1037) Gafrinin; Rl= OH, R2= OAc (I038) Tomentosin, 4-H; R]= H, R2= OH (I039) Xanthuminol; Rl= OAc, R2= OH (]040) Gafrinin acetate; Rl= R2= OAc
SESQUITERPENE LACTONES--ASTERACEAE
(I041) Tomentosin;
(I046) l v a l b i n
DD•o (I047) Griesenin (I042) Xanthumin; R = OAc
(1048) Griesenin, dihydro
(1043) Xanthatin; C-8~-0 (I044) Xanthumin, deacetoxy; C8~-0
(I049) Carabrone; (Grandicin)
(I045) Carabrone, 4-H
321
322
THE BOTANICAL REVIEW
(I049.5) Xanthalongin
(1053) Melitensin, l](13)-dehydro~ RI=~-OH, R2= OH (|054) Melitensin, ll(13)-dehydro, 8-(O)-[4'-hydroxymethacrylate]; Rl=~-OMac-4-OH, R2= OH
I050) Bedfordia Acid, 4-hydroxy
IOHI) Bedfordia Acid, 4-oxo
~H
(IO55) Tulipdienolide, epi; Rl= B-OAc, R2= H (I056) Melitensin, ll(13)-dehydro, ~-hydroxyisobutyrate; Rl= ~-O-i-But-4-OH, R2= OH
(IO57) Melitensin, dehydro, 15-dehydro-8- (O)- [4 '-hydroxymethacrylate]; Rl= CHO, R2=Mac-4-OH
I052) Cyc]obedfordia Acid, Rl= OH, R2= H
J",,~l
(1058) Vernolepin; R = OH, 5~-H (IO59) Vernodaiin; R = OMac-4-OH, 5~-H
SESQUITERPENE LACTONES----ASTERACEAE
323
Tig (I065) Laserolide, iso (1060) Disynaphiolide
HO~~ O,
,,,OH
Ang (I066) Temi sin
(106l) Confertiphyllide
Ill
(I067) Vernomenin
(I062) Saussurea lactone; Rl= R 2 =H (I063) Melitensin; Rl= R2= OH (I064) Melitensin 6-hydroxyisobutyrate; Rl= O-i-But-4-
OH
OH, R2= OH (1068) Zinniadilactone
324
THE BOTANICAL REVIEW
OR2 o
(1069) Mi scandenin
OR2
(1070) Zinamultifloride, 66angeloyloxy-gG-hydroxy; Rl= Ang, R2= H (I071) Zinamultifloride, 6B-[2methylacryloyloxy]-9~hydroxy; Rl= Mac, R2= H (IO72) Zinamultifloride, 9Gangeloyloxy-6B-hydroxy; R]= H, R2= Ang (1073) Zinamultifloride, 9G-[2methylacryloyloxy]-6P-hydroxy; R]= H, R2= Mac (I073.5) Zinamultifloride, 6Bangeloyloxy-gG-acetoxy; Rl= Ang, R2= Ac (I073.6) Zinamultifloride, 66acetoxy-9~-angeloyloxy; RI= Ac, R2= Ang
(1074) Zinamultifloride. 6Bangeloyloxy-9~-hydroxyepoxy; RI= Ang, R2= H (Io75) Zinamultifloride, 6B-[2methylacryloyloxy]-9~hydroxy-epoxy; Rl= Mac, R2= H (I076) Zinamu}tifloride, 9~angeloyloxy-6B-hydroxyepoxy; RI= H, R2= Ang (1077) Zinamultifloride, 9~-[2methylacryloyloxy]-6B- by_ droxy-epoxy; RI= H, R2=Mac 1o78) Zinamultifloride, 6B-[2methylbutyryloxy]-9~-hydroxy-epoxy; Rl= 2-Mebut, R2= H 1079) Zinamultifloride, 6~-isobutyryloxy-9~-hydroxyepoxy; RI= i-But, R2= H (io8o) Zinamultifloride, 9~-[2methylbutyryloxy]-6B-hydroxy-epoxy; Rl= H, R2=2Mebut (lo81) Zinamultif]oride, 9~-isobutyryloxy-66-hydroxyepoxy; Rl= H, R2= i-But
SESQUITERPENE LACTONES--ASTERACEAE
(I082) Zinaflorin II; RI= OAng, R2= OH (1083) Zinaflorin III; RI= OMac,
R2= 0Ac (1084) Zinaflorin I; Rl= R2= 0Ang
325
11088) Secoeudesmanolide, 8~-H; R =G-H (1089) Secoeudesmanolide, 8B-H; R =6-H (=Igalan, 8B-H) (IO90) Secoeudesmanolide (Igalan) 8G-H; R=~-H (=Igalan, 8~-H)
(109l) Igalan; R = H (I085) Micordilin
OMac (IO86) Verafinin
(1092) Zempoalin A; RI=CHO , R2=Oi-But (IO93) Zempoalin B; RI=CH2OH, R 2 = O- i-But
(I087) Verafinin C
Wl
R2
326
THE BOTANICAL REVIEW
(1094) Zinarosin; RI= CHO, R2= Oi-But, R3= OH (1095) Zinarosin, dihydro, diacerate; RI=CH2OAc , R2= O-iBut, R3= OAc
~lllm 3
(1096) Callitrin
Rff'~
,~ (J7 (lo97)
(llOl) Tetraneurin A, RI= OH, R2= H, R3= OAr (ll02) Chiapin B; RI= OH, R2= H, R3= O-iBut (liB3) Ligulatin B; Rl= R3= H, R = OAc (ii04) C~iapin A; Rl= R2= H, R3 = O-i-But (II04.5) Ligulatin A; RI=H, R2=R3= OAc
OR
Oil
Vernodalol;
(]105) [voxanthin; RI=~-OH, R2= R = Mac-4-OH
R3= H (ll06) Bipinnatin; RI=~-OH, R2= R3= H (ll07) Damsin, 3-hydroxy; Rl= R3 = H, R2= OH (I]08) Confertiflorin, desacetyl; RI= R2= H, R3= OH (If09) Confertiflorin; Rl= R2= H, R3= OAc
(1098) Oamsin; RI= R2= R3= H (1099) Coronopilin; RI= OH, R2= R3=H (1100) Tetraneurin B; Rl= OH, R2= OAc, R3= H
SESQUITERPENELACTONES--ASTERACEAE
327
(Ill0) Conchosin A
(Ill7) Ambrosin, neo
(IIII) Ambrosin; RI=a-H, R2=R3=H (II12) Parthenin; RI=~-OH , R2= R3= = H (II13) Hymenin; RI=~-OH , R2= R 3 = H (1114) Conchosin B; RI=~-OH , R2= H, R3= OAc (Ill5) Oaxacin; RI=~-H, R2=OAc, R3=H
(1118) Apoludin; RI=R3~OH, R2=H (1119) Salsolin (Apoludin acetate) RI=0Ac, R2=H, R3=0H (I120) Ambrosiol; RI=H, R2=R3=OH
(Ill6) Ambrosin, 2,3-H-2,3-epoxy (1121) Tetraneurin D; RI= R2=OH, R3= OAc (I122) Tetraneurin C; RI= OH, R2= R3= OAc
328
THE BOTANICAL REVIEW
%
(1123) Tetraneurin E; RI= R3= OH, R2=B-OAc (1124) Tetraneurin F; Rl= OH, R2= B-OAc, R3= OAc (ll25)Hysterin; Rl= H, R2=~-OAc, R3= OH (1126) Hysterin acetate; Rl= H, R2=~- OAc, R3= OAc
(1128) Pseudoguaian-6,12-olide, 4hydroxy-3-oxo; Rl= OH, R2=H (I129) Pseudoguaian~6,12-olide, 8acetoxy-3-oxo; RI=H, R2=OAc
(1130) Ambrosin, tetrahydro; RI=H , R2=a-H (1131) Hymenolin; RI= OH, R2=~- H (I132) Franserin; RI= H, R2=OH (1132.5) Corenopilin, dihydro; RI= OH, R2=H
(I127) Stramonin B
(1133) Rudimollitrin
It I
SESQUITERPENE LACTONES--ASTERACEAE
(1134) Carpesiolin
(1140) Stevin; RI=OAc, R2= H, R3= OH (ll41) Cumanin; RI= H, R2=OH, R3= B-OH (1142) Cumanin-3-acetate; R]= H, R2=OAc, R3=B-OH (I143) Cumanin diacetate; RI= H, R2= OAc, R3=~-OAc (I144) Confertin, 4-e-H; Rl= R2= H R3=~-OH
(ll35) Pulicariolide
AcO
OH [
329
~
II136) Inuchinenolide-C
(I145) Peruvinin
11137) Confertin; RI= R2= H (1138) Peruvin; Rl= OH, R2=H (]]39) Burrodin; RI= H, R2=OH
(1146) Cumanin, dihydro
0
330
THE BOTANICAL REVIEW
(]]47) Rudmollin; RI= R2= H (1148) Rudmollin, 4-acetoxy; RI= Ac, R2= H (1149) Rudmo]lin, 15-acetoxy; R|= H, R2= Ac
(I152) Psilostachyin C
(1149.5) Ambrosic Acid
(I153) Psilostachyin B
5
Et
(ll50) Psilostachyin; R =~-OH (I151) Cordilin; R =B-OH
(1154) Altamisin;
H6
(I151.5) Psilostachyin, ll-epidihydro
(1155) Dumos in
SESQUITERPENE LACTONES--ASTERACEAE
331
(I156) Paulitin, iso (unspecified isomer of paulitin)
(If61) Aromaticin; Rl= R2= H (I162) Gaillardipinnatin, desacetyl; RI=~-OH, R2=B-OAc (1163) Mexicanin I; RI=B-OH , R2=H (I 157) Canambr in
(IJ64) Amblyodin; RI=3-OH, R2=3OAc (I165) Gaillardipinnatin, RI=~-OAc R2--B-OAc (1166) Multigilin; Rl=~-OAng , R2= B-OH (I167) Fastigilin C; Rl=~-OSen, R 2
=~-OH (1168) Bigelovin; RI=~-OAc, R2=H
H~
(ll5B) Confertdiolide
(1169) Linifolin A; R = OAc (I169.5) Linifolin, desacetoxy; R = H (I159) Aromaticin~ 2,3-dihydro; R = H (I160) Aromaticin, 6~-hydroxy-2,3 dihydro; R = OH
332
THE BOTANICAL REVIEW
(I170) Linifolin B; R =3-OAc (If71) Bigelovin, desacetyl-iso; R =~-OH
Ac& /r
:X
(I180) Gaillardilin
(I~72) Amarilin
\
(liB1)
Tenulin,
iso,
desacetyl;
iso;
R = OAc
R = OH (}~82} T e n u | i n ,
(1183) T h u r b e r i l i n ;
R = OAng
(1173) Pulche]lin; RI=~-OH, R2=OH, R3=H, R4=H (l|74) Flexuosin A; R~=~-OH, R2=OH R3=B-OAc, R4=H (l]75) Spathulin; RI= ~-OH, R2=OH, R3=~-OAc , R4=3-OAc (1176) Alternilin; Rl=~-OAc, R2= OH, R3=~-OH, R4=H (1177) Flexuosin A 2-acetate; RI=3-OAc, R2=OH, R3=c~-OAc, R4=H (1178) Spathulin-2-O-angelate,9O-desacetyl; Rl=~-OAng, R2= OH, R3=3-OAc, R4=OH (I179) Spathulin-2-O-isovalerate, ~-O-desacetyl; Rl=~-OiVal, R2= OH, R3=3-OAc, R4=OH
R1 ~3 ~ ~4 (1184) Fastigilin A; R1=OAng, R2= ;.!~-OH,R3=cx-H, R4=H (]~5) Fastigi]in B, Rl=OSen, R2= OH, R3=~-H, R4=H (il86) Radlatin; Ri=OMac, R2=3-OH R3=,J,-H, R4=H ~87) Amblyodiol; RI=H, R2=s-OAc, R3= R4= OH
SESQUITERPENE LACTONES---ASTERACEAE
H~;
H
333
(1193) Microhelenin A
(1188) gaileyol in
HO H ~ I||
H 2
(1189) Pulchellidine; R = Pip
(l194)Aromatin; RI=R2=H (1195) Helenalin; RI=~-OH, R2=H (I196) Helena]in, iso; 7,|I d.b. instead of ll,13 d.b. (I197) Angustibalin; R]=a-OAc, R 2 = H
(1198) Balduilin; RI=~-OAc , R2=H (1199) Linearifolin A; R1=~-OTig, R2=OH
(1~oo) Kingiolide; Rl=~-Mac-4-OH R2=H
(I190) Arnifolin; R]=~-OH, R2=OAng (I191) Helenalin, dihydro, 2-methoxy; RI=B-OCH3, R2=OH (I192) Paucin; Rl=~-O-Glu-6-Ac ,
(1201) Mexicanin A
R2=H
\
334
THE BOTANICAL REVIEW
(1202) PulchelIin, neo; RI= R3=
(1214) Florigrandin; RI=~-O-2-
~-OH, R2= R4=H (1203) Picrohelenin; Rl=~-OAc , R 2
Mebut, R2=H, R3= R4=OH (]215) Helenalin, tetrahydro; R l
=H, R3=B-OH , R4= OH (1204) Hymenograndin; Rl= R2= ~-
= R4= H, R2=OH , R3=~-H
OAc, R3=B-OH , R4=H (1205) Hymenoratin; Rl= R4= H, R 2 = R3=OH, (=Odoratin) (1205.5) Hymenograndin, acetyl; Rl= R2=~-OAc, R3=B-OAc R
M==
-
(]216) Mexicanin C; R = OH (1217) Brevilin A; R = OAng
AcO. AcOI,,~ H "~
(I206)
Plenolin;
R = OH
(]207)
Arnicolide
A; R = 0Ac
(1208)
Arnicolide
D; R = OMac
(]209)
Arnicolide
C; R = 0 - i - B u t
(1210)
Microhelenin
(]2ll)
Arnicolide B; R = O-i-VaI MicroheIenin C; R = OAng
B; R = 0 - 2 -
AcO
~
~)
(1218) Hymenolane
Meb u t
(12]2)
HQH
~-
R H&
(1219) Pulchellidine, neo; R
(1213) Flexuosin B; RI= OH, R2= OSen, R3=R4=H
=
Pip
SESQUITERPENE LACTONES--ASTERACEAE
335
H~
H
(1225) Mexicanin H
(1220) Tenul in
u~ O,
(122l) Sulferalin; RI=OH, R2=H, R3=SO2CH3 (1222) Hymenoflorin; R]= H, R2= R3= OH
(~226) Neoleonin; RI= R2= OH, R3= OAng, R4= OAc (1227) Brittanin; Rl= R3= OAc, R 2 =OH, R4=H
(1228) Geigerinin
(1223) Multiradlatin; R= OSen (1224) Multistatin; R= OAng
OHoH [/
336
THE BOTANICAL REVIEW
(1229) Autumnolide
\
(1236) Badkhysinin
H-
(1230) Wedelifloride-6-O-methacrylate; Rl= H, R2= Mac (1231) Wedelifloride-4-O-acetate, 6-O-methacryloyloxy; Rl= Ac, R2= Mac (1232) Wede]ifloride-4-O-acetate, (1237) Vermeerin 6-O-isobutyryloxy; Rl= Ac, R2= i-But (1233) Wedelifloride-4-O-acetate, 6-O-tig]inoyloxy; Rl= Ac, R2= Tig (1234) Wedelifloride-4-O-acetate, 6-O-isovaleryloxy; Rl= Ac, R2= i-Val
III
(1238) Psilotropin
(1235) Linearifol-2,11(13)-.dien8B-o] acetate, 4-oxo-6~12-methylbutyrylo• Rl=2Mebut, R2=Ac
(1239) Hymenoxon; RI= R2= H (1240) Hymenovin; Rl= R2= H
SESQUITERPENE LACTONES---ASTERACEAE
,(Hymenoxon and Hymenovin are components of an epimeric mixture) (1241) Hymenoxon, 2~-acetoxy; Rl=0Ac, R2=H (1242) Hymenoxon, 2~-tiglinoyloxy Rl=0Tig, R2=H (1243) Hymenolide, 2~-acetoxy; (1248) Hymenoxynin; R = OGlu Rl=OAc, R2=CH2CH 3 (1244) Hymenolide, 2~-tiglinoyloxy; Rl=OTig , R2=CH2CH 3
H
O (1249) Anthemoidin
(1245) Hymenolide
(i246) Greenein (1250) Microlenin; R = H (1251) Microlenin acetate; R = OAc
(1247) Themoidin
H
337
338
THE BOTANICAL REVIEW
(1252) Norpsilotropin, 4-hydroxy
(1257) Mexicanin E
(1253) Linearifolin B
(1258) Mexicanin E, dihydro
(1254) Helenalin, neo
(1259) Xanthanodiene (1260) Dugesial actone
(1255) Inulicin, desacetyl; Rl= R2= OH (1256) Inulicin; Rl=OAc, R2=OH
(1261) Xanthanene
SESQUITERPENE LACTONES--ASTERACEAE
339
(1264) Eremophila-l,7-dien-8,12-
~H (1261.5) Flourensic Acid
olide, 3-oxo-8~-methoxy; R = OMe (1265) Eremophila-1,7-dlen-8,12o l i d e , 3-oxo-8a-ethoxy; R = OEt (1266) E r e m o p h i 1 - l , 7 ( l l ) - d i e n 12-oic acid lactone, 8Bhydroxy-8 -methoxy-3-oxo; R = 0Me
~H (1261.6) Tessaric Acid
R (1267) L i g u l a r e n o l i d e ; R = H
~M
(1268) L i g u l a r e n o l i d e , 6B-hydroxy; R
=
OH
(1269) L i g u l a r e n o ] i d e , 6B-acetoxy; R = OAc
(1261.7) Eremophilic Acid
H_
OMe (1270) L i g o l i d e
(1262) Eremophila-l,7-dien-8,12olide, 3-oxo-8~-H; R = H (1263) Eremophila-l,7-dien-8,12olide, 3-oxo-8~-hydroxy; R = OH
R2
340
THE BOTANICAL REVIEW
(1271) Eremophilenolide; Rl= R2= R3=H (1272) Petasitolide B; RI= OTig,
R2= R3= H (1273) Petasitolide A; RI= OAng,
R2= R3= H (1274) Petasitolide A -S; RI= Ocis-Acr-S-Me, R2= R3= H (1275) Petasitolide B -S; RI= Otrans-Acr-S-Me, R2= R3= H (1276) Eremophilenolide, 6-hydroxy; RI= R3= H, R2=OH (1277) Eremophi1-7(11)-en-12,8~olide,6B,8~-dihydroxy; RI= H, R2~ R3=OH (1278) Eremophilanolide, 2B-[5 L hydroxyangeloyloxy]-lOBH; Rl=OSar, R2= R3= H (1279) Eremophilanolide, 2~angeloyloxy-IOB-H; Rl=OAng, R2= R3= H (1280) Eremophilanolide, 2B-[5'hydroxyangeloy|oxy]-8Bhydroxy-lOB-H; RI= OSar, R2= H, R3= OH (1281) Eremophilanolide, 2Bangeloyloxy-88-hydroxy-10B -H; RI= OAng, R2= H, R3=OH
(1282) Eremophil-7(ll)-ene-12,8% 14B,6~-diolide; R = H (1283) Eremophil-7(ll)-ene-12,8~, 14B,6~-diolide, 8B-hydroxyl R =OH
(1284) Istanbulin A
(1285) Istanbulin C
H
Q-~ (1286)Eremophilenolide,
3B-hy-
droxy-6B-angeloyloxy-7,8epoxy; R = Ang ~1287) Eremophilenolide, 3B-hydroxy-6B-tigloyloxy-7,8epoxy; R = Tig
SESQUITERPENE LACTONE S---ASTERACEAE
341
R
(1288) Furanoeremophilan-145,6~olide; R = H (1289) Ligucalthaefolin; R = OTig
(1292) Fukinanolide; Rl= R2= R3= R4= H (Bakkenolide A)
(1293) Bakkenolide C; Rl=~-OAng , R2= R3= H, R4= OH (1294) Fukinolide; R]=~-OAng,
0
R2= R3= H, R4=OAc (Bakkenolide B) (1295) Fukinolide S; R1=~-O-cisAcr-S-Me, R2= R3= H, R4=OAc (Bakkenolide D) (1296) Bakkenolide E; Rl=~-OAng , R2= R3= H, R4= OAc 1297) Homofukinolide; Rl= ~-OAng,
(1290) Bedfordia symmetric dimeric lactone
R2= R3= H, R4= OAng 1298) Fukinolide, dihydro; R1=~O-2-Mebut, R2= R3= H, R4= OAc 1299) Bakkenolide A, 2-hydroxy, angeloyl; Rl= R3= R4= H, R2= OAng 1300) Bakkenolide A, 3-~-hydroxy, tigloyl; RI= R2= R4=H, R3= OTig (1301) Fukinanolide,9-acetoxy; RI= R2= R3= H, R4= OAc
(1291) Bedfordia unsymmetric dimeric lactone
342
THE BOTANICALREVIEW
~
(1308) Trixikingolide-[2-methylbutyrate]; Rl=R2=R4=H, R3=
R
(1302) Bourbon-ll(13)-en-6,12olide, 8~-tiglinoylo• 56-H-4~,7~-epoxy; R = Tig (1303) Bourbon-ll(13)-en-6,12olide, 8e-(2-methylacryloyloxy)-16,56H-4~,7~-epoxy; R= Mac
(1304) Trixikingolide-[3'-acetoxyisovalerate],9~-hydroxy-13[2-methylbutyryloxy]; RI=H, R2= O-2-Mebut, R3=i-Val-3Ac,R4=OH (1305) Trixikingolide-[3'-acetoxyisovalerate],9~-hydroxy-3~isovaleryloxy; Rl=O-iVal , R2=H, R3=i-Val-3-Ar R4=OH (1306) Trixikingolide-[3'-acetoxyisovalerate],9~-hydroxy; Rl= R2=H, R3=i-Val-3-Ac , R4=OH (1307) Trixikingolide-isovalerate; RI= R2= R4=H, R3=i-Val
2-Mebut
I-R HO
Damsinic Acid, R = H (1310) Damsinic Acid, hydroxy; R= OH (1309)
(1311) Grilactone
O (1312) Matricin
SESQUITERPENE LACTONES--ASTERACEAE
343
O~,,,OAc H
(1316) Jurmolide (1313) Sieversin
2
(1314) Carpesia lactone
Ac
(1317) Montanolide; R1=OSen , R2= OH, R3=OAc (1318) Montanolide, iso; Rl=OAng, R2= OH, R3=OAc (1319) Montanolide, iso, acetyl; RI= 0Ang, R2= R3= OAc
A
(1315) Trilobolide; R=i-But
(1320) Collumellarin
344
THE BOTANICAL REVIEW
(1325) Furanoeremophilane (132l) Gaillardin
H
OH
~XX~
(1326) Petasalbin (1322) Inuviscolide, iso, 4-epi
O~ H
H
..
RI
d (1323) Arteannuin-B
(1327) daponicin; RI= R2= H (1328) Japonicin, angelyl; Rl= Ang, R2= H (1329) Japonicin, diangelyl; RI= R2= Ang
AngO,,,~ H__o.
(I330) Furanopetas in (1324) quingHau Sau
SESQUITERPENE LACTONES--ASTERACEAE
345
(1335) Furanoeremophil-9,10-en-lone, 6B-hyd roxy (1331) Kablicin; Rl= Ang, R2= Sen
(1336) Euryopsin
(1332) Furanoeremophil-9-one,
Ic~,
613-d i hydroxy- l O~-H
(1337) Euryopsin-9-one
(1333) Furanoeremophilane,9,lOdehydro
(1338) Adenostylone; R=i-Pro (1339) Adenostylone, neo i R=Ang
(1334) Furanoeremophil-l-one,9, IO-dehydro
346
THE BOTANICAL REVIEW
OR (1340) Adenostylone, iso; R=i-Pro
(1344) Cacalohastine
(1341) Cacalolide (1345) Cacalohast ine, dehydro
(1342) Cacalol (1346)Eremophilene lactam
(1343) Cacalol, l-oxo-9-desoxy
(1347) Decal-8-one,4B,5B-dimethyl7~-[l-carbomethoxy-ethyl]9,10-dehydro (derivative of natural product)
SESQUITERPENE LACTONES--ASTERACEAE
(1348) Euryopsin,
6-angeloyloxy-
4,5-didehydro-5,6-seco; R = Ang
(1349) Furanoeudesm-4(15)-ene3B-acetoxy-5~-H-lOB methyl; R=Ac (1350) Furanoeudesm-4(15)-ene, 3B-hydroxy-5~-H-IO~methyl; R = H
347
348
THE BOTANICAL REVIEW
1.
2. , ~
L.
5.
3. ~H20Ac 4. Ac H ~,,.~Ac
.OAc
Ac c
Ac
.
14.
17.~,
18. H
15.
16.
1 9 H ~ 20H 20.~,,i~.x. H6 ~
22.
23.
~lJ
24.
Fig. 33. Alphabetical listing of all side chain functionalities of the Asteraceae sesquiterpene lactones. 1, Ac, Acetate. 2, (2-AcEt) Acr, (2a-acetoxyethyl)acrylate. 3, Glu-6-Ac, /3-D-[6-acetoxyglucopyranoside]. 4, i-Val-3-Ac, 3-acetoxy-isovalerate. 5, Ang-4-Ac, 4-acetyloxyangelate. 6, Tig-5-Ac, 5-acetyloxytiglate, 7, Sarac, Acetylsarracinate. 8, 2-Mebut2,3-Ac, 2,3-diacetyloxy-2-methylbutyrate. 9, Ang, Angelate. 10, (l,2-OH-Et)Acr, (1,2-dihydroxyethyl)acrylate. 11, i-But-2,3-OH, 2,3-dihydroxyisobutyrate. 12, 2-Mebut-2,3-OH, 2,3-dihydroxy-2-methylbutyrate. 13, Tig-4, 5-OH, 4, 5-dihydroxytiglate. 14, Epoxyang, Epoxyangelate (2,3-epoxy-2-methylbutyrate). 15, Epoxy-n-But, 2,3-epoxy-n-butyrate. 16, Epoxymac, Epoxymethacrylate. 17, Epoxysar, Epoxysarracinate (2,3-epoxy-5-hydroxy-2methylbutyrate). 18, Fur, 3-furoate. 19, Glu, /3-D-glucopyranoside. 20, H-Cinn, Hydrocin-
SESQUITERPENELACTONES--ASTERACEAE
26~
25.~HSH 28.
31.
27. ~N
29.
32.
JL~ ~ #.f-o~
349
30.
33.
~
34. '~3H
3~~H
3~A~cH 39.
38.
41.
namate. 21, 2-Mebut-2-OH-3Ac, 2-hydroxy-3-acetyloxy-2-methylbutyrate. 22, Tig-4-OH5-Ac, 4-hydroxy-5-acetyloxytiglate. 23, Ang-4-OH, 4-hydroxyangelate. 24, i-But-2-OH-3CI,2-hydroxy,3-chloro-isobutyrate. 25, dih-Sar-5-OH-3-SH, 5-hydroxy-2,3-dihydro-3sulfhydryl-sarracinate. 26, i-But-3-OH-2-OEt, 3-hydroxy, 2-ethoxy-isobutyrate. 27, (2-OHEt)Acr, (2t~-hydroxyethyl)acrylate. 28, Tig-4-OH-5-Tig-5-OH, 4-hydroxy-5-[5-hydroxytiglinoyloxy]-tiglate. 29, i-But-2-OH, 2-hydroxyisobutyrate. 30, i-But-4-OH, 4-hydroxyiso-
350
THE BOTANICAL REVIEW
42. , ~
43.~
44..~CH~7 / 46.
48"y ~ ~ i
52.
49 A(C H2)14CH3 53,
50.
47.
_N/~
51.
54. "OH
57.~Lv,O~,~(C H2)15CH3 5 8 . ~ butyrate. 31, i-Val-3-OH, 3-hydroxy-isovalerate. 32, Mac-4-OH, 4-hydroxy-methacrylate. 33, 2-Mebut-3-OH, 3-hydroxy-2-methylbutyrate. 34, 2-Mebut-2-OH-3=O, 2-hydroxy-3oxo-2-methylbutyrate. 35, p-OH-Phe-Ac, p-hydroxy-phenylacetate. 36, Sar-4-OH, 4-hydroxysarracinate. 37, Tig-4-Stear, 4-[3-hydroxystearoyloxy]-tiglate. 38, Tig-4-OH, 4-hydroxytiglate. 39, Tig-5-OH, 5-hydroxytiglate. 40, Tig-4-OH-5-Tig, 4-hydroxy-5-tiglinoyloxytiglate. 41, Tig-5-OTig-5-OH, 5-[5-hydroxy-tiglinoyloxy]-tiglate. 42, i-But, Isobutyrate. 43, i-Val, Isovalerate. 44, Linol, Linoleate. 45, Linolen, Linolenate. 46, Mac, Methacrylate (Methylacrylate). 47, 2-Mebut, 2-methylbutanoate. 48. deh-Val-3-Me, 3-methyl-2, 3-dehydro-valerate. 49. Palm, Palmitate. 50. Pip, Piperidine. 51, Pro, Propionate. 52, cis-Acr-SMe, cis-3-S-methylacrylate. 53, Trans-Acr-S-Me, trans-3-S-methylacrylate. 54, Sar, Sarracinate. 55, Sen, Senecioate. 56, Stear, Stearate. 57, i-Val-5-O-Stear, Stearoyloxy-isovalerate. 58, Tig, Tiglate.
351
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
Centratherin Eremanthine, 8ct-isovaleryloxy Costuslactone, 8aisovaleryloxy-dehydro Eremantholide A
lc, 8a 3, 6t~
684 174
3, 6a
174
lc, 6a
174
Chrestanolide Hirsutinolide- 13-O-acetate, 10/3-hydroxy-8/3-tiglinoyloxy- 1/3-O-methyl Hirsutinolide- 13-O-acetate, 10/3-hydroxy-Sfl-tiglinoyloxy- la-O-methyl
I a, 6a I, 6
176 176
1, 6
176
Eiephantopin, deoxy
la, 6a/2/3
337,568
Elephantin Elephantopin Elephantol Elehirtanolide Elehirtanolide, 3/3isovaleryoxy Molephantin Molephantinin Phantomolin Elephantopin, deoxyElephantopin, isodeoxy Elephantopin, dihydro
la, 6a/2fl la, 6a/2/3 1, 8/2/3 3, 8/3 3, 8/3
556 556 623 174 174
1, 6a 1, 6a 1, 6a 1, 6~t/2/3 1, 6a/2/3 la, 6a
570, 576, 622, 337, 338 793
Eremantholide A Eremantholide, 16a-[l'methylprop- 1E-enyi]
lc, 6~ lc, 6a
175 175
Compound VERNONIEAE
Centratherum C. punctatum Cass.
(392) (784) (854) (367)
Chresta C. sphaerocephala
DC.
(518) (489)
(488)
Elephantopus E. carolinianus
(93)
WiUd. (=E. scaber ot carolinianus O.
Ktze.) E. elatus Bertol.
E. hi~iflorusDC.
E. mollis HBK.
E. scaber L. E. tomentosus
(127) (126) (515.5) (996) (997) (505) (506) (501) (93) (94) (154)
Eremanthus E. bicolor (Sch. Bip.)
Baker
(367) (370)
575 575 575 568
352
THE BOTANICAI.REVIEW Table XXHI Continued.
Taxon
Structure number (Fig. 32) (375)
(374) (369) (387) (389) (390) (869) (450) (451) E. elaeagus Sch.
Bip.
E. goyazensis Sch.
Bip. E. incanus Less.
(367) (782) (368) (369) (388) (940) (789) (1) (880) (782) (367) (368) (789) (940)
Compound Eremantholanolide, 16a-[l'methylprop- 1Z-enyll-4/3, 5H Eremantholanolide, 16a-isopropenyl-4/3,5H Eremantholide C Goyazensolide, 15-desoxy Goyazensolanolide, 6atiglinoyloxy Goyazensolanolide, 6a-[2methylacryloyloxy] Zaluzanin C, 4/3,14-dihydro3-dehydro Zexbrevanolide, 8a-[2methylacryloyloxy] Zexbrevanolide, 8atiglinoyloxy Eremantholide A Eremanthine (=Vanillosmin) Eremantholide B Eremantholide C Goyazensolide Eregoyazidin Eregoyazin Costunolide Cumambranolide, 8tx-isobutyryloxy Eremanthine Eremantholide A Eremantholide B Eregoyazin Eregoyazidin
Skeletal type a
Ref.
lc, 6a
175
lc, 6a
175
lc, 6a lc, 8~x lc, 8a
175 175 175
lc, 8a
175
3, 6a
175
lc, 6a
175
lc, 0a
175
lc, 6a 3, 6a lc, 6a lc, 6~ lc, 8a 3, 6 3, 6 la, 6a 3, 6a
733 920 733,420 420 923 925 925 175 175
3, 6a lc, 6a lc, 6a 3, 6a 3, 6a
175 175 420 420 420
1, 6a 1, 6a
790 790
Erlangea E. cordifolia S.
Moore
(429) (430)
Cordifene Cordifene, 4,15-epoxy-4,15dihydro
SESQUITERPENE LACTONES--ASTERACEAE
353
Table XXHI
Continued.
Taxon
Structure number (Fig. 32)
Compound
E. inyangana (N. E. Br.) B. L. Bart
( 7 7 9 ) Rupicolin A, 15-acetoxy-lflhydroxy-8a-(2a-acetoxyethyl)acrylate (787) Rupicolin A, 3a, 4a-diacetoxy-3,4-dihydro-8a-(2aacetoxyethylacrylate) E. remifolia Willd. et (519.3) Glaucolide A, 19-hydroxy Pope
Skeletal typea
Ref.
3, 6a
68
3, 6a
68
1, 6fl
67
Heterocoma
H. albida DC.
(782)
Eremanthine
3, 6a
420
(782) (1) (881)
Eremanthine Costunolide Cumambranolide, 8a-[2methylacryloyloxy] Cumambranolide, 8a-tiglinoyloxy Estafiatin, 8a-[2-methylacryloyloxy] Goyazensolanolide, 6a-angeloyloxy Eremanthine Lychnopholide Costunolide Eremanthine Costuslactone, dehydro Eremantholide, 1lfl,13-dihydro Goyazensolide Zaluzanin C, 3-dehydro4a, 15,1 l a, 12-tetrahydro Zaluzanin C, 413-14-dihydro3-dehydro Eremanthine Eremanthine Eremantholanolide, 16~-[1methylprop- 1Z-enyl]
3, 6a la, 6a 3, 6a
174 174 174
3, 6a
174
3, 6a
174
lc, 8a
174
3, 6a lc, 8a la, 6a 3, 6a 3, 6a 3, 6a
181 181 124 124 124 124
lc, 8a 3, 6a
124 124
3, 6a
124
3, 6a 3, 6a lc, 6a
181 181 124
Lyehnophora L. blanchettii (Sch. Bip.) H. Robinson
(882) (798) (394) L. hakeaefolia Mart. L. passerina Gardn.
(782) (394) (1) (782) (834) (911.5) (388) (953) (869)
L. phylicaefolia DC. L. salicifolia Mart. L. uniflora Sch. Bip.
(782) (782) (371)
354
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(369) (394)
Eremantholide C Goyazensolanolide, 6aangeloyloxy (=Lychnopholide)
lc, 6a lc, 8a
124 124
(171)
Artemisiifolin diacetate
la, 8a
183
(490) (491) (492) (493) (494) (495)
Piptocarphin Piptocarphin Piptocarphin Piptocarphin Piptocarphin Piptocarphin
1, 6 1, 6 1, 6 1, 6 1, 6 1, 6
222 222 222 222 222 222
Furanone heliangolides Zexbrevanolide, 8/3angeloyloxy Piptolepolide
lc lc, 6a
176 184
lc, 6a
184
lc, 6or
968
lc, 6a
968
lc, 8t~
968
(391)
Eremantholanolide, 16~-[1methylprop- IZ-enyl] Eremantholanolide, 16a-[lmethyl- 1,2-epoxypropyl] Goyazensolanolide, 6a-[2,3epoxybutyryloxy] Lychnopholide
lc, 8a
968
(497) (498) (499) (500)
Rolandrolide Rolandrolide, 13-acetoxy Rolandrolide, iso Rolandrolide, 13-ethoxyiso
1, 6 1, 6 1, 6 1, 6a
402 402 402 402
(834) (850)
Costuslactone, dehydro Costuslactone, 3fl-
3, 6a 3, 6a
170 170
Mattfelda~athus M. nobilis (H. Rob-
inson) H. Robins. Piptoearpha P. chontalensis Pall.
A B C D E F
Piptolepis P. ericoides (Less.)
Sch. Bip.
(448) (467)
Proteopsis P. argentea Mart. ex
(371)
Zucc. (372) (393)
Rolandra R. fruticosa (L.)
Kuntze
Stokesia S. laevis (Hill)
Greene
SESQUITERPENE LACTONES--ASTERACEAE
355
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
(478.5)
(478) (487) (477)
(486)
Compound isovaleryloxy, dehydro (= Vernoflexine, 17, 18-dehydro) Hirsutinolide- 13-O-acetate, 8/3-acetoxy- 1/L 10/3-dihydroxy Hirsutinolide- 13-O-acetate, 8fl, 10fl-diacetoxy- la-OH Hirsutinolide- 13-O-acetate, 8/3,10fl-diacetoxy- lfl-OH Hirsutinolide- 13-O-acetate, 8/3,10/3-diacetoxy- la-Omethyl Hirsutinolide- 13-O-acetate, 8fl, 10fl-diacetoxy- lfl-Omethyl
Skeletal type"
Ref.
1, 6
170
1, 6
170
1, 6
170
1, 6
170
1, 6
170
3, 6a lc, 8a lc, 8a
184 184 184
la, 6a lc, 8a 3, 6a lc, 8t~ lc, 8a
32 922 220, 920 184 184
1, 6a 1, 6a 1, 6a ND a 1, 6a 1, 6a 1, 6
4 4 695 4 4 4 562
Vanillosmopsis V. brasiliensis
(Gardn.) Sch. Bip.
V. erythropappa
Sch. Bip. V. pohlii Baker
(782) (388) (395)
(1) (387) (782) (388) (395)
Eremanthine Goyazensolide Goyazensanolide, 5/3-hydroxy-6a-methacryloyloxy-A~a6-iso Costunolide Goyazensolide, 15-deoxy Vanillosmin (=Eremanthine) Goyazensolide ' Goyazensanolide, 5/3-hydroxy-6~-methacryloyloxy-A4,~5-iso
Vernonia V. acaulis (Walt.)
Gleason V. alamani DC. V. altissima Nutt.
(519.2) (519.1) (519.2)
(519.2) (519.1) V. amygdalina Delile (513)
Glaucolide A Glaucolide B Giaucolide A Baldvernin Glaucolide A Glaucolide B Vernomygdalin
356
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32) (1059)
V. angulifolia DC.
(109) (482) (483)
(479) (480) V. angustifolia (519.2) Michx. var. mohrii (519.1) S. B. Jones V. angustifolia (519.2) Michx. var. sca(519.1) berrima (Nutt.) A. Gray V. anisochaetoides (837) Sonder V. anthelmintica (1097) Willd. V. arkansana DC.
(134) (519.2) (1) (834) (825) (839) (837) (1302)
Compound Vernodalin Vernolide Hirsutinolide-13(O)-acetate, 8/3-(2-methylacryloyloxy) Hirsutinolide-13(O)-acetate, 8fl-(2-methyl-2,3-epoxypropionyloxy) Hirsutinolide, 8fl-(2-methylacryloyloxy) Hirsutinolide, 8~-(2-methyl2,3-epoxypropionyloxy) Glaucolide A Glaucolide B
Skeletal type a
Ref.
7, 6 (15, 14 562 lactone) 1, 6 947 1, 6 66 1, 6
66
1, 6
66
1, 6
66
1, 68 1, 6~
4 4
Glaucolide A Glaucolide B Baldvernin
1, 6~ 1, 6~ ND
4 4 4
Zaluzanin C, 3fl-H (=Zaluzanin C, 3-epi) Vernodalol
3, 6~
66
7, 6aOH (15, 14 lactone) I a, 6~ 1, 68 ND la, 68 3, 68 3, 68 3, 68 3, 68 28
27
4 4 4 97 97 97 97 97 97
28
97
Marginatin Glaucolide A Baldvernin Costunolide Costuslactone, dehydro Zaluzanin C, dehydro Vernoflexine Zaluzanin C Bourbon- 11( 13)-en-6,12olide, 8a-tiglinoyloxylfl,5flH-4c~,7a-epoxy
(1303)
Bourbon-1 l(13)-en-6-12olide,8a-(2-
357
SESQUITERPENE LACTONES--ASTERACEAE
Tab~XXHI Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
1,6a 1,6a ND 1, 6a
695 695 4 4
V. baldwinii Tort.
(519.2) (519.1)
V. baldwinii Torr.
(519.1)
methylacryloyloxy)1/3,5flH-4a,7a-epoxy Glaucolide A Glaucolide B Baldvernin Glaucolide B
var. baldwinii V. baldwinii Torr.
(519.1)
Baldvernin Glaucolide B
ND 1, 6a
4 4
Baldvernin
ND
4
Glaucolide A Baldvernin Glaucolide B Glaucolide B Glaucolide A
1,6a
4
ND 1,6~ 1,6a 1, 6a
4 695 695 695
Zaluzanin C, dehydro Vernoflexine
3, 6a 3,6a
97 97
Vernolide
la, 6a
Vernodesmin Vernolide, hydroxy Confertolide Glaucolide F Vernonallenolide Glaucolide B Glaucolide B
2, 6or la, 6a la, 6or ND la, 6a 1,6or 1,6a
906, 907, 470 637 637 909, 910 597 97 695 695
la, 6a 1,6a
V. fasciculata
Marginatin Fasciculide B Baldvernin
ND
4 649b 694, 4
Michx. var. fascic- (519.2) ulata (519.1) (134) V. flaccidifolia Small (519.2) (519.1) (134)
Glaucolide Glaucolide Marginatin Glaucolide Glaucolide Marginatin
1,6a 1,6a la, 0a l, 6a 1,6a la, 6a
4 4 4 4 4 4
var. interior
(Small) Schubert V. blodgettii Small
(519.2)
V. breviJblia Less. V. canescens HBK.
(519.1) (519.1) V. capreaefolia (Sch. (519.2) Bip.) Gleason V. chinensis Less. (825) (839) V. colorata Drake (109) (=V. senegalensis Less.) (738) (111) V. conferta Benth. (517) V. cordata HBK. V. cotoneaster (527) V. divaricata SW. (519.1) V. duncanff S . B . (519.1) Jones V. fasciculata (134) Michx. (4%)
A B A B
358
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32)
V. flexuosa Sims
(839) (840) V. fruticosa (L.) Sw. (519.1) (=V. rigida Sw.) V. gigantea (Walt) (519.2) Tall. ex Brann. et Colv. V. glauca (L.) Willd. (519.2) (=V. noveboracen- (519.1) sis Willd.) V. greggff Gray (519.2) V. guineensis Benth. (1059)
(1058)
V. hirsuta DC. Sch. Bip. var. flanaganii Phill.
V. hymenolepis A. Rich
(58)
Skeletal type a
Ref.
Vernoflexine Vernoflexuoside Glaucolide B
3, 6a 3, 6a 1, 6a
542 542 695
Glaucolide A
1,6a
695
Giaucolide A Glaucolide B Baldvernin Glaucolide A Vernodalin
1, 6a 1, 6a ND 1, 6a 7, 6a (15, 14 lactone) 7, 6a (15, 14 lactone) la, 6~
695 4 4 695 908
la, 6ct
66
la, 6a 3, 6a 3, 6a 1, 6
66 66 66 66
1, 6
66
1, 6
66
3, 6a 7, 6a (15, 14 lactone)
66 563,564
Compound
Vernolepin
Costunolide, 15-isovaleryloxy (59) Costunolide, 15-senecioyloxy (1) Costunolide (839) Zaluzanin C, senecioyl (834) Costus lactone, dehydro (484) Hirsutinolide 13(O)acetate,8fl-(2-hydroxymethylacryloyloxy) (482) Hirsutinolide 13(O)-acetate, 8fl-(2-methylacryloyioxy) (483) Hirsutinolide 13(O)-acetate, 8fl-(2-methyl-2,3-epoxypropionyloxy) (782) Eremanthine ( 1 0 5 8 ) Vernolepin
908
66
SESQUITERPENE LACTONES--ASTERACEAE
359
Table XXIII Continued.
Taxon
Structure number (Fig. 32) (1067)
V. incana Less. V. lanuginosa
(519.2) (520)
Gardn. V. larsenii King V. leiocarpa DC. V. lettermannii En-
(135) (519.2)
gelm. ex Gray V. liatroides DC. V. lilacina Mart.
(519.2) (132) (527) (528) (529)
V. lindheimera Gray
Compound Vernomenin
Skeletal type a
Ref.
7, 8a (15, 14 lactone) 1, 6a 1, 6a
695 97
ND la, 6a 1, 6a ND 1, 6a la, 6a
597 57 4 4 695 97
1, 6a 1, 6a
97 97
1, 6a
97
ND
597
Glaucolide A Glaucolide B
1, 6a 1, 6~
4 4
Glaucolide A Glaucolide B
1, 6~ 1, 6a
4 4
Glaucolide A Marginatin Glaucolide A Glaucolide B Marginatin Glaucolide A Glaucolide B Marginatin Giaucolide A Glaucolide B
1, 6a la, 6a 1, 6a 1, 6a la, 6a 1, 6a 1, 6a la, 6a 1, 6a 1, 6a
694 694 4 4 4 4 4 4 4 4
Glaucolide A Glaucolide B-8-O propionate, 8-O-desacetyl Glaucolide F Glaucolide G Glaucolide A Baldvernin Glaucolide A Glaucolide E-acetate, 8-0desacyl Vernonallenolide Vernonallenolide, 4a-5/~epoxy-4,5-dihydro VernonaUenolide, 4c~-hydroxy-4,5-dihydro-5,6-dehydro Glaucolide F
563
et Engelm. V. lindheimera Gray (519.2)
et Engelm. var. (519.1) leucophylla Larsen V. lindheimera Gray (519.2) et Engelm. var. (519.1) lindheimeri V. marginata Oliv.
et Hiern V. marginata (Torr.) Raf. var. marginata V. marginata (Torr.) Raf. vat. tenuifolia
(Small) Shinners V. missurica Raf.
(519.2) (134) (519.2) (519.1) (134) (5t9.2) (519.1) (134) (519.2) (519.1)
360
THE BOTANICAL REVIEW Table XXHI Continued.
Taxon V. natalensis Sch. Bip. V. noveboracensis (L.) Michx.
Structure number (Fig. 32)
3, 6a
66
(519.2) (481)
Glaucolide A Hirsutinolide, 15-hydroxy, 8/3-(2-methylacryloyloxy) Hirsutinolide 13(O)-acetate, iso, 8/3-(2-methylacryloyloxy) Marginatin Zaluzanin C, 8a-hydroxy1lfl, 13-dihydro-3-dehydro Zaluzanin C Zaluzanin, dehydro Costuslactone, dehydro, 8asenecioyloxy Glaucolide A Trifloculoside Vernudifloride Glaucolide F Costuslactone, dehydro Hirsutinolide- 13(0)acetate,8fl-(2-methylacryloyloxy) Hirsutinolide, 15-hydroxy8fl-(2-methylacryloyloxy) VaniUosmin, 8a-senecioyloxy Glaucolide A Glaucolide B Vernodesmin Vernopectolide A Vernopectolide B Pectorolide
1, 6a 1, 6a
4 66
1, 6
66
la, 6a 3, 6a
4 66
3, 6a 3, 6a 3, 6a
66 66 146
1, 6a 3, 6a la, 8fl ND 3, 6a 1, 6
695 146 146 597 66 66
1, 6
66
3, 6a
66
1, 6a l, 6a 2, 6et la, 6a la, 6a la, 6a
4 4 618 637 637 635,637
1, 6
97
(837) (825) (835) (519.2) (898) (196) (834) (482)
(481) (783) V. ovalifolia T. and G. V. pectoralis Baker
V. pectoralis Baker var. delphinensis H. Humbert V. polyanthes Less.
Ref.
Eupeffolide, I la,13-dihydro
(134) (951)
V. obtusa (GI.) Blake V. oligocephala DC. Walp.
Skeletal type a
(938)
(485)
V. nudiflora Less.
Compound
(519.2) (519. l) (738) (101) (92) (54)
(485)
Hirsutinolide- 13-O-acetate, 8/3-(2-methylacryloyloxy)
361
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon V. salicifolia (DC.)
Structure number (Fig. 32)
Compound
Glaucolide D Glaucolide E Hirsutinolide-l,13-O-diacetate, 8fl-acetoxy- 10fl-hydroxy (472) Hirsutinolide-13-O-acetate, 8fl-acetoxy- 10fl-hydroxy V. scorpioides (827) Zaluzanin C, 9fl-hydroxy(Lam.) Pers. dehydro (476) Hirsutinolide-13-O-acetate, 8fl-propionyloxy-10fl-hydroxy-l-O-methyl (475) Hirsutinolide-l, 13-O-diacetate, 8fl-propionyloxy-10flhydroxy (473) Hirsutinolide-1,13-O-diacetate, 8fl-acetoxy- 10fl-hydroxy (474) Hirsutinolide-13-O-acetate, 8/3-propionyloxy-10/3-hydroxy V. steetzii Sch. Bip. Glaucolide C V. sublutea S. Elliot ( 8 3 1 ) Subluteolide V. texana (A. Gray) (519.2) Glaucolide A Small (519.1) Glaucolide B V. trifloculosa HBK. ( 8 9 8 ) Trifloculoside V. uniflora Sch. Bip. (519.2) Glaucolide A (133) Glaucolide D (131) Glaucolide E (135) Glaucolide G Sch. Bip. V. saltensis Hieron.
(133) (131) (473)
Skeletal type a
Ref.
la, 6a la, 6a 1, 6
597 597 120
1, 6
120
3, 6a
120
1, 6
120
l, 6
120
1, 6
120
l, 6
120
ND 3, 6a 1, 6a 1, 6a 3, 6a 1, 6a la, 6~ la, 6a la, 6a
597 636 4 4 146 695 56 56 597
17 17 3, 6a
99 99 99
2. EUPATO~EAE
Ageratina A. glabrata (HBK,)
King et Robins. A. petiolaris (Moc.
(617.5) (629.5) (902)
Costus acid, 3-oxo-iso Costus acid, iso Petiolaride
362
THE BOTANICAL REVIEW
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
& Sesse ex A. P. ex A. P. DC.) King et Robins.
Agrianthus A. pungens Matff.
(808) (819)
Agriantholide Agriantholide, 3a,4a-epoxy
3, 6a 3, 6a
182 182
(761)
Leucodin, dehydro
3, 6a
131
(286)
Chromolaenide
lc, 6a
82
(352) (351)
Conoprasiolide Conoprasiolide-5'-O-acetate
lc, 6a lc, 6a
172 172
Costunolide Critonilide Critonilide, iso Costunolide
la, 6a 2, frt 2, 6a la, 6a
275 99 99 275
Thieleanin
3, 8a
20
Atripliciolide angelate Disyfolide Disynaphiolide Disyhamifolide
lc, 6a 1, 6a 7, 0a 25, 6a
71 71 71 71
Austrobrickellia A. patens (D. Don)
K. et R.
Chromolaena C. glaberrima (DC.) K. etR.
Conocliniopsis C. prasiifolia (DC.) K. et R. (=Eupatorium ballotaefolia var. caucense B. L. Robinson)
Critonia C. morifolia (Mill.) King et Rob. C. sexangularis (Klatt) King et Rob.
(1) (604.5) (571.5) (1)
Deeachaeta D. thieleana (Klatt ex Th. Dur. et
(989)
Pitt.) King et Rob.
Disynaphia D. halimifolia (DC.) K. etR.
(346) (519) (1060) (553)
363
SESQUITERPENE LACTONES--ASTERACEAE
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
3, 6~ 3, 6a 3, 6~ 3, 6a 3, 6a 3, 6a 1, 6a lc, 6a la, 6a la, 6a lc, 6a lc, 6a lc, 6a la, 6a lc, 6a lc, 6a la, 6a la, 6~ 3, 0a lc, 6a lc, 6a la, 6a lc, 6a lc, 6a
425 425 425 425 425 425 425 251 235 235 566, 567 566 566 566 566 566 724 724 724 621 582 574 216 122
lc, 6a
122
la, 6a
425
la, 6a la, 6a la, 6a la, 6a 1, 6a
583 444 444 444 403
Eupatorium E. anomalum Nash
(823) (824) (799) (817) (818) (799.5) (442) E. cannabinum L. (288) (7) (11) E. cuneifolium Willd. (510) (512) (511) (4) (290) (291) E. deltoideum Jacq. (122) (123) (791) (282) E. formosanum Hay (283) (7) E. glaberrimum DC. (286) (301) E. hyssopifolium L. (E. rotundifolium x E. recurvans)
E. lancifolium (T. &
Guaianolide la Guaianolide lb Guaianolide 4a Guaianolide 6a Guaianolide 6b Guaianolide 4b Eurecurvin Eucannabinolide Eupatolide Eupatoriopicrin Eupacunin Eupacunolin Eupacunoxin Eupaserrin Eupatocunin Eupatocunoxin Deltoidin A Deltoidin B Ligustrin Eupaformonin Eupaformosanin Eupatolide Chromolaenide Costunolide, 4,5-cis-14-acetoxy-8fl-[4-hydroxytiglinoyloxy] (300) Costunolide, 4,5-cis-14-hydroxy-8/3-[4-hydroxytiglinoyloxy] (51) Costunolide, 14-hydroxy-Sfl[4-hydroxytiglinoyloxy] (118) Eupahyssopin (119) Eupassofilin (118) Eupassopin (116) Eupassopilin (512) Eupacunolin
364
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon G.) Small (=E.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(47.5)
Eupacunin Eupacunin, desacetyl Eupaserrin, 3/3-hydroxy
1, 6a 1, 6a la, 6a
403 403 403
(791)
Ligustrin
3, 6a
757
Eupaserrin, desacetyl Eupaserrin, 813-hydroxy-8/3desacyl-desacetyl Eupaserrin, 813-[2,3-epoxy-2methylbutyryloxy]-8/3-desacyl-desacetyl Eupaserrin, 8/3-[2,3-epoxy-5hydroxy-2-methylbutyryloxy]-8/3-desacyl-desacetyl Germacrolide le Germacrolide If Costunolide 4,5-cis, 14-hydroxy-8/3-[4-hydroxytiglinoyloxy] Costunolide, 3/3,9/3-dihydroxy-8/3-[2-methylbutyryloxy] Costunolide, 14-hydroxy-8/~[4-hydroxytiglinoyloxy] Eupahyssopin Eupassopilin Eurecurvin Eurecurvin, 15-deshydroxy Guaianolide la Guaianolide 4a Euperfolin Euperfolitin Eufoliatin Eufoliatorin
la, 6a la, 6a
418 418
la, 6a
418
la, 6a
418
la, 6ct la, 6a lc, 6a
418 418 122
la, 6a
425
la, 6a
122,425
la, 6a la, 6a 1, 6a 1, 6c~ 3, 6a 3, 6a la, 6a la, 6~ 3, 8a 3, 6a (14, 2 lact.)
122 122 425 425 425 425 410 410 410 410
(510)
semiserratum DC. (512.5)
var. lancifolium T. & G.) E. ligustrinum (DC.) King et Rob. E. mikanioides
Chapm.
(3) (17) (18)
(19)
E. mohrii Greene
(20) (21) (300)
(33)
(51)
E. perfoliatum L.
(118) (116) (442) (441) (823) (799) (151) (150) (994) (937)
365
SESQUITERPENELACTONES--ASTERACEAE Table XXIII Continued.
Taxon
E. recurvans Small
E. rhomboideum
Structure number (Fig. 32)
Skeletal type a
Ref.
(781) Euperfolide (938) Euperfolide, lla,13-dihydro (442) Eurecurvin (441) Eurecurvin, 15-deshydroxy (297) E. recurvans heliangolide (C22H3o07) (299) Euparhombin
3, 6~ 3, 6a 1, 6a 1, 6~ l c, 6a
122 122 3% 3% 3%
lc, 6a
347
(872) Eupachlorin (873) Eupachlorin acetate (890) Eupacb~oroxir~ (802) Euparotin (805) Euparotin acetate (814) Eupatoroxin (821) Eupatoroxin, 10-epi (7%) Eupatundin (822) Preeupatundin-2-Oacetate,8/3-angeloyloxy5c~-hydroxy-3,4,10,14-diepoxy (820) Preeupatundin-2-O-acetate, 8~-tiglinoyloxy-5a-hydroxy-10,14-epoxy (34) Costunolide, 3r droxy, 8/3-angeloyloxy (766) Eupasessifolide B, 5a-hydroxy (797) Eupatandin acetate (975) Preeupatundin, 2-acetate, 8/3-angeloyloxy-5a-hydroxy (976.5) Preeupatundin, 5t~-hydroxy8/3-angeloyloxy (976) Preeupatundin, 5a-hydroxy8/$-tiglinoyloxy (803) Preeupatundin, 8/3-tiglinoyloxy, 10,15-epoxide
3, 6a 3, 6a 3, 6~ 3, 6a 3, 6a 3, 6a 3, 6a 3, 6a 3, 6a
565 565 565 565 565 565 565 565 195
3, tSa
195
la, 6a
122
3, 6a
130
3, 6a 3, 6a
i22 122
3, 6t~
130
3, 6a
122
3, 6a
122
Compound
HBK. E. rotundifolium L.
E. rotundifolium L.
ssp. ovatum (Bigel.) Montg. et Fairbr.
THE BOTANICALREVIEW
366
Table XXIII Continued.
Taxon
Structure number (Fig. 32) (974)
E. sachalinense
Mak. E. semiserratum DC. E. serotinum Michx.
E. sessilifolium L.
(45) (46)
Compound Preeupatundin, 8fl-angeloyloxy Hiyodorilactone A Hiyodorilactone B
(4) (3) (14)
Eupaserrin Eupaserrin, desacetyl Costunolide, 8fl-[5-hydroxytiglinoyloxy] (15) Costunolide, 8fl-[5-acetoxytiglinoyloxy] (124) Parthenolide, 8/3-tiglinoyloxy (=Deltoidin C) (99) Eupatorium serotinum germacrolide 3 (31) Costunolide, 3fl-hydroxy-8fltiglinoyloxy (801) Eupasessifolide A (765) Eupasessifolide B
(537)
Skeletal type a
Ref,
3, 6a
122
la, 6a la, 6~
883 883
la, 6~ la, 6a la, 6a
561 403,561 395
la, 6a
395 395
la, 6a
395
la, 6a
78
3, 6or 3, 6a
78 78
la, 6a
177
la, 6a
177
la, 6a
177
la, 6a
177
lb, 6a
177
lb, 6a
177
la, 6a
177
Grazielia (=Dimorpholepis) G. dimorpholepis
Baker
G. intermedia (DC.)
K. et R.
Costunolide, 8fl-isovaleryloxy-9fl-hydroxy (538) Costunolide, 8fl-[3,4-epoxyisovaleryloxy]-9O-hydroxy (539) Costunolide, 8fl-[4-stearoyloxyisovaleroyloxy]-9flhydroxy ( 5 3 6 ) Costunolide, 8fl-angeloyloxy-9fl-hydroxy (541) Acanthospermolide, 8fl-angeloyloxy-14-oxo (542) Acanthospermolide, 8fl-angeloyloxy-9/~-hydroxy- 14OXO
(534)
Ovatifolin-8-O-angelate, 14O-desacetyl
367
SESQUITERPENE LACTONES---ASTERACEAE Table XXHI
Continued.
Taxon
Structure number (Fig. 32) (535) (532) (533) (812)
Compound Grazielia acid Grazielolide, 8fl-angeloyloxy Grazielolide, 8fl-[2,3-epoxy2-methylbutyryloxy] Guaiagrazielolide, 8fl-angeloyloxy
Skeletal typea
Ref.
la, 6a la, 6a la, 6a
177 177 177
3, 6a
177
Guevaria
G. sodiroi (Hieron, in Sod.) K. et R.
(773)
Guevariolide
3, 6a
72
(363) (364)
Punctatin, 15,5'-bis-deoxy Punctatin, 15-deoxy
lc, 6a lc, 6a
95a 95a
(502) (503) (355) (686) (12) (32) (293) (294)
Chapliatrin Chapliatrin, iso Liatrin Alantolactone, iso Liacylindrolide Liacylindrolide, 3/3-bydroxy Provincialin, 4'-desoxy Provincialin, 4'-desoxy-3desacetoxyl-3a-hydroxy Provincialin, 4'-desoxy-3-epi Igalan Eleganin
1, 6a 1, 6a lc, 6a 2, 8/3 la, 6a la, 6a lc, 6a lc, 6a
464 464 559, 560 74 74 74 74 74
lc, 6a 7, 8 lc, 6a
74 74 441,443
(502) (504) (891) (815) (804) (289)
Chapliatrin Chapliatrin, acetyl Graminichlorin Graminiliatrin Graminiliatrin, deoxy Provincialin
1, 6a 1, 6a 3, 6a 3, 6~ 3, 6a lc, 6a
464 464 426 426 426 462
(361) (362)
Liatripunctin Punctatin (=Punctaliatrin)
lc, 6a lc, 6a
441 463
Hartwrightia H. floridana Gray
Liatris
L. chapmanii T. et G. L. cylindracea Michx.
L. elegans (Walt.) Michx. L. gracilis Pursh L. graminifolia Pursh
L. provincialis Godfrey L. punctata Hook
(295) (1091) (317)
368
THE BOTANICAL REVIEW Table XXIII Continued. Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(562) (806) (816) (874) (317)
Pycnolide Spicatin Spicatin, epoxy Spicatin hydrochloride Eleganin
8,6a 3,6a 3,6a 3,6~ lc, 6a
443 442 426 443 443
L. spicata Willd.
(316) (318) (806) (807) (878)
lc, 6a lc, 6a 3, 6a 3, 6~ 3, 6a
441,443 441 443 413 413
L. squarrosa (L.)
(879)
3, 6a
413
(502) (806)
Liscundin Liscunditrin Spicatin Spicatin, desacetyl Spicatin hydrochloride, desacetyl C-14 cis-Sarracenoyl analog of desacetylspicatin hydrochloride Chapliatrin Spicatin
1, 6a 3, 6~
443 443
(351)
Conoprasiolide-5'-O-acetate
lc, 6a
172
(185)
Mikanolide
438
(193)
Mikanolide, dihydro
(185)
Mikanolide
(193)
Mikanolide, dihydro
la, 8a (15, 6 lact.) la, 8a (15, 6 lact.) la, 8a (15, 6 lact.) la, 8a (15, 6 lact.) 7, 8~ la, 6a la, 6~
125
Taxon L. pycnostachya
Michx.
L. scabra (Greene)
Schum. L. secunda (Ell.)
Small
Michx. L. tenuifolia Nutt.
Lourteigia L. ballotaefolia
(HBK.) K. et R. (=Eupatorium ballotaefolium HBK.)
Mikania M. batatifolia DC.
M. cordata (Burm.
f.) B. L. Robinson
M. cordifolia Willd.
(1085) (67) (66)
Micordilin Salonitenolide, 8-desoxy- 15(2,3-epoxy-isobutyryloxy) Salonitenolide, 8-desoxy-15(3-hydroxy-2-methylacryloyloxy)
438 537 537 453 125
SESQUITERPENE LACTONES--ASTERACEAE
369
Table XXIII Continued.
Taxon
Structure number (Fig. 32) (68)
Compound
M. micrantha HBK.
(991) (185)
Salonitenolide, 8-desoxy-15(3-hydroxyisobutyryloxy) Salonitenolide, 8-desoxy-15(2,3-dihydroxyisobutyryloxy) Mikanokryptin Mikanolide
M. monagasensis
(193) (185)
Mikanolide, dihydro Mikanolide
(193)
Mikanolide, dihydro
(185)
Mikanolide
(183)
Mikanolide, desoxy
(193)
Mikanolide, dihydro
(69)
Mikania sp. nov.
Badillo
M. scandens (L.)
Willd.
Skeletal type a
Ref.
la, 6~
125
la, 6a
125
3, 8~x la, 8c~ (15, 6 lact.) la, 8a la, 8a (15, 6 lact.) la, 8a (15, 6 lact.) la, 8a (15, 6 lact.) la, 8a (15, 6 lact.) la, 8~ (15, 6 lact.) 7, 8a (15, 6 lact.) la, 8tx (15, 6 lact.) la, 8a (15, 6 lact.)
448 448 448 607,608 608 454 454 454
(1069)
Miscandenin
454
(184)
Scandenolide
(194)
Scandenolide, dihydro
(1) (566) (582) (593) (838)
Costunolide ct-Cyclocostunolide Arbusculin B fl-Cyclocostunolide Zaluzanin-C-acetate (=Zaluzanin D)
la, 6~ 2, 6a 2, 6~ 2, 6a 3, 6a
77 77 77 77 77
(795)
Estafiatin
3, 6a
76
Stevin
4, 8/3
740
454 454
Oxylobus O. oaxacanus Blake
Stevia S. boliviensis Sch.
Bip. S. rhombifolia HBK.
(1140)
THE BOTANICAL REVIEW
370
Table XXIII Continued.
Taxon S. serrata Cav. S. setifera Rusby ex
B. L. Robinson
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(140) (929) (791) (941) (792)
Carmeline Christinine Ligustrin Ligustrin, 1l/3,13-dihydro Ligustrin-[4',5'-dihydroxytiglate]
la, 6a 3, 6a 3, 6a 3, 6a 3, 6a
803 804 76 76 76
(547)
Atripliciolide-8-O-methacrylate, 9fl-hydroxy Atripliciolide-8-O-methacrylate, 9/3-acetoxy Atripliciolide, 9/3-methacryloyloxy Atripliciolide-8-O-methacrylate, 9fl-hydroxy- 1lfl, 13epoxy Atripliciolide-8-O-methacrylate, 9fl-acetoxy- 1lfl, 13epoxy Trichogoniolide Trichogoniolide-9-O-acetate Trichogoniolide-9-O-acetate, iso Trichosalviolide, 9fl-acetoxy-8fl-angeloyloxy-5ahydroxy Trichosalviolide, 9fl-acetoxy-8fl-angeloyloxy-5flhydroxy Trichosalviolide, 9fl-acetoxy-8fl-[2-methyl-2,3epoxybutyryloxy]-5a-hydroxy Trichosalviolide, 9fl-acetoxy-8/3-[2-methyl-2,3epoxybutyryloxy]-5fl-hydroxy
lc, 6a
180
lc, 6a
180
lc, 6a
180
lc, 6a
180
lc, 6a
180
8, 6a 8, 6a 8, 6a
180 180 180
24, 6a
180
24, 6a
180
24, 6a
180
24, 6a
180
Trichogonia T. prancii Barroso
(549) (550) (545)
(546)
(564) (565) (563) T. salviaefolia
(554)
Gardn. (555)
(556)
(557)
371
SESQUITERPENE LACTONE S---ASTERACEAE Table XXIII
Continued.
Taxon
Structure number (Fig. 32) (558) (559) (560)
(561)
T. scottrnorii K. et
(551)
R. T. villosa (DC.) Sch.
(548)
Bip. ex Baker (544)
Skeletal type a
Ref.
24, 6a
180
24, 6a
180
24, 6a
180
24, 6a
180
lc, 6a
180
lc, 6~
180
1, 6a
180
Ligularenolide Asterolide Asterolide, 8-epi Asterolide, 8/3-hydroxy Asterolide A, iso Asterolide B, iso Asterolide, 8,9-dehydro
6, 2, 2, 2, 2, 2, 2,
498 73 73 73 73 73 73
Cumambrin B, iso
3, 6
275
5, 8fl
573
Compound Trichosalviolide, 8/3-angeloyloxy-5c~,9/3-dihydroxy Trichosalviolide, 8/3-angeloyloxy-5/3,9/3-dihydroxy Trichosalviolide, 8/3-[2methyl-2,3-epoxybutyryloxy]-5a,9/3-dihydroxy Trichosalviolide, 8/3-[2methyl-2,3-epoxybutyryloxy-5/3,9/3-dih ydroxy Atripliciolide, 9/3-[4' acetoxyangeloyloxy] Atripliciolide-8-Oangelate,9/3-hydroxy Zexbrevanolide, 8/3-angeloyloxy-9/3-hydroxy 3. ASTEREAE
Aster A. tataricus L. A. umbellatus Mill.
(1267) (729) (731) (730) (736) (737) (735)
8 8/3 8/3 8/3 8 8 8
Croptilon (=Haplopappus) C. divaricatum var.
(981)
hirtellum Shinners (=H. rigidefolia)
4. INULEAE Anaphalis A. morrisonicola
Hayata
(1195)
Helenalin
372
THE BOTANICAL REVIEW
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
Xanthinin
10, 8a
275
Chamissonin
la, 8a
898
(1016) (1000) (1001)
Calocephalin Ivalin, pseudo Ivalin acetate, pseudo
3, 8 3, 8/3 3, 8fl
42 42 42
(1045) (1314) (1134) (689) (690) (1045) (719) (690) (699)
Carabrone Carpesialactone Carpesiolin Granilin Ivalin Carabrone Carpesin Ivalin Telekin
10, 8/3 3, 6 4, 8t~ 2, 8/3 2, 8/3 10, 8/3 2, 8 2, 8/3 2, 8/3
629 517, 518 604 605 605 548 548 548 548
(1037) (1012) (1228) (1047) (1048) (1237)
Gafdnin Geigerin Geigerinin Griesenin Griesenin, dihydro Vermeerin
10, 8/3 22, 229 3, 8/3 37 15, 8 275 10, 6 228,230 10, 6 228,230 12, 8a (3, 21 4 lact.) 12 (unlac- 21 tonized precursor of Vermeerin) 3, 8/3 37 15, 8 275 12, 8a 21
Compound
Angianthus A. tomentosus
(1034)
Wendl.
Antennaria A. dioica Gaertn.
(164)
Calocephalus C. brownii F. Muell.
Carpesium C. abrotanoides L.
C. eximum C. Wink-
ler
Geigeria G. africana Griessel.
Vermeeric acid
G. aspera Harv.
(1012) (1228) (1237)
Geigerin Geigerinin Vermeerin
373
SESQUITERPENE LACTONES--ASTERACEAE Table XXHI
Continued.
Taxon
G. filifolia Mattf.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(1048) (690) (1037) (1047) (1048)
Griesenin, dihydro Ivalin Gafrinin Griesenin Griesenin, dihydro
10, 6 2, 8/3 10, 8/3 10, 6 10, 6
927 927 927 927 927
(993) (1035)
Helisplendiolide Xanthinin, 2-desacetoxy11/3-13-dihydro
3, 8c~ 10, 8a
129 129
la, 6a 3, 6a
647 700
2, 8fl
148
ld, 8a
148
15, 8 la, 6a 3, 8ct 2, 8/3 2, 8/3 3, 8a 10, 8/3 3, 8/3 4, 8a 3, 8a 2, 8/3 10, 8/3 2, 6a 1, 8a I, 8a 1, 8a la, 6a I, 6 2, 8/3
215 148 860 148 148 500 500 500 500 500 500 500 602 41 41 41 213,550 213,550 592,593
Helichrysum H. splendidum DC.
Inula I. aschersoniana
Fanka var. aschersonia 1. britannica L.
I. britannica L. var. chinensis (Rupr.)
Regel
1. crithmoides L. I. eupatorioides DC.
1. germanica L. 1. grandis Schrenk
(112) (911)
Parthenolide Eremanthine, 8/3-hydroxy1la,13-dihydro (696) Alantolactone, 3/3-hydroxy2ct-senecioyloxyiso (412) Artemisiifolin, cis, cis, 15desoxy (1227) Brittanin (7) Eupatolide (1321) Gaillardin (698) Telekin, 3-epi-iso (697) Telekin, iso (1321) Gaillardin (1036) Inuchinenolide A (1002) Inuchinenolide B (1136) Inuchinenolide C (1322) Inuviscolide, iso-4-epi (690) Ivalin (1o41) Tomentosin (634) Inucrithmolide (469) Ineupatolide (470) Ineupatorolide A (471) Ineupatorolide B (89) Germanin A (515) Germanin B (705) Alantolactone
374
THE BOTANICAL REVIEW Table XXIII
Continued.
Taxon
Structure number (Fig. 32) (686) (1049) (690) (689) (1091)
I. graveolus Desf. 1. helenium L.
(720) (705) (723) (706) (686) (725) (709) (687) (1144) (1) (35) (37) (38) (39) (73 l) (733) (734) (427) (197) (198) (992)
Compound Alantolactone, iso Grandicin (=Carabrone) Grandulin (=Ivalin) Granilin Igalan Igalin (C15H~oO3) Graveolide Alantolactone Alantolactone, dihydro Alantolactone, 1-/3-hydroxy Alantolactone, iso Alantolactone, isodihydro Alantolactone, 2-oxo Asperilin Confertin, 4all Costunolide Costunolide, 9/3-hydroxy (= Haageanolide) Costunolide, 9/3-isobutyryloxy Costunolide, 9/3-isovaleryloxy Costunolide, 9/3-(2-methylbutyryloxy) Eudesma-4(15),7(l 1)-diene8/3,12-olide Eudesma-5,7( 11)-diene8/3,12-olide Eudesma-5,7(1 l)-diene- 13-ol8/3,12-olide Germacrene D lactone Inunolide, 1/3,10a-epoxy1,10-H Inunolide, 4/3,5a-epoxy, 4,5-H Inuviscolide, 4a, 5a-epoxy, 10or, 14otH
Skeletal type a
Ref.
2, 8/3 10, 8/3 2, 8/3 2, 8/3 7, 8 ND 2, 8fl 2, 8/3 2, 8/3 2, 8/3 2, 8/3 2, 8/3 2, 8/3 2, 8/3 4, 8/3 la, 6a la, 6a
593 662 662 660, 605 662 664 857 536, 794 536 121 536, 550 533,536 121 121 121 121 121
la, 6a
121
la, 6a
121
la, 6a
121
2, 8/3
520
2, 8/3
520
2, 8/3
520
1, 8a la, 8/3
121 121
la, 8/3
121
3, 8a
121
SESQUITERPENE LACTONES--ASTERACEAE
375
Table XXIII
Continued.
Taxon
Structure number (Fig. 32) (1322) (674) (673) (1041) (1033)
I. japonica Thumb. 1. 1. I.
L
(1256) (1255) magnifica Lipsky (705) (686) oculus Schrank (1321) racemosa Hook. f. (705) (686) (725) (195) (201) royleana DC. (707) (709) (723) (1045) (35) (39) (36) (198) (992) (1322) (691) (674) (675) (1038)
Compound Inuviscolide, iso, 4-epi Ivangustin, l-desoxy, 8-epi Ivangustin, iso,8-epi Tomentosin Tomentosin, 8-epi (=Xanthinosin) Inulicin Inulicin, desacetyl Alantolactone Alantolactone, iso Gaillardin Alantolactone Alantolactone, iso Alantolactone, dihydro-iso Inunolide Inunolide, dihydro Alantolactone, 2a-hydroxy Alantolactone, 2-oxo Alantolactone, 11,0, 13-dihydro Carabrone, 4HCostunolide, 9,0-hydroxy (=Haageanolide) Costunolide, 9,0-(2-methylbutyryloxy) Costunolide, 9,0-propionyloxy Inunolide, 4,0,5a-epoxy-4, 5H Inuviscolide, 4a, 5a-epoxy, 10a, 14H Inuviscolide, iso-4-epi Ivalin acetate Ivangustin, 1-desoxy, 8-epi Ivangustin, 8-epi Tomentosin, 4H-
Skeletal type a
Ref.
3, 8a 2, 8a 2, 8~t 10, 8,0 10, 8a
121 9 121 121 121 121
16, 8,0 16, 8,0 2, 8,0 2, 8,0 3, 8a 2,813 2, 8/3 2, 8/3 la, 8/3 la, 8,0 2, 8/3 2, 8,0 2, 8,0
263,540 263 659 659 541 625 625 625 121,732 736 121 121 121
10, 8,0 la, 6a
121 121
la, 6a
121
la, 6a
121
la, 8,0
121
3, 8a
121
3, 8a 2, 8,0 2, 8a 2, 8a 10, 8,0
121 121 121 121 121
376
THE BOTANICAL REVIEW
Table XXIII Continued.
Taxon I. salicina L. I. viscosa Ait.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(705) (686) (987) (1033) (629)
Alantolactone Alantolactone, iso Inuviscolide Xanthinin, 2-desacetoxy Costus acid, 3, 4-dehydro4,15-dihydro
2, 8/3 2, 8/3 3, 8ct 10, 8ct 2 acid
121 121 69 69 69
(628) (629)
Costus acid Costus acid, 4,15-dihydro3,4-dehydro
17 17
149 149
(574)
Pluchea lactone
2, 6a
85
(1040) (1135) (746) (1041) (1028) (1029) (1030) (1043) (1044) (1033)
Gafrinin acetate Pnlicafiolide Secocrispiolide Tomentosin Xanthanol Xanthanol, iso Xanthanol, desacetyl Xanthatin Xanthumin, desacetoxy Xanthinosin
10, 8/3 4, 8a 9, 9 10, 8/3 10, 8ct 10, 8~t 10, 8a 10, 8 10, 8 10, 8a
106 106 106 106 106 106 106 106 106 106
(723) (686) (1159) (1160)
Alantolactone, dihydro Alantolactone, iso Aromaticin, 2, 3-dihydro Aromaticin, 6a-hydroxy-2,3dihydro Telekin Telekin, iso
2, 2, 5, 5,
275 46 119 119
2, 8/3 2, 8/3
47 47
Tessaric acid
6, acid
308
Macowania
M. corymbosa M. D.
Henderson
Pluchea
P. dioscorides DC. Pulicaria
P. crispa Sch. Bip. ( =Francoeuria crispa Cass.)
Telekia
T. speciosa Baumg.
(699) (697)
8/3 8/3 8t~ 8a
Tessaria
T. absinthioides DC. (1261.6)
SESQUITERPENELACTONES--ASTERACEAE
377
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal typea
Ref.
lb, 6~ lb, 6a
409 96
ld, 6a
96
lb, 6a
802
lb, 0a lb, 0a
409 102
lb, 6a
102
lb, 6~
102
lb, 6~
102
ld, 6a
102
ld, 6a
102
ld, 6a
102
5. HELIANTHEAE
(1) Melampodiinae
Acanthospermum A. australe (L.) Kuntze
(236) (543) (552)
A. glabratum (DC.) Willd. A. hispidum DC.
(238) (241) (242)
Acanthospermal A Acanthospermolide, 8/3,9adiangeloyloxy- 14-oic acid Acanthospermolide, 8fl,9adiangeloyloxy- 15-hydroxy14-oxo-4,5-cis Acanthamolide
Acanthospermal B Acanthospermolide, 15-bydroxy-Sfl-(2methylbutyryloxy)- 14-oxo (243) Acanthospermolide, 15-hydroxy-8/3-isovaleryloxy14-oxo (244) Acanthospermolide, 9a, 15dihydroxy-Sfl-(2-methylbutyryloxy)-14-oxo (245) Acanthospermolide, 9a-acetoxy- 14,15-dihydroxy-Sfl(2-methylbutyryloxy)- 14oxo (400) Acanthospermolide, 15-hydroxy-Sfl-(2methylbutyryloxy)- 14-oxo4 ,5-eis (401) Acanthospermolide, 15-hydroxy-8/3-isovaleryloxy14-oxo-4,5-cis (403) Acanthospermolide, 15-acetoxy-8fl-isovaleryloxy- 14oxo-4,5-cis
378
THE BOTANICALREVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Skeletal typea
Ref.
Acanthospermolide, 9a-palmitoyloxy-80-(2-methylbutyryloxy)-15-hydroxy- 14oxo Acanthospermolide, 9a-stearoyloxy-8fl-(2-methylbutyryloxy)-15-hydroxy- 14oxo Acanthospermolide, 9a-linoloyloxy-8fl-(2-methylbutyryloxy)-15-hydroxy- 14oxo Acanthospermolide, 9a-linolenoyloxy-8fl-(2-methylbutyryloxy)-15-hydroxy- 14oxo Acanthospermolide, 9a-acetoxy-8fl-(2-methylbutyryloxy)- 14-oxo
lb, 6a
102
lb, 6~
102
lb, 6a
102
lb, 6a
102
lb, 6~x
102
lb, 6a
275
(253) (251) (254) (274) (275)
Melampodin A, lla,13-dihydro,9a-methylbutyrate Melampodinin B Melampodinin, 9-desacetyl Melampodinin Cinerenin Melampodin B
(276)
Melampodin C
(277)
Melampodin D
(274)
Cinerenin
(275)
Melampodin B
(246)
(247)
(248)
(249)
(239)
Compound
Melampodium M. americanum L.
M. argophyllum S.
F. Blake (=M.
(255)
cinereum var. argophyllum A.
Gray)
M. cinereum DC.
275 lb, 6a 275 lb, 6r 277 lb, 6~ 1, 6a (14, 708 1, 6a (14, 708 8 lact.) 1, 6a (14, 708 8 lact.) 1, 6a (14, 707,708 8 lact.) 1, 6~ (14, 708 8 lact.) 1, 6a (14, 58,708 8 lact.)
SESQUITERPENE LACTONE S---ASTERACEAE
379
Table XXIII Continued.
Taxon
M. cinereum DC. var. cinereum
M. diffusum Cass. M. divaricatum
Structure number (Fig. 32)
Compound
(278)
Melampodin B, 4,5-dihydro
(265) (267) (266) (268) (404) (405) (406) (407) (274) (275) (254) (125) (991)
Melnerin A Melnerin A, 9-acetoxy Melnerin B Melnerin B, 9-acetoxy Melcanthin D Melcanthin E Melcanthin F Melcanthin G Cinerenin Melampodin B Melampodinin Melfusin Mikanokryptin
Skeletal type a
Ref.
1, 6a (14, 8 lact.) lb, 6a lb, 6a lb, 6a lb, 6a ld, 6a ld, 6a ld, 6a 1, 6a I, 6a 1, 6a lb, 6a la, 6a 3, 8tx
708 932 932 932 685 544 544 544 544 544 544 726 726 408
lb, 6a lb, 6a
243 243
(Rich. in Pers.) DC. M. heterophyllum
Lag. M. leucanthum Tort.
et Gray
M. linearilobum DC.
(250) (255.5) (262) (263) (223) (250) (252) (275)
Melampodin A Melampodin A, ll/3-13-dihydro Leucanthin A Leucanthin B Leucanthinin Melampodin A Melampodin A acetate Melampodin B
(278)
Melampodin B, 4,5-dihydro
(224) (410) (409) (408) (265) (267) (268) (73)
Melampolidin Melcanthin A Melcanthin B Melcanthin C Melnerin A Melnerin A, 9-acetoxy Melnerin B, 9-acetoxy Linearilobin A
lb, 6a 278 278 lb, 6a 277 lb, 6a 278, 279 lb, 6a 278,279 lb, 6a 1, 6a (14, 58,708 8 lact.) 1, 6a (14, 708 8 lact.) lb, 6a 277 276 ld, 6a ld, 6a 276 ld, 6a 276 932 lb, 6a lb, 6a 685 685 lb, 6a la, 6a 829
380
THE BOTANICAL REVIEW
Table XXHI Continued.
Taxon
M. Iongipes (A. Gray) Robins M. longipilum Robins M. perfoliatum (Carv.) A. Gray
Structure number (Fig. 32)
Compound
(74) (75) (76) (77) (78) (100) (302) (303) (227) (254) (260) (256) (260)
Linearilobin B Linearilobin C Linearilobin D Linearilobin E Linearilobin F Linearilobin G Linearilobin H Linearilobin I Longipin Melampodinin Enhydrin Longipilin Enhydrin
(168) (690)
Unidentified sesquiterpene lactones Polymniolide Ivalin
Skeletal type a la, la, la, la, la, la, lc, lc, lb, Ib, lb, lb, Ib,
6a 6a 6a 6a 6a 6a 6a 6a 6a 6a 6~ 6a 6a
Ref. 829 829 829 829 829 829 829 829 827 827 826 826 141
Polymnia P. canadensis L.
P. laevigata Beadle
386 la, 8a 2, 8/3
171 386
Orientin Orientalide Orientalide, 9a-methoxydesacetyl Acanthospermolide, 8/3methacryloyloxy-9a-acetoxy, 14-oxo
lb, 6~ Ib, 6a lb, 0a
798 40 40
lb, 6a
40
Acanthospermolide, 8fl-angeloyloxy-9a-acetoxy- 14oxo Acanthospermolide 14-acid methylester, 8fl-angeloyloxy-9a-acetoxy
lb, 6~
189
lb, 6a
189
Sigesbeckia S. orientalis L.
(516) (231) (232) (249.8)
Smallanthus S. fruticosus (Benth.) (249.5) H. Robins.
(249.6)
SESQUITERPENE LACTONES--ASTERACEAE
381
Table x x m Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
lb, 6a
189
lb, lb, lb, lb, lb, lb,
6a 6a 6a 6a 6a 6a
189 189 387 587 587 587
2, 8/3 lb, 6a
102 102
lb, 6a
102
lb, 6a lb, 6a lb, 6a
108 108 108
lb, 6a
108
(260) (226) (225)
Alantolactone, iso Acanthospermolide 14-acid methylester, 9=-hydroxy8/3-angeloyloxy Acanthospermolide 14-acid methylester, 9a-hydroxy8/3-angeloyloxy Uvedalin, isoMelnerin A, 2',3'-dehydro Melnerin A, 9a-hydroxy2',3'-dehydro Melnerin A, 9a-hydroxy-8desacyloxy-8B-isovaleryloxy Enhydrin Polydalin Uvedalin
lb, 6~ lb, 6~ lb, 6~
271 386, 387 386, 387
(205) (234) (206) (207) (208) (235) (226) (209)
Tetrahelin A Tetrahelin B Tetrahelin C Tetrahelin D Tetrahelin E Tetrahelin F Polydalin Tetraludin A
lb, lb, lb, lb, lb, lb, lb, lb,
8~ 828 828 828 828 8~ 725 725
(249.7)
S. maculatus (Cav.)
H. Robins. (=Polymnia maculata Cav.) (=P. maculata Cav. vat. maculata) S. reparius (HBK.) H. Robins.
S. sigesbeckia (DC.)
(260) (258) (259) (202) (203) (261)
(686) (233)
(233)
H. Robins. S. uvedalius (L.)
MacKenzie [=P. uvedalia (L.) L.]
(228) (269) (270) (271)
Compound Acanthospermolide 14-acid methylester, 8~-epoxyangeloyloxy-9a-acetoxy Enhydrin Longipilin acetate Maculatin Polymatin A Polymatin B Polymatin C
Tetragonotheca T. helianthoides
Linn.
T. ludoviciana A.
Gray
6a 6~ 6a 6a 6~ 6~ 6~ 6a
382
THE BOTANICAL REVIEW Table XXHI Continued.
Taxon
T. repanda Small
T. texana A. Gray et
Engelm.
Structure number (Fig. 32) (210) (211) (212) (213) (214) (215) (216) (217) (218) (219) (220) (221) (222) (256) (433) (434) (431) (432) (433) (434)
Compound Tetraludin B Tetraludin C Tetraludin D Tetraludin E Tetraludin F Tetraludin G Tetraludin H Tetraludin I Tetraludin J Tetraludin K Tetraludin L Tetraludin M Tetraludin N Longipilin Repandin A Repandin B Repandin C Repandin D Repandin A Repandin B
Skeletal type a
Ref.
lb, 6a lb, 6a lb, 6a lb, 6a lb, 6a lb, 6a lb, 0a lb, 6a lb, 6a lb, 6a lb, 6a lb, 6a lb, 6a lb, 6a 1, 6a 1, 6a 1, 6a 1, 6a 1, 6a 1, 6a
725 725 725 725,727 725,727 725, 727 725,727 725,727 725,727 725,727 725,727 725,727 725,727 831 831 831 831 831 831 831
7, 7, 3, 3, 7, 7,
8/3 8/3 6a 6a 8a 8a
764 764 764 764 168 168
7, 8a
168
7, 8a
168
(2) Zinniinae
Zinnia Z. acerosa (DC.) A.
Gray
(1094) (1095) (837) (838) (1068) (1078)
(1079)
(1080)
Zinarosin Zinarosin diacetate, dihydro Zaluzanin C Zaluzanin D Zinnia dilactone Zinamultifloride, 6/3-[2methylbutyryloxy]-9a-hydroxy-epoxy Zinamultifloride, 6/3-isobutyryloxy-9a-hydroxyepoxy Zinamultifloride, 9a-[2methylbutyryloxy]-6/3-hydroxy-epoxy
SESQUITERPENELACTONES----ASTERACEAE
383
Table XXHI Continued.
Taxon
Z. haageana Regel Z. multiflora L.
Structure number (Fig. 32)
Compound
(1081) Zinamultifloride, 9a-isobutyryloxy-6~8-hydroxyepoxy (785) Eremanthine, 3/3-angeloyloxy (786) Eremanthine, 3fl-senecioyloxy (782) Eremanthine (857) Cyclocostunolide, 9a-senecionyloxy (858) Cyclocostunolide, 9a-angeloyloxy (1090) Igalan, 8a-H (1089) Igalan, 8fl-H (35) Haageanolide (1070) Zinamultifloride, 6fl-angeloyloxy-9a-hydroxy (1071) Zinamultifloride, 6fl-[2methylacryloyloxy]-9a-hydroxy (1072) Zinamultifloride, 9or-angeloyloxy-6fl-hydroxy (1073) Zinamultifloride, 9a-[2methylacryloyloxy]-6fl-hydroxy (1074) Zinamultifloride, 6fl-angeloyloxy-9a-hydroxy-epoxy (1075) Zinamultifloride, 6/3-[2methylacryloyloxy]-9a-hydroxy-epoxy (1076) Zinamultifloride, 9a-angeloyloxy-6/3-hydroxy-epoxy (1077) Zinamultifloride, 9a-[2methylacryloyloxy]-6fl-hydroxy-epoxy (998) Ziniolide (843) Zaluzanin C-angelate
Skeletal typea
Ref.
7, 8a
168
3, 6a
168
3, 6a
168
3, 6~ 3, 6a
168 168
3, 6a
168
7, 8a 7, 8/3 la, 6a 7, 8a
168 168 543 168
7, 8a
168
7, 8a
168
7, 8a
168
7, 8a
168
7, 8a
168
7, 8a
168
7, 8a
168
3, 8 3, 6~t
168 168
384
THE BOTANICAL REVIEW Table X X H I
Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
3, 6a
168
7,813 7, 8/3 7, 8/3 7, 8a
730 730 730 168
7, 8a
168
7, 8a
168
7, 8a
168
7, 8a
168
7, 8t~
168
7, 8a
168
3, 6a 3, 0a
168 168
Encelin Telekin, 3-epi, iso-l,2-dehydro Telekin acetate, 3-epi-iso1,2-dehydro Telekin, iso, dehydro Haageanolide
2, 8fl 2, 8/3
412 412
2, 8/3
412
2, 8/3 la, 6a
412 217
Blainvilleolide, 8/3-senecioyloxy
la, 6a
190
Compound
(839)
Zaluzanin C-senecioate (=Vernoflexine) Z. pauciflora L. (1084) Zinallorin I (1082) Zinaflorin II (1083) Zinaflorin III Z. peruviana (L.) L. (1070) Zinamultifloride, 6flangeloyloxy-9a-hydroxy (1071) Zinamultifloride, 6/3-[2methylacryloyloxy]-9a-hydroxy (1072) Zinamultitloride, 9a-angeloyloxy-6/3-hydroxy (1073) Zinamultifloride, 9a-[2methylacryloyloxy]-6/3-hydroxy (1073.5) Zinamultifloride, 6/3-angeloyloxy-9a-acetoxy (1073.6) Zinamultifloride, 6fl-acetoxy-9a-angeloyloxy (1074) Zinamultifloride, 6/3-angeloyloxy-9a-hydroxy-epoxy (839) Zaluzanin C-senecioate (843) Zaluzanin C-angelate
(3) Ecliptinae Baitimora
B. recta L.
(700) (702) (703) (701) (35)
Blainvillea
B. dichotoma (Murr.)
Cass.
(95)
SESQUITERPENE LACTONE S---ASTERACEAE
385
Table XXIII Continued.
Taxon
Structure number (Fig. 32) (96) (97) (136) (399)
(240)
(264)
Skeletal type a
Ref.
Blainvilleolide, 8/3-[2-methylbutyryloxy] Blainvilleolide, 8/3-hydroxy Blainviileolide, 11/3-13-dihydro-8/3-hydroxy Acanthospermolide, 8/3-[2methylbutyryloxy]-9/3-hydroxy-14-oxo-4,5-cis Acanthospermolide, 8/3-[2methylbutyryloxy]-9/3-hydroxy-14-oxo Acanthospermolide, 8/3-[2methylbutyryloxy]-9/3-hydroxy-14-oxo- 1/3,10/3epoxy- 1,10-dihydro
la, 6a
190
la, 6a la, 6a
190 190
ld, 63
190
lb, 6a
190
lb, 6a
190
Enhydrin Fluctuadin Fluctuanin
lb, Oct lb, 6a lb, 6a
511 19 19
Wedelifloride-6-O-methacrylate Wedelifloride-4-O-acetate, 6-O-methacryloyloxy Wedelifloride-4-O-acetate, 6-O-isobutyryloxy Wedelifloride-4-O-acetate, 6-O-tiglinoyloxy Wedelifloride-4-O-acetate, 6-O-isovaleryloxy Ivalin Oxidoisotrilobolide-6-O-(R) 1. R = isobutyrate 2. R = angelate 3. R = methacrylate Trilobolide-6-O-(R)
5, 8/3
126
5, 8/3
126
5, 8/3
126
5, 8/3
126
5, 8/3
126
2, 8/3 2, 8/3
126 126
2, 8/3
126
Compound
Enhydra E. fluctuans Lour.
(260)
(257) (258)
wedelia W. grandiflora Benth.
(1230) (1231) (1232) (1233) (1234) (690)
W. trilobata (L.) Hitch.
(716) (717) (718)
386
THE BOTANICAL REVIEW Table XXIH Continued.
Taxon
Structure number (Fig. 32) (713) (714) (715)
Skeletal type a
Ref.
Dimerostemmolide- 1-O-angelate Dimerostemmolide- 1-O-[5hydroxyangelate], 8-O-angeioyl Dimerostemmolide- 1-O-[5hydroxyangelate], 8-0-[2methylbutyryl] Dimerostemmolide- 1-O-[5hydroxyangelate] Dimerostemmolide- 1-O-[2methyl-2,3-epoxybutyrate] Dimerostemmolide- 1-O-[5hydroxyangelate], 4-iso Dimerostemmolide- 1-O-angelate Dimerostemmolide- 1-O-[5hydroxyangelate], 8-O-angeloyl
2, 6~t
192
2, 6a
192
2, 6a
192
2, 6a
192
2, 6a
192
2, 6a
192
2, 6~
192
2, 6a
192
Carabrone
10, 8a
192
Montafrusin
la, 6a
723
trans, trans-Germacral(10),4-dien-cis-6,12-olide; Cmp. 2a trans, trans-Germacra-l(lO),
la, 6/3
400
la, 6/3
400
Compound 1. R = isobutyrate 2. R = angelate 3. R = methacrylate
(4) Verbesininae Dimerostemma
D. asperatum Blake
(577) (578)
(579)
(580) (581) (575)
D. lippioides (Baker) Blake
(577) (578)
Monactis
M. holwayae (Blake) H. Rob.
(1049)
Montanoa
M. frutescens (Mairet) Hemsl. M. hibiscifolia (Benth.) Sch. Bip.
(24) (158)
(159)
387
SESQUITERPENE LACTONES---ASTERACEAE Table X X H I
Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
la, 6fl
400
la, 6a c
115, 400
la, 6a c
115,400
la, 6a c
115,400
la, 6a
290
Zaluzanin C, 13-acetoxy11,13-dihydro-7,11 -dihydro-3-desoxy Zaluzanin C, l l,13-dihydro7,11-dehydro-3-desoxy Zaluzanin C, 7a-hydroxy-3desoxy Zaluzanin C, 7ct-hydroxy-3desoxy- 11/3,13-dihydro
3, 6a
111
3, 6a
111
3, 6a
111
3, 6a
111
Erioflorin Erioflorin acetate Erioflorin methacrylate Ovatifolin Arturin (= 1/3-hydroxy-Sflangeloyloxyeudesmane4(15), 11( 13)-diene 6,12olide)
lc, 6a lc, 6a lc, 6a la, 6~ 2, 6a
309 309 309 309 473
Compound 4-dien-cis-6,12-olide; Cmp. 3a
(160)
M. pteropoda Blake
(22)
(23)
(40)
M. tomentosa Cerv.
(41)
trans, trans-Germacra-l(lO),
4-dien-cis-6, 12-olide; Cmp. 4a Costunolide, 7a-hydroxy-8aacetoxy-9~-[2',3'-epoxy2'-methylbutyryloxy] Costunolide, 7a-hydroxy-8a[2', 3'-epoxy-2'methylbutyryloxy]-9~-acetoxy Costunolide, 8a-12'3'-epoxy2'-methylbutyryloxy]-9~-acetoxy Tomentosin
Podaehaenium P. eminens (Lag.)
(900)
Sch. Bip. (899) (842) (950) Podanthus P. ovatifolius Lag.
P. mitiqui Lindl.
(306) (313) (314) (86) (602)
THE BOTANICALREVIEW
388
Table X X H I
Continued.
Taxon
Structure number (Fig. 32) (87) (86)
Skeletal type a
Ref.
Ovatifolin, desacetyl Ovatifolin
la, 6a la, 6a
473 473
Ivangustin, 6/3-tiglinoyloxy Ivangustin acetate, 6/3-tiglinoyloxy
2, 8/3 2, 8/3
107 107
Verafinin Verafinin C Verafinin B (C19H20Oe)
7, 8/3 7, 8/3 ND
349 348 348
1, 6a lc, 6a la, 6a la, 6a 2, 6a
776 687 691 686 118
2, 6a
118
2, 6a
118
2, 6a
118
2, 6a
117
2, 6a
117
2, 6a
117
Compound
Steiractinia
S. moll& Blake
(684.5) (684.6)
Verbesina
V. aft. coahuilensis
Gray
(1086) (1087)
Zexmenia
Z. brevifolia A. Gray
Z. gnaphalioides A.
Gray
Z. phyllocephala
(Hemsl.) Standley et Steyerm.
(360) (322) (526) (526.5) (603)
Zexbrevin Zexbrevin B Zexbrevin C Zexbrevin D Cyclocostunolide, 8a-hydroxy- la-(isobutyryloxy) (604) Cyclocostunolide, 8a-hydroxy- la-[2-(hydroxymethyl) acryloyloxy] (667) Cyclocostunolide, 11/3,13dihydro-8a-hydroxy-lc~-(2methylacryloyloxy) (668) Cyclocostunolide, 11/3,13dihydro-8a-hydroxy-la-[2(hydroxymethyl)acryloyloxy] (598) Alantolactone, 8a-hydroxyla-[2-(hydroxymethyl) acryloyloxy] (599) Alantolactone, la-hydroxy8a-[2-(hydroxymethyl) acryloyloxy] (597) Alantolactone, lc~, 8a-dihydroxy
SESQUITERPENE LACTONES--ASTERACEAE
389
Table XXHI
Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(5) Helianthinae
Encelia E. farinosa Gray
E. farinosa
Gray x E. califor-
(700) (722) (727) (722) (727)
Encelin (anhydrofarinosin) Farinosin Hybrifarin Farinosin Hybrifarin
2, 2, 2, 2, 2,
8/3 8/3 8/3 8/3 8/3
300 451 63 63 63
(700)
Encelin
2, 8/3
852
(722) (721)
Farinosin Virginin
2, 8/3 2, 8/3
852 852
nica Nutt. (F1) E. virginensis A.
Nets.
Flourensia F. cernua DC.
(1261.5)
Flourensic acid
6, acid
539
F. resinosa Blake
(629.5)
Costus acid, iso Isocostus acid methyl ester
17 17
752 752
(3O6.5) (334) (332) (3) (345)
lc, lc, lc, la, lc,
Helianthus
H. lehmanii Hieron.
(354) (350)
H. maximiliani
(328)
Heliangine Calaxin Ciliarin Eupaserrin, desacetyl Budlein A-8/3-isovalerate, desangelyl Ovatifolin, desacetyl Pinnatifidin, la-hydroxy Pinnatifidin, 2-dihydro Pinnatifidin, la-acetoxy, 2-dihydro Heliangolide 10a Atripliciolide-(2-methylbutyrate) Niveusin C
(445) (446)
Compound 7a Compound 7c
H. annuus L. H. ciliaris DC. H. decapetalus L. H. grosseserratus
Martens (87) (681) (683.5) (683)
6a 6a 6a 6a 6a
638 690 690 98 416
la, 6~ 2, 8/3 2, 8/3 2, 8/3
416 416 416 416
lc, 6a I c, 6a
416 75
lc, 6a
415
lc, 6a lc, 6c~
415 415
Schrader
390
THE BOTANICALREVIEW Table XXHI
Continued.
Taxon
Structure number (Fig. 32)
Skeletal type ~
Ref.
lc, 6a.
415
lc, 6~
415
lc, lc, lc, la, la, la,
6a 6a 6~ 6a 6a 6~
415 415 415 682 682 682
lc, lc, lc, la, la, lc, la, la,
6a 6a 6~ 6or 6~ 6a 6a 6a
683 683 683 394 417 417 417 417
la, 6a
417
la, 6a
417
la, 8a
417
(306.5)
Orizabin-8/3-angelate, desisobutyryl Orizabin-8/3-angelate, desisobutyryl, des-3a-hydroxy Tifruticin Tifruticin, acetyl Tifruticin, deoxy Eupaserrin Eupaserrin, desacetyl Mollisorin A (= Costunolide,2a-hydroxy8/3-tiglyloxy) Niveusin A Niveusin B Niveusin C Eupaserrin, desacetyl Mollisorin B Tifruticin, acetyl Eupaserrin, desacetyl Costunolide, 2a,8/3-dihydroxy Costunolide, 2a-hydroxy-8/3angeloxy Costunolide, 2a-hydroxy-8/3[4-hydruxymethacryloyloxy] Balchanolide, 3ot-hydroxyiso Heliangine
lc, 6a
638
(705) (708) (1147) (1148) (1149) (1133)
Alantolactone Ivangustin, 1-desoxy-8-epi Rudmollin Rudmollin, 4-acetoxy Rudmollin, 15-acetoxy Rudimollitrin
2, 8/3 2,813 4, 8fl 4, 8fl 4, 8/3 4, 6/3
101 101 419 419 419 419
(321) (320)
H. mollis Lain.
H. niveus ssp. canescens (A. Gray)
Heiser H. p u m i l u s L.
(509) (507.5) (507) (4) (3) (42)
(326) (327) (328) (3) (43) (507.5) (3) (530.5) (530) (530.6)
(188.5) H. tuberosus L.
Compound
Rudbeckia R. laciniata L. R. mollis Ell.
391
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal typea
Ref.
Simsia
(199)
Simsiolide
la, 8~8
145
T. diversifolia (Hemsl.) Gray T. fruticosa Canby et J. N. Rose
(359)
Tirotundin
1, 6a
205
(507)
Tifruticin, deoxy
1, 6a
439
(509)
Tifruticin
lc, 6a
439
T. rotundifolia (Mill.) Blake
(312) (359) (358)
Tagitinin E Tirotundin (=Tagitinin D) Tirotundin, ethylether
1, 6a 1, 6a 1, 6a
39 439 439
2, 6a
193
2, 6a
193
2, 6a 2, 6a
193 193
la, 6a
193
la, 6a
193
lc, 6a 2, 6a la, 6a la, 6a
193 193 193 193
la, 6a
193
la, 6a
193
la, 6a
193
1, 6a lc, 6a
696 696
S. dombeyana DC. Tithonia
(585)
T. speciosa Hook ex Griseb.
Arbusculin B, 8~-angeloyloxy- lfl-hydroxy (586) Arbusculin B, 8fl-[2,3epoxy-2-methylbutyryloxy]-lfl-hydroxy (570) Balchanin, 8fl-angeloyloxy (571) Balchanin, 8/3-[2,3-epoxy-2methylbutyryloxy] (5) Eupatolide-8-O-angelate, 2ahydroxy (82) Eupatolide-8-O-angelate, 2ahydroxy- 14-acetoxy (308) Leptocarpin (601) Reynosin, 8fl-angeloyloxy (102) Tithifolin, 8fl-angeloyloxy (103) Tithifolin, 8//-[2,3-epoxy-2methylbutyryloxy] (104) Titbifolin, 8~-angeloyloxy14-hydroxy (105) Tithifolin, 8/3-angeloyloxy14-acetoxy (106) Tithifolin, 8fl-[2,3-epoxy-2methylbutyryloxy]-14-acetoxy (357) Tagitinin A (324) Tagitinin B
392
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon T. tagetiflora Desf.
T. tubaeformis Cass.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(508) (356) (359) (319)
Tagitinin C Tagitinin F Tirotundin (=Tagitinin D) Orizabin
1,6a ld, 6or 1,6~ lc, 6a
699 699 699 687
(338)
Budlein A
lc, 6a
351
(338) (85)
Budlein A Budlein B
lc, 6~ la, 6a
775 775
(468)
Viguilenin
1,6a
769
(353) (366) (365) (310)
Viguiepinin Viguiestenin Viguiestenin, desacetyl Viguiestenin, 8a-[2-methylbutyryloxyl-8-desacyl Viguiestenin, 8a-isovaleryloxy-8-desacyl Erioflorin Sphaerocephalin Viguiestenin Viguiestenin, desacetyl
lc, lc, 1c, lc,
39, 772 39, 772 39, 772 94
Viguiera V. angustifolia Glaziou V. buddleiaeformis (DC.) Benth. et Hook. V. linearis Sch. Bip. ex Hemsl. V. pinnatilobata Blake V. procumbens (Pers.) Blake
(311) V. sphaerocephala (DC.) Hemsl. V. stenoloba Blake
(306) (107) (366) (365)
6a 8a
8~ 6a
lc, 6a
94
lc, la, lc, lc,
688 688 350 350
6a 6~ 8a 8a
(6) Gaillardiinae
Baileya B. multiradiata Harv. et Gray
B. pauciradiata Harv. et Gray
(1188) (273) (1167) (1184) (1185) (1166) (1224) (1223) (1205) (1192)
Baileyolin Baileyin Fastigilin C Fastigilin A Fastigilin B Multigilin Multistatin Multiradiatin Hymenoratin Paucin
5, 8o~ lb, 8/3 5, 8a 5, 8a 5,8a 5,8a 5, 8a 5, 8a
5, 8/3 5,813
241 929 929 711 711 711 711 711 474 928,929
SESQUITERPENE LACTONES---ASTERACEAE
393
Table XXHI Continued.
Taxon B. pleniradiata Harv.
et Gray
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(273) (1188) (1167) (1192) (1011) (1206) (1186)
Baileyin Baileyolin Fastigilin C Paucin Pleniradin Plenolin Radiatin
lb, 8/3 5, 8a 5, 8a 5, 8/3 3, 8/3 5, 8/3 5, 8a
929 929 929 929 952 929 952
(1197)
5, 8/3
569
(1195) (1254)
Angustibalin (Helenalin acetate) Helenalin Helenalin, neo
5, 8/3 29, 8/3
569 569
(1198)
Atropurpurin Balduilin
ND 5,813
287 433
Amblyodin Amblyodiol Gaillardipinnatin Gaillardipinnatin, desacetyl Aristalin Pulchellin C Pulchellin E Spathulin (T d) Telekin 3-epi, iso Gaillardilin Fastigilin A Fastigilin B Fastigilin C Mikanolide
5, 8a 5, 8a 5, 8a 5, 8a ND 2, 8fl 2, 8/3 5, 8a 2, 8fl 5, 8a 5, 8a 5, 8a 5, 8a 1, 8a (15, 6 lact.) ND 5, 8a 5, 8a
445,446 445 445 445 429 630 630 630 451 947 428 428 428 428 429 429 307
5, 8or
307
Balduina
B. angustifolia B . L . Robinson (=Actinospermum angustifolium Torr. et
Gray) B. atropurpurea B. uniflora Nutt. Gaillardia
G. amblyodon J. Gay (1164)
(1187) (1165) (1162) G. aristata Pursh.
G. arizonica Gray G. fastigiata Greene
(692) (693) (1175) (698) (1180) (1184) (1185) (1167) (185)
G. grandiflora Hort.
garden hybrid (G. spathulata • G. aristata )
(1175) (1178) (1179)
Aristalin Spathulin Spathulin-2-O-angelate, 9-0desacetyl Spathulin-isovalerate, 9-0desacetyl
394
THE BOTANICAL REVIEW Table XXlII Continued.
Taxon G. megapotamica (Spreng.) Bakke G. mexicana Gray G. multiceps Greene G. parryi Greene G. pinnatifida Ton'.
G. pulchella Foug.
G. spathulata Gray
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(1195)
Helenalin
5, 8,8
947
(1226) (1175) (1195) (1174) (1180) (1165) (1195) (1168) (1163) (1321) (1003) (1173) (694) (692) (693) (695) (1189) (1202) (1219) (1175) (1175)
Neoleonin Spathulin Helenalin Flexuosin A Gaillardilin Gaillardipinnatin Helenalin Bigelovin Mexicanin I Gaillardin Gaillardin, neo Pulchellin Pulchellin B Pulchellin C Pulchellin D Pulchellin E Pulchellin F Pulchellidine Pulchellin, neo Pulchellidine, neo Spathulin Spathulin
15, 8 5, 8a 5, 8,8 5, 8a 5, 8ct 5, 8a 5, 8,8 5, 8t~ 5, 8a 3, 8a 3, 8,8 5, 8a 2, 8,8 2, 8,8 ND 2, 8,8 2, 8,8 5, 8a 5, 8/3 5, 8a 5, 8a 5, 8~t
238 238 947 429 427 427,445 376 376 376 255, 558 483 460 407, 945 407, 945 407 435, 945 435,945 941,942 483 941 429 429, 447
(1176) (1217)
Alternilin Brevilin A
5, 8or 5, 88
Linifolin Tenulin Amarilin Aromaticin Helenalin Tenulin Heleniamarin Mexicanin I
5, 8a 5, 8a 5, 8t~ 5, 8a 5,813 5, 8a 5,8 5, 8a
397 397,422, 450 397 931 590 590 947 431,440 258 258
Helenium
H. alternifolium (Spreng.) Cabrera
(1169) (1220) H. amarum (Raf.) H. (1172) Rock. (ll61) (1195) (1220) (1163)
395
SESQUITERPENE LACTONES--ASTERACEAE
Table XXHI Continued.
Taxon H. aromaticum
(Hook) L. H. Bailey
H. amphibolum A.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(1161) (1194) (1195) (1169) (1201) (1220)
Aromaticin Aromatin Helenalin Linifolin A Mexicanin Tenulin
5, 5, 5, 5, 5, 5,
8a 8/3 8fl 8t~ 8/3 8a
754 754 64a 64a 64a 62
(1 t82) (1017) (1229) (1006) (1007) (1008) (1174) (1004) (1177) (1010) (1014) (1195) (1191)
5, 3, 5, 3, 3, 3, 5, 3, 5, 3, 3, 5, 5,
8a 8 8 8/3 8/3 8/3 8a 8/3 8a 8/3 8/3 8/3 8/3
947 547 452 619, 620 281,617 281,617 449 577 449 553 547 434 545
(1015) (1216) (1258) (1163) (1203) (1206) (1221) (1220) (1220)
Tenulin, iso Akihalin Autumnolide Carolenalone Carolenalin Carolenin Flexuosin A Florilenalin Flexuosin A, 2-acetyl Florilenalin, dihydro Halshalin Helenalin Helenalin, dihydro, 2-methoxy Helenium lactone Mexicanin C Mexicanin E, dihydro Mexicanin I Picrohelenin Plenolin Sulferalin Tenulin Tenulin
3, 8/3 5, 8/3 21, 8/3 5, 8ct 5, 8/3 5, 8/3 5, 8/3 5, 8a 5, 8a
469 591 591 449 546 578 547 449 519
(1168) (1220) (1182) (1181)
Bigelovin Tenulin Tenulin, iso Tenulin, desacetyliso
5, 8~ 5, 8a 5, 8a 5, 8a
421,701 701 377,701 377,433, 701
Gray H. arizonicum Blake H. autumnale L.
H. badium (Gray)
Greene H. bigelovii Gray
THE BOTANICAL REVIEW
396
Table XXHI Continued. Structure number (Fig. 32)
Skeletal type a
Ref.
(1220) Tenulin (1217) Brevilin
5, 8o~ 5,8/3
431 397,422
H. chihuahuensis
(1195) (1195)
5, 8/3 5, 8/3
947 376
Bierner H. elegans DC. var.
(1220) Tenulin
5, 8a
376, 519
H. flexuosum Raf.
(1220) (1163) (1174) (1213) (1254)
5, 8a 5, 8a 5, 8a 5, 8/3 29, 8/3
376 376 411,452 411 947
H. laciniatum A.
(1195)
Tenulin Mexicanin I Flexuosin A Flexuosin B Helenalin, neo (=Mexicanin D) Helenalin
5, 8/3
947
Linifolin A Linifolin B Helenalin Helenalin, neo (=Mexicanin D) (1201) Mexicanin A Mexicanin B (1216) Mexicanin C (1257) Mexicanin E (1225) Mexicanin H (1163) Mexicanin I (1195) Helenalin (1196) Helenalin, iso (1257) Mexicanin E (1193) Microhelenin A (1210) Microhelenin B (1212) Microhelenin C (1250) Microlenin (1206) Plenolin (1251) Microlenin acetate
5, 8or 5, 8a 5, 8/3 29, 8/3
377 377,397 947 422, 433, 434 434, 782 782 433,782 591,763 761 244 938 202 581 579 581 581 580 482 482
Taxon H. blombuistii Rock. H. brevifolium
(Nutt.) Wood H. campestre Small
elegans H. elegans var. amphibolum
Gray H. linifolium Rydb.
(1169) (1170) H. rnexicanum HBK. (1195) (1254)
H. microcephalum
DC.
Compound
Helenalin Helenalin
5, 8/3 ND 5, 8/3 21, 8/3 5, 8 5, 8a 5, 8/3 5, 8/3 21, 8/3 5, 8/3 5, 8/3 5, 8/3 5, 8/3 5, 8/3 5(dimer), 8/3
397
SESQUITERPENE LACTONES---ASTERACEAE
Table XXIII Continued.
Taxon H. montanum Nutt. H. ooclinium Gray H. pinnatifidum
Structure number (Fig. 32)
Skeletal type a
Ref.
Tenulin Helenalin, neo Mexicanin E Pinnatifidin
5, 8a 29, 8/3 21, 8/3 2, 8/3
376 377 947 422, 423
Linifolin A Linifolin, desacetoxy Bigelovin Bigelovin, desacetyl-iso Helenalin Puberolide Tenulin Carabrone Helenalin Helenalin Linifolin A Helenalin Mexicanin I Tenulin Bigelovin Tenulin Thurberilin Helenalin Virginolide
5, 8ct 5, 8a 5, 8a 5, 8a 5, 8/3 3, 8t~ 5, 8a 10, 8/3 5, 8/3 5, 8/3 5, 8t~ 5, 8/3 5, 8a 5, 8a 5, 8a 5, 8a 5, 8t~ 5, 8/3 3, 8/3
851 851 92 92 92 92 92 369 369 947 947 901 901 901 947 947 421 947 436
(1167)
Fastigilin C
5, 8a
382
(1238)
Psilotropin (=Floribundin)
384
(1247)
Themoidin (=Floribundin A, dihydro) Vermeedn
12, 8/3 (3, 4 lact.) 12, 8~ (3, 4 lact.) 12, 8c~ (3, 4 lact.) 12, 8a (3, 4 lact.)
(1220) (1254) (1257) (680)
Compound
(Nutt.) Rydb. (1169) (1169.5) (1168) (1171) (1195) (995) (1220) H. quadridentatum (1049) Labill. (1195) (1195) H. scorzoneraefolia (1169) (DC.) Gray H. tenuifolium Nutt. (1195) (1163) (1220) H. thurberi Gray (1168) (1220) (1183) H. vernale Walt. (1195) H. virginicum Blake (999) H. plantagineum
(DC.) Macbride H. puberulum DC.
Hymenoxys H. acaulis (Pursh)
K. F. Parker H. anthemoides
(Juss.) Cass.
(1249)
Vermeerin B, dihydro (= Anthemoidin)
384 21,384 384
THE BOTANICAL REVIEW
398
Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
H. grandiflora (Torr.
(1214) (1222) (1204) (1192) H. greenei (Cockll.) (1238) Rydb. (1246) H. insignis (Gray ex (1013.5) Wats.) Cockll. (1205.5) H. linearifolia Hook. (1199) (1253)
(1192) (1237)
Florigrandin Hymenoflorin Hymenograndin Paucin Floribundin (=Psilotropin) Greenein Hymenosignin Hymenograndin, acetyl Linearifolin A Linearifolin B (=4-oxo-6atiglinoyloxylinearifol-2,11 (13)-dien-8/3-ol) Linearifol-2,1 l(13)-dien-8/3ol acetate,4-oxo-6a-(2methylbutyryloxy) Mexicanin I Helenalin, neo Hymenolane Hymenolide Hymenoxon Hymenoxynin Odoratin (=Hymenoratin) Paucin Vermeerin
(1238)
Psilotropin =Floribundin)
(1192) (1238)
Paucin Psilotropin =Floribundin)
(1238)
Psilotropin =Floribundin)
(1238)
Psilotropin (=Floribundin)
et Gray) K . F . Parker
(1235)
H. linearis T. & G. H. odorata DC.
(1163) (1254) (1218) (1245)
(1239) (1248)
(1205) H. dchardsonii
(Hook) Cockerell var. flonbunda (Gray) Parker H. rusbyi(Gray)
Cockll. H. subintegra
Compound
Cockll.
Skeletal type a
Ref.
5, 8/3 5, 8/3 5, 8/3 5, 8/3 12, 8/3 12, 8/3 3, 8B 5, 8/3 5, 8/3 5, 9/3
383 383 383 383 384 384 399 399 382 382
5, 9/3
240
5, 8a 29, 8/3
760 760 538,710 384 538,710 384 689 384 384
5,8/3 5,8
5,8/3 5,8
5,8/3 5, 8/3 12, 8a (3, 4 lact.) 12, 8/3 (3, 4 lact.)
5,8/3 12, 8/3 (3, 4 lact.) 12, 8fl (3, 4 lact.)
384 382 384 384
Psilostrophe P. cooperi (Gray)
Greene
12, 8fl(3, 4 lact.)
384
SESQUITERPENE LACTONES--ASTERACEAE
399
Table XXIII Continued.
Taxon P. villosa Rydb.
Structure number (Fig. 32) (1195) (1243) (1244) (1241) (1242) (1252) (1237)
Compound Helenalin Hymenolide, 2a-acetoxy Hymenolide, 2a-tiglinoyloxy Hymenoxon, 2t~-acetoxy Hymenoxon, 2a-tiglinoyloxy Norpsilotropin, 4-hydroxy Vermeerin
Skeletal type a
Ref.
5, 8/3 12, 8fl 12, 8/3 12, 8/3 12, 8/3 13,813 12, 8a
95b 95b 95b 95b 95b 95b 95b
Costunolide Costunolide
la, 6~ la, 6a
275 275
Eupatoriopicrin
la, 6a
286
la, 6a
173
la, 6a
173
3, 6a 3, 6~
173 173
3, 6a 17 17
173 173 173
(7) Coreopsidinae Cosmos C. hybridus Hort. C. sulphuxus Cav.
(l) (1)
Venegasia V. carpesioides DC.
(11)
(8) Fitchiinae Fitchia F. speciosa Cheesmann
(60) (61) (834) (853) (852) (628) (629)
Costunolide, 15-isobutyryloxyCostunolide, 15-[2-methylbutyryloxy] Costuslactone, dehydro Zaluzanin-C- [2-methylbutyrate] Zaluzanin-C-isovalerate Costus acid Costus acid, 4,15-dihydro3,4-dehydro (9) Bahiinae
Bahia B. absinthifolia Benth. var. dealbata (Gray) Gray B. oppositifolia (Nutt.) DC.
(809) (810)
Bahia I Bahia II
3, 6a 3, 6a
257 257
(811)
Bahifolin
3, 6a
388
400
THE BOTANICAL REVIEW
Table XXIII Continued.
Taxon
B. pringlei Green B. woodhousei (Gray) Gray
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(809) (810) (325)
Bahia I Bahia II Woodhousin
3, 6a 3, 6a lc, 6a
779 779 385
(810) (288)
Bahia II Eucannabinolide
3, 6or lc, 6~
401 401
(745) (744) (325) (743)
Disecoeudesmanolide 3a Disecoeudesmanolide 5a Woodhousin Secoeudesmanolide precursor 7a Woodhousin, 8/3-tiglinoyloxy-8/3-desacyl Woodhousin, 8/3-[2-methylbutyryloxy]-8/3-desacyl Diosphenol guaianolide 9 Secoheliangolide 1la
9, 8/3 9, 8/3 lc, 6a 9, 8/3
401 401 401 401
lc, 6a
401
lc, 6a
401
3, 6a 8, 6a
401 401
Eucannabinolide Eucannabinolide, 3-[2"-hydroxyisovaleryloxy]-3desacetoxy Eucannabinolide Eucannabinolide, 3-isovaleryloxy-3-desacetoxy Eucannabinolide-5'-sarracinate
I c, 6a lc, 6a
398 398
lc, 6a lc, 6a
398 398
lc, 6a
398
Picradeniopsis P. oppositifolia (Nutt.) Rydb. [=Bahia oppositifolia (Nutt.) DC.] P. woodhousei (Gray) Rydb. [=Bahia woodhousei (Gray) Gray]
(329) (330) (886) (396)
Schkuhria S. pinnata (Lam.) Kuntze
(288) (296)
S. virgata (LaLave (288) et Lex.) DC. (=S. (296.5) pinnata var. virgata) (296.6)
(10) Madiinae (No compounds reported)
(11) Galins oginae
SESQUITERPENE LACTONES---ASTERACEAE
401
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
lc, 6a lc, 6a l c, 6a
690 84 84
lc, 6~t
84
lc, 6a
84
lc, 6a
84
lc, 6a
84
lc, lc, lc, lc,
6a 6a 6a 6a
84 84 84 84
lc, 6a
84
lc, 6a
84
lc, 6a
84
lc, 6a
84
lc, 6a
84
lc, 6or
84
lc, 6a
84
Calea C. axillaris C. morii H. Robin-
son
C. pilosa Baker
(334) (337) (380)
Calaxin Atripliciolide tiglate Atripliciolide angelate, 11, 13-dihydro-ll,13-epoxy (381) Atripliciolide tiglate, ll,13dihydro- 11,13-epoxy (376) Atripliciolide-8-O-angelate, I 1-hydroxy-13-chloro1l, 13-dihydro (377) Atripliciolide-8-O-tiglate, 1lhydroxy-13-chloro-11,13dihydro (379) Atripliciolide-8-O-angelate, 5-myrtenyl-4,5-11,13-tetrahydro-11,13-epoxy (346) Atripliciolide angelate (337) Atripliciolide tiglate (335) Atripliciolide methacrylate (347) Atripliciolide-8-O-angelate, 9a-hydroxy (348) Atripliciolide-8-O-tiglate, 9ahydroxy (339) Atripliciolide-8-O-methacrylate, 9a-hydroxy (380) Atripliciolide angelate, 11,13-dihydro- 11,13-epoxy (381) Atripliciolide tiglate, 11,13dihydro- 11,13-epoxy (382) Atripliciolide methacrylate, 11,13-dihydro- 11,13-epoxy (383) Atripliciolide-8-O-angelate, 9a-hydroxy- 11,13-dihydro11,13 epoxy (384) Atripliciolide-8-O-tiglate, 9orhydroxy- t 1,13-dihydro11,13-epoxy
402
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32) (385)
(376)
(378)
(379)
(108)
C. pinnatifida Banks (467.4) C. urticifolia (Miiller) (339) DC.
(340)
(342)
(341)
(456) (459) (460) (461)
(462)
Skeletal type a
Ref.
Atripliciolide-8-O-methacrylate, 9a-hydroxy-I 1,13dihydro- 11,13-epoxy Atripliciolide-8-O-angelate, 11-hydroxy- 13-chloro- 11, 13-dibydro Atripliciolide-8-O-angelate, 9a, 11-dihydroxy- 13-chloro-1 l, 13-dihydro Atripliciolide-8-O-angelate, 5-myrtenyl-4,5-11,13 -tetrahydro- 11,13-epoxy Costunolide, 3B-acetoxy-8/3angeloyloxy- 1,10-dihydrola, 10B-epoxy Arucanolide Atripliciolide-8-O-[2-methylacrylate], 9a-hydroxy Atripliciolide-8-O-[2-methylacrylate], 9a-(isovaleryloxy)- 15-hydroxy Atripliciolide-8-O-[2-methylacrylate], 9a[angeloyloxy]- 15-hydroxy Atripliciolide-8-O-[2-methylacrylate], 9a-(senecioyloxy)-15-hydroxy Caleurticolide acetate e
lc, 6a
84
lc, 6a
84
lc, 6a
84
lc, 6a
84
la, 6a
84
1, 6a lc, 6a
270 91,270
lc, 6~
91
lc, 6a
91
lc, 6~
91
1, 6a
Caleurticolide-[2-methylacrylate Caleurticolide-angelate
1, 6a
Caleurticolide-isobutyrate Caleurticolide-(R), 2a, 3aepoxy-2,3-dihydro R = angelate
1, 6a 1, 6a
91,270, 414 91,270, 414 91,270, 414 414
Compound
1, 6~
1, 6a
4t4
SESQUITERPENE LACTONES--ASTERACEAE
403
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
1, 6a 1, 6a 1, 6a 1, 6a 1, 6a 1, 6a
414 414 414 414 198 198
(452)
R = isovalerate R = [2-methylacrylate] R = isobutyrate R = acetate Juanislamin Juanislamin, 2,3-dihydro2a,3a-epoxy Caleine A
1, 6a
(453)
Caleine B
1, 6a
(323) (331) (360) (449)
Zacatechinolide, lfl-acetoxy Zacatechinolide, 1-oxo Zexbrevin Zexbrevin-tiglate, de[2-methacryloyl] Caleurticolide-acetate Caleurticolide, 8fl-tigloyi-9aacetyl-de-[2-methacryloyl] Caleurticolide, 8fl-angeloyl9a-acetyl-de-[2-methacryloyl] Atripliciolide-(2-methacrylate), 15-hydroxy Atripliciolide-tiglate, 15-hydroxy
lc, 6a lc, 0a 1, 6a 1, 6a
270, 728, 729 270, 728, 729 147 147 414 414
1, 6a 1, 6a
414 414
1, 6a
414
lc, 6a
414
lc, 6a
414
Atripliciolide isobutyrate Atripliciolide isovalerate Atripliciolide-(2-methacrylate) Atripliciolide tiglate Chromolaenide Chromolaenide, 3-epi-20acetoxyCbromolaenide, 3-epi-20-hydroxy (= Eupaformosanin)
lc, 6a lc, 6a lc, 6a
123 123 123
lc, 6a lc, 6a lc, 6a
123 123 123
lc, 6a
123
(463) (464) (465) (466) (467.5) (467.6) C. zacatechichi Schlecht.
(456) (457) (458)
(343) (344)
Compound
Isocarpha 1. atriplicifolia (L.) R. Br.
I. oppositifolia (L.) R. Br.
(333) (336) (335) (337) (286) (284) (283)
THE BOTANICAL REVIEW
404
Table XXIII
Continued.
Taxon
Structure number (Fig. 32) (288) (287) (30)
Compound Chromolaenide, 20-hydroxy (= Eucannabinolide) Chromolaenide, 20-tiglinoyloxy Chromolaenide, 4,5-trans-3desacetyl, 20-tiglinoyloxy
Skeletal type a
Ref.
lc, 6a
123
lc, 6a
123
la, 6a
123
(12) Neurolaeninae Neurolaena
N. Iobata (L.) R. Br.
(454) (455)
Neurolenin A Neurolenin B
1, 6a 1, 6~x
270, 603 270, 603
(1018) (1019) (837) (838) (705)
Zaluzanin A Zaluzanin B Zaluzanin C Zaluzanin D Alantolactone
3, 3, 3, 3, 2,
762,947 762 771 771 (Bohlmann, UP f)
(1) (566) (1018) (1019) (10) (851)
Costunolide Cyclocostunolide Zaluzanin A Zaluzanin B Tulipinolide, epi Zaluzanin C, desoxy (dehydrocostuslactone) Zaluzanin D Costuslactone, dehydro Ivalin Zaluzanin C Zaluzanin D
la, 6a 2, 6a 3, 5 3, 5 la, 6a 3, 6a
939 939 939 939 939 609
3, 3, 2, 3, 3,
609 773 771 771 771
Zaluzania
Z. augusta (Lag.) Schultz Bip.
Z. globosa var. globosa (Ort.) Sch. Bip. Z. montagnaefolia Sch. Bip.
Z. pringlei Greenm. Z. robinsonii Sharp
Z. triloba (Ort.) Pers.
(838) (851) (690) (837) (838)
5 5 6a 6a 8/3
6a 6a 8/3 6a 6a
(13) Engelmanniinae Berlandiera
B. pumila
Pumilin
3, 6a
(Fischer, N.H., UP)
SESQUITERPENE LACTONES--ASTERACEAE
405
Table XXHI Continued.
Taxon B. subacaulis (Nutt.)
Nutt.
Structure number (Fig. 32) (772) (771)
Compound
Skeletal type a
Ref.
Bedandin Subacaulin
3, 6a 3, 6a
391 391
Xanthanodiene (=Dugesialactone)
6, 8/3
140
Alantolactone, iso
2, 8/3
93
Dugesia D. mexicana Gray
(1259)
Silphium S. perfoliatum L.
(686)
(14) Ambrosiinae
Ambrosia (169) (164) (164.5) (1109) (1108) (875) (1152) A. ambrosioides (1098) (Cav.) Payne (1309) (1132) (112) A. arborescens Mill. (1099) (1098) (1150) (1153) (1152) (1151.5)
Artemisiifolin Chamissonin Chamissonin diacetate Confertiflorin Confertiflorin, desacetyl Cumambrin B (Artenovin) Psilostachyin C Damsin Damsinic acid Franserin Parthenolide Coronopilin Damsin Psilostachyin Psilostachyin B Psilostachyin C Psilostachyin, ll-epidihydro
la, 8a la, 8a la, 8a 4, 6/3 4, 6/3 3, 6a 11, 6/3 4, 6/3 4, acid 4, 6/3 la, 6a 4, 6/3 4, 6/3 11, 6/3 11, 6/3 I1, 6/3 11, 6/3
947 297,468 468 292 292 292 292 825 825 766 825 381 381 381,430 381,430 381 381
(1149.5) A. artemisiifolia L. (=A. elatior Bess. (1111)
Ambrosic acid Ambrosin Artemisiifolin Coronopilin Cumanin Cumanin, dihydro Isabelin
4, Acid 4, 6/3 la, 8c~ 4, 6/3 4, 8fl 4, 8/3 la, 8ct
484 947 718 947 717 717,756 717
A. acanthicarpa
Hook.
var. artemisiifolia Farwell)
(169) (1099) (1141) (1146) (179)
406
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32) (149)
(1138) (1129) (1128)
A. camphorata
(Greene) Payne
A. canescens (Gray)
Payne "A. castanensis" A. chamissonis
(1150) (1153) (686) (1) (628) (618) (8) (1157) (169) (164)
Compound
Skeletal type a
Parthenolide, dihydro
la, 6a
Peruvin Pseudoguaian-6,12-olide, 8-acetoxy-3-oxo Pseudoguaian-6,12-olide, 4-hydroxy-3-oxo Psilostachyin Psilostachyin B Alantolactone, isoCostunolide Costus acid Ilicic acid Tulipinolide Canambrin
4, 8,0 4, 6/3
UP 717 859
4, 6,0
859
11, 6,0 11, 6,0 2, 8,0 la, 6a 17 17 la, 6a I 1, 6fl
430 735b 825,832 825,832 825, 832 825,832 825,832 758
Artemisiifolin Chamissonin
I a, 8a la, 8a
Chamissanthin Chamissarin ChamisseUin Costunolide Damsin Parthenolide Psilostachyin Psilostachyin C Chihuahuin Confertiflorin Confertiflorin, desacetyl Confertin (Cumanin, anhydro) Parthenolide Peruvin
la, 6a la, 8a la, 8a la, 6a 4, 6fl la, 6a I 1, 6,0 11, 6,0 la, 6a 4, 6,0 4, 613 4, 8/3
468 298, 304, 589a 298 298 298 298 825,835 825,835 947 947 737,738 273,737 273,737 737,766
la, 6a 4, 8/3
948 948
(Less.) Greene
A. chenopodifolia
(Benth.) Payne
A. confertiflora DC.
(10) (165) (166) (I) (1098) (112) (1150) (1152) (29) (1109) (1108) (I 137) (112) (1138)
Ref. 336, Fischer, N.H.,
407
SESQUITERPENE LACTONES---ASTERACEAE Table XXHI
Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
11, 6/3 11, 6/3 1t, 6/3 2, 6a 2, 6a 2, 6a la, 6a la, 6a 2, 8/3 11, 6/3 4, 6/3 11, 6/3 11, 6/3 i 1, 6/3 4, 6/3 4, 6/3 4, 6/3 3, 6a 3, 6a 4, 8/3 4, 6/3 11, 6/3 11, 6/3 11, 6/3 11, 6/3 11, 6/3
948 737 948 948 948 948 274 272 948 430 825, 835 468 825,835 196 178 178 947 759 759 756 178 196, 430 196 196, 381 197 197
(1098)
Psilostachyin Psilostachyin B Psilostachyin C Reynosin Santamarin (=Balchanin) Santamarin, 2-epoxy Tamaulipin A Tamaulipin B Telekin, iso Cordilin Ambrosin, neo Psilostachyin B Psilostachyin C Altamisin Ambrosin Ambrosin, 2, 3-H, 2,3-epoxy Coronopilin Cumambrin A Cumambrin B (=Artenovin) Cumanin Damsin Psilostachyin Psilostachyin B Psilostachyin C Paulitin (=Dumosin) Paulitin, iso (unspecified isomer of Paulitin) Damsin
4, 6/3
825, 835
(1111) (1117) (1120) (1118) (1119) (1139) (10) (165)
Ambrosin Ambrosin, neo Ambrosiol Apoludin Apoludin, 2-acetyl Burrodin Chamissanthin Chamissarin
4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 8/3 la, 6a la, 8a
825 825 825 299 825 299 825 825
(1150) (1153) (1152) (594) (568) (573) (2) (26) (697) A. cordifolia (Gray) (t 151) Payne (1117) (1153) (1152) A. cumanensis HBK. (1154) (1111) (1116) (1099) (876) (875) (1141) (1098) (1150) (1153) (1152) (1156)
A. deltoidea (To~.)
Compound
Payne A. dumosa (Gray)
Payne
833 833 833 833 833 833 833 833
THE BOTANICALREVIEW
408
Table XXllI Continued.
Taxon
A. hispida Pursh. A. ilicifolia (Gray) Payne "A. jamaicensis"
A. maritima L. A. peruviana Willd.
A. polystachya DC. A. psilostachya DC.
Structure number (Fig. 32)
Compound
(166) (164) (1137) (1099) (1113) (1155) (112) (1150) (1153) (1152) (26) (1041) (8) (1111) (1098) (628) (618) (llll) (1098) (1152) (1111) (1098) (1130) (1138) (1145) (1152) (689) (688) (1111) (1120) (169) (1108) (1099) (1141) (1142) (1143) (1098)
Chamissellin Chamissonin Confertin Coronopilin Hymenin Dumosin Parthenolide Psilostachyin Psilostachyin B Psilostachyin C Tamaulipin B Tomentosin Tulipinolide Ambrosin Damsin Costus acid Ilicic acid Ambrosin Damsin Psilostachyin C Ambrosin Damsin Ambrosin, tetrahydro Peruvin Peruvinin Psilostachyin C Granilin Ivasperin Ambrosin Ambrosiol Artemisiifolin Confertiflorin, desacetyl Coronopilin Cumanin Cumanin-3-acetate Cumanin-diacetate Damsin
Skeletal type a la, 8a la, 8a 4,8/3 4,6/3 4,6/3 ll,6fl la, 6a ll,6fl ~1, 6/3 lt,6fl la, 6ct 10, 8fl la, 6a 4,6/3 4,6/3 17 17 4,6/3 4,6/3 ll, 6/3 4,6/3 4,6/3 4,6/3 4, 8/3 4,8/3 11,6/3 2, 8/3 2,8/3 4,6/3 4,6/3 la, 8a 4,6/3 4,6/3 4, 8/3 4,8/3 4, 8/3 4,6/3
Ref. 825,833 825,833 825,833 299 825,833 834 299, 833 299,833 299, 833 299, 833 825,833 825,833 825,833 457 457 825,835 825,835 468 468 468 6, 465 6, 870 375,424 5O9 755 381 924 924 947 601 947 947 947 292 292 292 947
SESQUITERPENE LACTONES--ASTERACEAE
4~
Table XXHI Continued.
Taxon
A. psilostachya var.
Structure number (Fig. 32)
Compound
Skeletal type s
Ref.
(1107) (179) (1112) (1150) (1153) (1152) (1099)
Damsin, 3-hydroxy Isabelin Parthenin P~ilostachyin Psilostachyin B Psilostachyin C Coronopilin
4, 6/3 la, 8a 4, 6/3 11, 6/3 11, 6/3 11, 6/3 4, 6/3
626 944, 946 292 600 599 513 405
(1137)
4, 8/3
766
(1150)
Confertin (cumanin, anhydro) Psilostachyin
11, 6/3
381
(1111) (1117) (1) (618) (1150) (1152) (1117)
Ambrosin Ambrosin, neo Costunolide Ilicic acid Psilostachyin Psilostachyin C Ambrosin, neo
4, 6/3 4, 6/3 la, 6a 17 11, 6/3 11, 6/3 4, 613
(1111) (1117) (1099) (1132.5)
Ambrosin Ambrosin, neo Coronopilin Coronopilin, dihydro
4, 4, 4, 4,
902 902 902 902 902 902 Seaman, F.C., UP. 303 303 303 303
(1113) (1131) (618) (1119)
Hymenin Hymenolin Ilicic acid Salsolin
4, 6fl 4, 6/3 17 4,613
903 903 303 903
(11ll) (1099) (1023) (1025)
Ambrosin Coronopilin Apachin Parthemollin, acetyl
4, 6fl 4, 6/3 10, 6/3 10, 6/3
268, 269 268,269 879, 943 943
coronopifolia
Farw. A. tenuifolia Spreng.
Hymenoelea H. monogyra Torr.
et Gray
H. platyspina Sea-
man H. salsola T. and G.
6/3 6/3 6/3 6/3
Iva I. acerosa (Nutt.)
Jackson I. ambrosiaefolia
Gray
410
THE BOTANICAL REVIEW Table XXHI
Continued.
Taxon 1. ambrosiaefolia Gray ssp. ambrosiaefolia Jackson I. angustifolia Nutt.
Structure number (Fig. 32) (1034) (1022)
1. axillaris Pursh.
(742) (684) (687) (688) (971)
I. axillaris Pursh. ssp. robustior
(969) (970) (970) (971)
I. asperifolia Less.
(Hook) Bassett
I. cheiranthifolia HBK. I. dealbata Gray I. frutescens L. ssp. frutescens 1. hayesiana A. Gray 1. imbricata Walt. I. microcephala
Nutt.
I. nevadensis M . E .
Jones I. texensis Jackson I. xanthifolia Nutt. (=Cyclachaena
(712) (690)
Skeletal type ~
Ref.
Xanthinin Ivambrin
10, 8a 10, 6/3
943 943
Ivangulin Ivangustin Asperilin Ivasperin Ivaxillarin Ivaxillin (=Diepoxyguaianolide) Ivaxillarin, anhydro Axivalin Axivalin IvaxiUarin Ivaxillin (=Diepoxyguaianolide) Microcephalin Ivalin
9, 2, 2, 2, 3, 3,
458 458 461 461 947, 456 456
Compound
(1026) (1046) (272)
Ivalbatin Ivalbin Frutescin
(690) (690) (1000) (1005) (712) (1099) (1112) (687) (688) (1111) (1099)
sesquiterpene lactones present (polymerized) Ivalin Ivalin Ivalin, pseudo Ivalin, pseudo, dihydro Microcephalin Coronopilin Parthenin Asperilin Ivasperin Ambrosin Coronopilin
8/3 8/3 8/3 8/3 6/3 ND
3, 6/3 3, 6/3 3,613 3, 6/3 3, ND
456 456 456 456 456
2, 8/3 2, 8/3
456 393
10, 6/3 10, 8a lb, 8/3
212 212, 393 392 455
2, 8/3 2, 8/3 3, 8/3 3, 8/3 2, 8fl 4,613 4, 6/3 2, 8/3 2, 8/3 4, 6/3 4, 6/3
404 404 432 432 406 269 269 461 461 667, 668 667, 668
411
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon xanthifolia Fresen.)
Structure number (Fig. 32)
Skeletal type a
Ref.
4, 6/3
667,668
(1105) (1009)
Coronopilin, anhydro (=Ambrosin, neo) Ivoxanthin Ziniolide
4, 6/3 3, 8/3
668,810 159
(1024)
Parthemollin
10, 6/3
389
(i 101) (1122) (ll01) (1100) (1122)
Tetraneurin Tetraneurin Tetraneurin Tetraneurin Tetraneurin
4, 6/3 4, 6/3 4, 6/3 4,613 4, 6/3
749 750 786 750, 786 750, 786, 951 750 750 750 750 750 750, 770 750, 770 768 768 750, 780 780 780 780 950 780 950 750, 750, 780
(1117)
Compound
Parthenice
P. mollis Gray Parthenium
P. alpinum Tort. et Gray P. alpinum (Nutt.) Torr. et Gray var. tetraneuris (Barneby) Rollins
A C A B C
(1121) Tetraneurin D P. bipinnitifidum (Or- (1111) Ambrosin (1117) Ambrosin, neo tega) Rollins (1106) Bipinnatin (1098) Damsin (1125) Hysterin (1126) Hysterin acetate (1110) Conch#sin A P. confermm Gray (I 114) Conch#sin B (1113) Hymenin (1158) Confertidiolide P. confertum Gray var. lyratum (1113) Hymenin (1125) Hysterin (Gray) Rollins (1101) Tetraneurin A (1123) Tetraneurin E (1124) Tetraneufin F P. confertum var. (1110) Conch#sin A (1113) Hymenin microcephalum Rollins (1104) Chiapin A P. fruticosum L. (1102) Chiapin B (1101) Tetraneurin A (1100) Tetraneurin B (1122) Tetraneurin C (1121) Tetraneurin D
4,6~ 4,6/3 4,6/3
4,6/3 4,6/3 4,6/3 4,6/3 4,6/3 4,6/3
4,6/3 11,6/3 4,6/3 4,6/3 4,6/3 4,6/3 4,6/3 4,6/3 4, 6/3 4,6/3 4,6/3 4,6/3
4,6/3 4,6/3 4,6/3
749, 749, 749, 749, 951 951
750 750 750 750
412
THE BOTANICAL REVIEW Table X X l l I Continued.
Taxon
Structure number (Fig. 32)
P. fruticosum Less.
Compound
Skeletal type a
Ref.
(1027) (i 100) Rollins (1122) (1121) (1123) P. hispidum Raf. (1122) (1123) P. hysteropherus L. (1099) (1125) (1112) (1101) P. incanum HBK. (1111) (1099) (1117) (1103) P. integrifolium L. (1122) (1123) P. ligulatum (Jones) (1103) Barneby (=P. al- (1104.5) pinum var. ligula- (1100) turn Torr. et Gray)
Fruticosin Tetraneurin B Tetraneurin C Tetraneurin D Tetraneurin E Tetraneurin C Tetraneurin E Coronopilin Hysterin Parthenin Tetraneurin A Ambrosin Coronopilin Coronopilin, anhydro Incanin (=Ligulatin B) Tetraneurin C Tetraneurin E Incanin Ligulatin A Tetraneurin B
10, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6[3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3
951,750 750 750, 951 750, 951 750, 951 750 750 178,713 770 465,750 713 774 750, 774 774 774 750, 950 750, 950 750 746 750
P. lozanianum Bart-
Tetraneurin B Tetraneurin C Tetraneurin D Tetraneurin E Confertin (=Cumanin, anhydro) Coronopilin Ligulatin B Tetraneurin B Tetraneurin D Incanin Oaxacin Tomentosin Stramonin B
4, 4, 4, 4, 4,
6/3 6/3 6/3 6/3 8/3
951 750 750 750 749
4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 4, 6/3 10, 8/3 4, 6/3
749 749 749 749 750 750 750 346
var. trilobatum
lett
P. schottii Greenm.
P. tomentosum L.
P. tomentosum var. stramonium
(Greene) Rollins
(1100) (1122) (1121) (1123) (1137) (1099) (1103) (1100) (1121) (1103) (1115) (1041) (1127)
413
SESQUITERPENE LACTONES--ASTERACEAE Table XXlII Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
Xanthatin Xanthinin Xanthinosin Xanthanene Xanthanodiene Xanthumin Xanthumin Xanthinin Xanthatin Xanthinin Xanthinosin Xanthanol Xanthinosin
10, 8a 10, 8ct 10, 8a 6, 8/3 6, 8/3 10, 8/3 10, 8/3 10, 8a 10, 8a 10, 8a 10, 8a 10, 8a 10, 8a
616 616 616 885 885 937 937 937 616 616 616 616 616
Xanthumin Xanthinin Xanthatin Xanthinin Xanthatin Xanthinin Xanthinin Xanthinosin Xanthatin Xanthatin (=Xanthinin, desacetyl) Xanthinin Xanthanol Xanthanol, iso Xanthatin (=Xanthinin, desacetyl) Xanthinin Xanthumin Xanthumanol (=Xanthuminol) Xanthumin, desacetoxy Xanthinosin Tomentosin
10, 8/3 10, 8a 10, 8a 10, 8a 10, 8a 10, 8a 10, 8a 10, 8a 10, 8a 10, 8a
535 242 254 232, 937 805 805 616 616 616 30
10, 8a 10, 8a 10, 8a 10, 8a
254 937 937 937
10, 8a 10, 8fl 10, 8/3
615 628,937 615
10, 8a 10, 8t~ 10, 813
615 615 615
Compound
Xanthium
(1043) (1034) (1033) X. canadense Mill. (1261) (1259) X. chasei Fern. (1042) X. chinense Mill. (1042) X. commune Britton (1034) X. inaequilaterum (1043) DC. (1034) (1033) (1028) X. indicum Koen. ex (1033) Roxb. X. occidentale Bert. (1042) X. orientale L. (1034) X. pennsylvanicum (1043) Wallr. (1034) X. riparium Lasche 0043) (1034) X. sibiricum Patnin (1034) ex Widder. (1033) (1043) X. spinosum (1043) X. brasilicum Veil.
X . s ~ u m a d u m L.
(1034) (1028) (1029) (1043) (1034) (1042) (1039) (1044) (1033) (1041)
414
THE BOTANICAL REVIEW
Table XXIII Continued. Structure number (Fig. 32)
Taxon
Compound
Skeletal type ~
Ref.
(15) Milleriinae
Clibadium (84)
C. surinamense
Costunolide, 14-hydroxy
la, 6a
275
Carabrone
10, 8fl
194
Helenalin Kingiolide
5,813 5, 8/3
194 194
Matficin
3, 6a
947
Achillin Artecalin Ridentin, iso Rupin A Matricarin, desacetoxy
3, 6a 2, 6a 1, 6~ 3, 6a 3, 6a
201 959 959 959 657
Matricin
3, 6a
947
Apressin Matricarin, desacetoxy Achillin Matricarin, desacetyl Matricarin, l 1-epi (=Achillin, acetoxy) Matricarin, 11-epi-desacetyl (=Achillin, hydroxy) Micranthin (ClaH~6Or)
3, 3, 3, 3, 3,
6a 6a 6a 6a 6a
911 787 933 933 515,933
3, 6a
515,933
ND
658
Heliantheae member not assigned to subtribe Kingianthus K. paradoxus H. Ro- (1049)
bins.
(1195) (1200)
6. ANTHEMIDEAE Achillea A. asplenifolia Went (=A. millefoliurn var. asplenifolium Farwell) A. atrata L. A. biebersteenii Afawasiev A. cartilaginea Ledeb. A. collina J. Becker (=A. millefolium
(1312)
(912) (616) (421) (896) (903) (1312)
L.) A. depressa L. A. eriophora DC. A. lanulosa Nutt.
(800) (903) (912) (905) (915) (913)
A. micrantha Willd.
SESQUITERPENE LACTONES--ASTERACEAE
415
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
A. millefolium L.
(142) (1312) (139) A. millefolium L.
(959)
Compound Achillea lactone (C1sH2203) Austricin (ClsHisO4) Balchanolide acetate Matricin Millefin Miilefolide (C15H2203) Achillicin
Skeletal typea
Ref.
ND ND la, 6a 3, 6a la, 6a ND 3, 6a
471 897 471 947 521 471 33
3, 6a 3, 6a
354,355 354, 355
3, 6a 3, 6a 3, 6a
515 515 947
3, 6~
521
3, Acid
139
ssp. collina Becker A. santolina L.
A. sibirica Ledeb. A. stricta Schleich.
(912) (913)
Santolin (=Achillin) Santolinol (=Achillin bydroxy) (913) Matricarin, ll-epi, desacetyl (903) Matricarin, desacetoxy (1312) Matricin
ex Koch Ajania A. fastigiata (C.
(768)
Ayanin
Winkler) Poljak. Anthemis A. aciphylla Boiss vat. discoidea
(1021.5) Aciphylla acid (=Guaian-12acid, la-H-4-dehydro-a-)
Boiss A. cretica L. ssp. montana (Brique)
(398)
Costunolide, cis, cis, 3aacetoxy-8fl-hydroxy
ld, 6a
139
(112) (121)
Parthenolide Parthenolide, 9fl-acetoxy
la, 6a la, 6a
139 139
A. cupaniana Tod.
(180)
Pyrethrosin (=Chrysanthin)
la, 8a
275
ex Nym. A. nobilis L.
(281)
Nobilin
lc, 6a
(298) (280)
Nobilin, 3-dehydro Nobilin, 3-epi
lc, 6a lc, 6a
50, 477, 721 477 477
Grierson A. cretica L. ssp. tenuiloba DC.
Grierson
416
THE BOTANICAL REVIEW Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(307) (424)
Nobilin 1,10-epoxy Nobilin, iso, hydroxy
lc, 6a lc, 6a
477 808
(964)
Absinthin
3, 6a
43,672, 673 672 17 15, 16 305,373 877 877 877 531 267 506 531 614, 872 488 488 844 844 488 488 489 490 488 843 529 529 529 529 529 529 529 529 256b 256b 256b
Artemisia A. absinthium L.
A. amoena Poljak. A. anethifolia Web. A. annua L. A. arborescens L. A. arbuscula Nutt.
A. arbuscula Nutt.
ssp. arbuscula
A. arbuscula Nutt.
ssp. therniopola Beetle A. argentea L'Her.
(965) (659) (138) (961) (522) (523) (521) (644.5) (523) (1323)
Anabsinthin Arabsin Artabin Artabsin Pelenolide A, keto Pelenolide B, keto Pelenolide, hydroxy Santonin Pelenolide B, keto Arteannuin B Quing Hau Sau (932) Arborescin (=Sieversinin) (613) Arbusculin A (619) Arbusculin E (166) Laurenobiolide, desacetyl (186) Spiciformin (613) Arbusculin A (582) Arbusculin B (591) Arbusculin C (665) Arbusculin D (619) Arbusculin E (447) Badgerin (166) Laurenobiolide, desacetyl (186) Spiciformin (435) Tatridin A (428) Tatridin B (613) Arbusculin A (582) Arbusculin B (591) Arbusculin C (665) Arbusculin D (932) Arborescin (437) Argentiolide A (438) Argentiolide B
3, 6a 2, 6a 1, 6a 3, 6a 1, 6a 1, 6a 1, 6a 2, 6a 1, 6a 23 23 3, 6a 2, 6a 2, acid la, 8a la, 8~ 2, 6a 2, 6a 2, 6a 2, 6a 2, acid 1, 8~ la, 8a la, 8a 1, 6a 1, 6a 2, 6a 2, 6a 2, 6a 2, 6c~ 3, 6a 1, 8a 3, 6a
417
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon
Structure number (Fig. 32)
(689) (25) A. austriaca Jacq. (905) (644.5) A. balchanorum H. (568) Krasch. (141) (143) (190) (6) (1) A. bigelovff Gray (885) A. brevifolia Wall (643) A. caerulescens L. (643) (644) (651) A. californica Less. (616) A. camphorata Viii. (643) A. cana Pursh. (905) A. cana ssp. cana (893) Pursh. (894) (906) (905) (415) (417)
A. ashurbajevii
WinE.
Compound Granilin Hanphyllin Matricarin, desacetyl Santonin Balchanin (=Santamarin) Balchanolide Balchanolide, hydroxy Balchanolide, iso Costunolide, 8-hydroxy Costunolide Arbiglovin a-Santonin a-Santonin /3-Santonin Artemin Artecalin a-Santonin Matricarin, desacetyl Artecanin Canin Matricarin Matricarin, desacetyl Ridentin Artevasin
Skeletal typea 2, 8/3 la, 6a 3, 6a 2, 6a 2, 6a la, 6a la, 6a la, 8a la, 6a la, 6a 3, 6a 2, 6a 2, 6a 2, 6a 2, 6a 2, 6a 2, 6a 3, 6~t 3, 6a 3, 6a 3, 6a 3, 6~ 1, 6~ 1, 6a
Ref. 963 963 53 l, 739 531 864, 940 374 374, 868 374,868 869 531 947 519 947 531 531 291 519, 531 60 60 60, 585 585 585 494 531
Type 1: A. canaPursh, ssp. viscidula(Oster-
hou0 Beetle
(903)
Matricarin, desacetoxy
3, 6a
842
(945) (943) (942)
Viscidulin A Viscidulin B Viscidulin C
3, 6a 3, 6a 3, 6a
842 842 842
2, 6a 2, 6a 2, 6a
529 529 529
Type 2: (613) (582) (591)
Arbusculin A Arbusculin B Arbusculin C
418
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Tabarin Vulgarin Ludartin Ludartin, 11, 13-dihydro Matricin Grossmisin Matricarin, desacetyl Rutifolin (CIsHlsO~) Canin Artemisin a-Santonin fl-Santonin tO-Santonin Temisin Santonin
2, 6a 2, 6a 3, 6a 3, 6a 3, 6a 3, 6a 3, 6a ND 3, 6a 2, 6a 2, 6a 2, 6a 2,613 7, 6a 2, 6or
318 318 531 531 856 551,961 551 551 531 894 519, 531 225, 226 225 947 531
(643) (644)
a-Santonin /3-Santonin
2, 6a 2, 6a
531,799 531,917
(567) (595) (609) (770) (794) (764)
2, 6a 2, 6a 2, 6a 3, 6a 3, 0a 3, 6a
611 584 610 584 584 390
(567) (710) (568) (774) (656) (662)
Douglanine Ludovicin B Arglanine Arteglasin A Arteglasin B Matricarin, desacetyl-11, 13dehydro Douglanine Meridianone Santamarine Yomogiartem Colartin Finitin
2, 2, 2, 3, 2, 2,
6a 8/3 6a 0a 0a 6/3
(644) (669) (652) (643)
fl-Santonin Alkhanin Erivanin a-Santonin
2, 2, 2, 2,
6a 6a 6a 6a
613 612, 613 613 612 905 226, 525, 531 525,531 841 265 352
A. canariensis Less.
(655) (654) A. carruthff Wood ex (769) Carruth. (928) (1312) A. caucasica Willd. (914) (905)
A. cina Berg. ex Pol-
jak.
A. cina var. mogoltavica Poljak. A. compacta Fisch.
ex DC. (=A. maritima L.) A. douglasiana Bess. (=A. ludoviciana Nutt.)
A. dracunculoides
(894) (645) (643) (644) (664) (1066) (644.5)
Pursh. A. feddei Lev. et
Van.
A. filifolia Torrey A. finita Kitigawa
A. fragrans Willd.
(=A. maritima L.)
Ref.
SESQUITERPENE LACTONES--ASTERACEAE
419
Table XXIII Continued.
Taxon
A. fragrans Willd. var. erivanica Bess. A. franserioides Greene A. granatensis Boiss
A. halophyla Krasch. A. hanseniana Grossh. [=A. szowitziana (Bess.) Grossh.] A. herba-alba Asso.
A. hybrida Lag. (=A. maritima ssp. salina Gams var. hybrida Lag.) A. incana Keller
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(654) (651) (650) (640) (652)
Tauremisin (=Vulgarin) Artemin Arsubin Taurin Erivanin
2, 2, 2, 2, 2,
6a 6a 6a 6a 6a
531 531 531 531 531
(871)
Artefransin
3, 6a
572
(639)
2, 6a
332
(641)
Eudesm-4-en-6, 12-olide,1 hydroxy-6/3,7a 1lfl-H Eudesm-4, en-6, 12-olide, 1
2, 6a
332
(654) (651) (643) (651) (726) (640)
oxo-6fl,7a 1lfl-H Tauremisin Artemin a-Santonin Artemin Ashurbin Taurin
2, 2, 2, 2, 2, 2,
531 25 25 840 840 840
(145) (148) (153) (643) (644)
Herbolide A Herbolide B Herbolide C t~-Santonin /3-Santonin
la, 6a la, 6a la, 6a 2, 6a 2, 6a
836 836 836 53 l, 534 934
(905) (672)
Matricarin, desacetyl Mibulactone
3, 6a 2, 6a
739 Bohlmann,
6a 6a 6a 6a 8/3 6a
F.,
A. jacutica Drobov. A. judaica L.
(643) (932) (523) (654) (654)
a-Santonin Arborescin (=Sierversinin) Pelenolide B, keto Judaicin (=Tauremisin) Vulgarin (=Tauremisin)
2, 6a 3, 6a 1, 6a 2, 6a 2, 6a
UP. 947 49 49 531 531
420
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon A. juncea Kar. et
Kir.
Structure number (Fig. 32) (905)
Skeletal type a
Ref.
Matricarin, desacetyl Santonin Santonin
3, 6a 2, 6a 2, 6~
527 531 531
Compound
A. juncea var. mac-
(644.5) (644.5)
rosciadia Poljak. A. kemrudica
(651)
Artemin
2, 6a
10
(776) (906) (905)
Chrysartemin A Matricarin Matricarin, desacetyl
3, 6a 3, 6a 3, 6a
(1) (739)
Costunolide Lumisantonin a-Santonin /3-Santonin AchiUin
la, 6~ 2, 6a 2, 6a 2, 6a 3, 6a
765 531 239, 531, 765 374 481,820 531 531 716
Achillin, 1,10-epoxy Achillin, 1,10-epoxy-8a-hydroxy AchiUin Achillin, hydroxy Matricarin, desacetyl Santonin
3, 6a 3, 6a
325 325
3, 3, 3, 2,
6a 6a 6a 6a
531 531 799 531
Santonin
2, 6a
639
Matricarin, desacetyl Matricarin, desacetoxy Santonin Achillin Matricarin, desacetyl Ludalbin
3, 3, 2, 3, 3, 2,
6a 6a 6a 6a 6a 6~
531 531 531 239 239 301
Douglanine
2, 6a
571
Krasch. A. klotzchiana Bes-
ser
A. kurramensis Qua-
zilbash
(643) A. lagocephala
Fisch. ex Bess. USSR (Bess.) DC. A. lanata Willd. (=A. pedemontana
(644) (912)
(934) (935)
Balbis) (912) (913) A. lercheana Web. et (905) Stechm. (=A. fra- (644.5) grans) A. lercheana Web. et (644.5)
Stechm. var. dahurica
(905) (903) (644.5) A. ludoviciana Nutt. (912) (905) (569) A. ludoviciana Nutt. ssp. albula (Woot.) Keck (567) A. ludoviciana Nutt. A. leucoides Schrenk
421
SESQUITERPENE LACTONES--ASTERACEAE
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
2, 6a 2, 6a 2, 6a 2, ND 3, 6a 3, 6a
571 571 571 571 680 680
3, 6a
680
(767) (654) (645)
Matricarin, 11,13-dehydrodesacetyl Parishin Vulgarin Artemisin
3, 6a 2, 6a 2, 6a
680 680 947
(645)
Artemisin
2, 6a
Artemin (= Mibulactone) Santonin, 11-oxy ~k-Santonin Santonin, desmotropa Temisin a-Santonin /3-Santonin ~-Santonin, deoxy /3-Santonin
2, 6a 2, 6a 2,613 2, 6a 7, 6a 2, 6a 2, 6a 2, 6a 2, 6a
531,878, 894 275 26 218, 531 200 531 531 531 531 799
Artemin Gallicin Lumisantonin Santonin a-Santonin
2, 6a 1, 6a 2, 6a 2, 6a 2, 6a
531 326 639, 819 640 934
Arglanine Armexin diacetate (diol is natural product) Artemorin Chrysartemin A
2, 6a 2, 6/3
765 767
1, 6a 3, 6a
767 765
ssp. mexicana (Willd.) Keck
(572) (595) (588)
A. ludoviciana var.
(912) (893)
ludoviciana Nutt.
Compound
Ludovicin A Ludovicin B Ludovicin C Ludovicin D Achillin Artecanin (=Chrysartemin-
B) (764)
A. macrocephala
Jacquem ex Bess. A. maritima L.
A. maritirna L. var.
(651) (646) (664) (647.5) (1066) (643) (644) (633) (644)
boschniakiana
Bess. (651) (422) (739) A. maritima var. (644.5) monogyra (643) A. maritima var. salina Koch (609) A. mexicana Willd. ex Spreng [=A. lu- (615) doviciana ssp. (413) mexicana (Willd.) (776) Keck] A. maritima L. ssp. gallica Willd.
422
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon A. mexicana Willd.
A. mexicana var. angustifolia
A. meyeriana Bess.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(567) (795) (643) (589) (610) (8) (609) (643)
Douglanine Estatiatin c~-Santonin Armexifolin Artemexifolin Tulipinolide Arglanine a-Santonin
2, 0a 3, 6a 2, 6a 2, 6~ 2, 6~ 1a, 6~ 2, 6a 2, 6~
818 818 926 783 783 531,783 531 275
(643)
a-Santonin
2, 6a
275
(671) (651) (672) (739) (644) (643)
Monogynin Artemin (=Mibulactone) Mibulactone Lumisantonin /3-Santonin a-Santonin
2, 2, 2, 2, 2, 2,
531 516b 531 531 531 926
Santonin
2, 6a
531
Cumambrin A (=Artenovin acetate) Cumambrin B (=Artenovin) Cumambfin B, 8-deoxy Novanin a-Santonin Yomogin Finitin a-Santonin Arbusculin A Arbusculin C
3, 6a
487
3, 6a 3, 6a la, 6a 2, 6a 2, 8/3 2, 6/3 2, 6a 2, 6a 2, 0a
487 487 493 519 284 333 333 489 489
var. divaricata
Grossh. (=A. fragrans Willd.) A. mogoltavica P.
Poljakov A. m o n o g y n a
Waldst. et Kit. (=A. fragrans)
A. neomexicana
6 6a 6~ 6~ 6~ 6a
Greene ex Rydb. A. neomexicana
Woot. [=A. ludoviciana ssp. mexicana (Willd.) Keck] A. nova Nels.
A. pauciflora Weber A. princeps Pamp. A. ramosa C. Sm. ex
Link A. rothrockii Gray
[=A. tridentata
(644.5)
(876) (875) (877) (27) (643) (685) (662) (643) (613) (591)
423
SESQUITERPENE LACTONES--ASTERACEAE Table XXHI Continued.
Taxon rothrockii (Gray)
Hall et Clements] A. rutifolia Steph. ex Spreng. A. salina Willd. A. santolina Schrenk
A. schrenkiana Ldb.
F1. Ross. A. serotina Bunge A. sibirica Maxim A. sieversiana Ehr.
ex Willd.
A. spicata Wulf. ex Jacq. (=A. atrata
Structure number (Fig. 32)
Compound
(584) Rothin A ( 5 9 2 ) Rothin B Rutifolin (CI~H~rOs) (894) Canin (644) /3-Santonin (658) Arsanin
Skeletal type a 2,6a 2,6a ND 3,6a 2,6a 2,6a
Ref.
2,6a 2,6a 2,6a 2,6a 2,6a 3,6a 3,6a 3,6a 3,6a 3,6a 3,6a 3,6a 2,6a
489 489 551 531 531 11, 12, 13 11,634 11, 14 716 716 799 275 672, 673 656 669 655 656 531 649a
(643) a-Santonin (644) /3-Santonin (642) Santonin, 1,2-dihydro (643) a-Santonin
2,6a 2,6a 2, 6a 2,6a
1 1 35 53t
(650)
Arsubin
2,6a
891,892
Santonin
2,6a
531
Artemin Arsubin Tauremisin (=Vulgarin) Taurin
2,6a 2,6a 2,6a 2,6a
795,899 25 526, 796 531
(657) Arsantin (638) Artesin (643) a-Santonin (644) /3-Santonin (644) /3-Santonin (905) Matricarin, desacetyl (964) Absinthin (932) Arborescin (961) Artabsin (1313) Sieversin (932) Sieversinin (=Arborescin) (933) Globicin (568) Santamarin
Lam.) A. spicigera C. Koch A. stellariana Besser A. szowitziana
(Bess.) Grossh. A. sublessingiana (B.
A. Keller) Krasch. ex Poljak. A. sublessingiana (644.5) var. gorjaevii Pol-
jak. A. taurica Willd.
(=A. fragrans)
(651) (650) (654) (640)
424
THE BOTANICAL REVIEW Table XXllI Continued.
Taxon A. tenuisecta Nevski A. tenuisecta var.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(643) (651) (644.5)
a-Santonin Artemin Santonin
2, 6a 2, 6a 2, 6a
522 531 531
(644.5)
Santonin
2, 6a
531
(644.5)
Santonin
2, 6a
531
(644.5)
Santonin
2, 6a
531
glaucina Poljak. A. tenuisecta var. karataviensis Pol-
jak. A. terrae-albae
Krasch. ssp. massagetovii Krasch. A. terrae-albae
Krasch. ssp. kurdaica Poljak. A. tilesii Ledeb. (=A. vulgaris L.)
(922) (906)
Artilesin B Matricarin
3, 6a 3, 6a
459 459
A. transiliensis Pol-
(905) (643)
Matricarin, desacetyl a-Santonin
3, 6a 2, 6a
459 934
Santonin
2, 6a
531
(166) (186) (435) (903) (960)
Laurenobiolide, desacetyl Spiciformin Tatridin Matricarin, desacetoxy Photosantonic lactone, iso
la, 8a la, 8a 1, 6a 3, 6a 3, 6a
844 843 486 486 486
3, 6a 3, acid 3, 6a 1, 6a 2, 6a 1, 6a 3, 6a
486 302, 486 486 486 302,486 302,486 302
(415)
Parishin A Parishin B Parishin C Ridentin Dentatin A Dentatin B Matricarin, desacetoxy (=Leucodin) Ridentin
1, 6a
302, 486, 494
jak. A. transiliensis var.
(644.5)
boamensis Poljak. A. tridentata Nutt.
A. tridentata Nutt.
ssp. Parishii (Gray) Hall et Gray [=A. tridentata Nutt. (767) ssp. tridentata f. (1021) parishii (Gray) (904) Beetle] (415) A. tridentata Nutt. (600) ssp. tridentata (416) (903)
425
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
A. tridentata Nutt.
(435) (428) (906) (613)
Tatridin A Tatridin B Matricarin Arbusculin A
1, 6a 1, 6a 3, 6a 2, 6a
302,486 302, 486 302 531,846
ssp. vaseyana (Rydb.) Beetle
(582) (591)
Arbusculin B Arbusculin C
2, 6a 2, 6a
(417) (761) (415) (584) (592) (447) (166) (186) (435) (428) (613) (582) (591) (764)
Artevasin Leucodin, dehydro Ridentin Rothin A Rothin B Badgerin Laurenobiolide, desacetyl Spiciformin Tatridin A Tatridin B Arbusculin A Arbusculin B Arbusculin C Matricarin, 11,13-dehydro, desacetyl Sant-3-en-6,12-olide-C,1ohydroxy Sant-4(14)-en-6,12-olide C, 1/3-hydroxy Canin (=Chrysartemin B) Matricarin Matricarin, desacetyl Artecalin Colartin Cumambrin A Cumambrin B (=Artenovin) Cumambrin, 8-deoxy Cumambrin B, 3,4-oxide Novanin Ridentin
1, 6a 3, 6a 1, 6a 2, 6a 2, 6a 1, 8a la, 8a la, 8a 1, 6a 1, 6a 2, 6a 2, 6a 2, 6a 3, 6a
531,846 529, 531, 846 29, 59 529 486, 494 529, 530 530 529, 531 529, 531 529, 531 529, 531 529, 531 846 846 846 846
2, 6a
846
2, 6a
846
3, 6~ 3, 6~ 3, 6a 3, 6a 2, 6a 3, 6~ 3, 6a 3, 6a 3, 6a la, 6~ 1, 6a
845 845 845 291 488 487 487 487 492 493 491,494
A. tridentata Nutt. ssp. vaseyana (Rydb.) Beetle f. spiciformis (Oster-
hout A. tridentata Nutt. spp. wyomingensis Beetle et Young
(635) (649) A. tripartita Rydb.
A. tripartita Gray ssp. rupicola Beetle
(894) (906) (905) (616) (656) (876) (875) (877) (892) (27) (415)
426
THE BOTANICALREVIEW Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
(423) (596) (778) (790) (896) (897) (912) A. tripartita ssp. tri(893) partita (417) (894) (906) (905) (596) A. turanica Krasch. (644.5)
Compound
Skeletal type a
Ridentin, dihydro Ridentin B Rupicolin A Rupicolin B Rupin A Rupin B Achillin Artecanin Artevasin Canin Matricarin Matricarin, desacetyl Ridentin B Santonin
1,6a 2,6a 3,6a 3,6a 3,6a 3,6a 3,6a 3,6a 1,6a 3,6a 3,6a 3,6a 2,6a 2,6a
494 491 492 492 492 492 529 529 529 529 529 529 529 531
German Collection: Artemorin
1,6~
283,295, 296 283,296
Ref.
var. diffusa
Krasch. ex Poljak. A. verlotorum La
(413)
Motte (419)
Verlortorin (=Peroxyparthenolide) Verlotorum, anhydro (=Dihydroartemorin)
1,6a 1,6~
283,295, 296
Vulgarin Tauremisin (=Vulgarin) Psilostachyin Psilostachyin-C a-Santonin
2,6a 2,6a 11,6/3 ll,6fl 2,6ot
296 288,296 531 531 926
(762)
Matricarin, 11, 13-dehydro
3,6a
155
(887) (888)
Athanadregeolide Athanadregeolide, 8a-hydroxy Athanadregeolide, 10-epi
3,6a 3,6a
105 105
3,6a
105
(418)
Australian collection: A. vulgaris L.
A. wrightii Gray
(654) (654) (1150) (1152) (643)
Athanasia A. coronopifolia Harv. A. oregeana (DC.)
Harv.
(889)
427
SESQUITERPENE LACTONES--ASTERACEAE
Table XXIII Continued.
Taxon A. montana Wood
Structure number (Fig. 32) (754) (755) (756) (757) (758) (760)
Compound
Skeletal type a
Ref.
Athamontanolide 8a-acetoxy-4-anhydro Athamontanolide, 8a-isobutyryloxy-4-anhydro Athamontanolide 8a-acetoxy Athamontanolide, 8a-isobutyryloxy Athamontanolide 8a-acetoxy-4-epi Athamontanolide. 8a-[2methylbutyryloxy]-4-epi
3, 6a
105
3, 6a
105
3, 6a
105
3, 6a
105
3, 6a
105
3, 6a
105
Nobilin
lc, 6~
48
Bohlmann, F., UP. Bohlmann, F., UP. Bohlmann, F., UP. 813 247 247 206 34, 896 246, 247 275 83 83
Chamaemelum C. nobile
(281)
Chrysanthemum C. achilleae L.
(1)
Costunolide
la, 6a
C. achilleae L.
(112)
Parthenolide
la, 6~
(912)
Achillin (sterochemistry of C13 not specified)
(652) (426) (677)
Erivanin Chrysanolide Chrysanin (=Tachillin) Pyrethol Pyrethrosin (=Chrysanthin) Cyclopyrethrosin, dihydro-B Pyrethrosin (=Chrysanthin) Costunolide Laurenobiolide, desacetyl (=Spiciformin)
C. balsamita L. C. cinerariaefolium
Vis.
C. coccineum Willd. C. ferulaceum
(Webb. ex Sch. Bip.) Sund.
(180) (678) (180) (1) (166)
2, 6a 1, 8ct 2, 8ct 3, 6a la, 8a 2, 8c~ la, 8a la, 6a la, 8a
428
THE BOTANICALREVIEW Table XXIII
Continued.
Taxon C. indicum L. C. morifolium Ramat
C. parthenium Beruh.
C. poteriifolium (Ledeb.) Borhm. C. punctatum Pers.
Structure number (Fig. 32) (770) (982) (966) (776) (895) (776) (895) (112) (594) (568) (397) (795)
Compound Arteglasin A Yejuhua lactone Chlorochrymorin Chrysartemin A Chrysartemin B (=Canin) Chrysartemin A Chrysartemin B Parthenolide Reynosin (T) Santamarin (=Balchanin) Costunolide, cis, cis-2ct-hydroxy Estafiatin
Skeletal type a
Ref.
3, 6~ 3, 6 22, 6a 3, 6a 3, 6~ 3, 6~ 3, 6a la, 6a 2, 6a 2, 6a ld, 6a
366 211 692 693 693 765 693,765 855 765 778 79
3, 6a
Bohlmann, F., UP.
Cotula
C. coronopifolia
(795) (761)
C. hispida (DC.) Harv.
(1) (44) (761)
Estafiatin Lidbeckialactone (=Leucodin, dehydro) Costunolide Costunolide, 3fl-isovaleryloxy Lidbeckialactone (=Leucodin, dehydro)
3, 6~ 3, 6a
162a 162a
la, 6a la, 6ct
162a 162a
3, 6ct
162a
Chrysartemin B Cumambrin A (=Artenovin acetate) Handelin
3, 6~ 3, 6a
886 888,890 889
Hanphyllin
3 (dimer), 6a la, 6ct
Leucodin, dehydro
3, 6~
135
Handelia
H. trichophylla
(895) (876) (963) (25)
887
Lidbeckia
L. pectinata Berg.
(761)
SESQUITERPENE LACTONES--ASTERACEAE
429
Table XXIII Continued. Structure number (Fig. 32)
Skeletal type a
Ref.
3, 6a 3, 6a 3, 6a 3, 6a 3, 6a la, 6a 3, 6a 3, 6a
209 947 207,208 275, 614 210, 722 275 135 135
(120)
Matricarin Matricarin, desacetyl Matricin Arborescin (=Sieversinin) Globicin Costunolide Achillin Matricafin, desacetoxy ( = Leucodin) Parthenolide, 9a-acetoxy
la, 6a
138
(753)
Zuurbergenin
3, 6a
143
(967) (968) (813)
Osmitopsin Osmitopsin, 1, 8-epoxy Osmitopsin, 4, 5-epoxy
3, 6~ 3, 6a 3, 6a
136, 275 136, 275 136, 275
(775)
Estafiatin, isoepoxy
3, 6
135
(761)
Leucodin, dehydro
3, 6a
136
(652) T. balsamita L. T. chiliophyllum Sch. (425) Bip. T. myriophyllum (1020) Willd.
Erivanin Tamirin
2, 6a 1, 8a
813 631
Tanamyrin
T. parthenium (L.) Schultz Bip.
Parthenolide
3, 8 (lac- 632 tone position uncertain) la, 6a 855
Taxon
Compound
Matriearia M. chamomilla L.
M. globifera (Thunb.) Druce M. nigellaefolia DC. M. suffruticosa (L.) Druce M. suffruticosa var. leptoloba M. zuurbergensis Oliv.
(906) (905) (1312) (932) (933) (1) (912) (903)
Osmitopsis O. asteriscoides (L.) Cass.
Pentzia P. elegans DC.
Peyrousea P. umbellata (L.f.) Fourc. (=Cotula umbellata L.)
Tanacetum
(112)
THE BOTANICAL REVIEW
430
Table XXHI Continued.
Taxon T. pseudoachillea C. Winkl.
T. santolina C.
WinE. T. tanacetioides
Structure number (Fig. 32)
Compound
Skeletal type a
(677) (440) (182) (679) (876) (875) (279)
Tachillin (=Chrysanin) Tanachin Tanacin Tanapsin Cumambrin A Cumambrin B Germacranolide, 4, 5-cis,
2, 8a 1, 8/3 la, 8a 2, 8a 3, 6a 3, 6a lc, 6a
247 953,954 247 957 958 958 132
(568) (611) (594) (590)
3/3-hydroxy Santamarin (=Balchanin) Arbusculin, l/3-hydroxy Reynosin Tanacetin Tanacetum lactone I
2, 2, 2, 2,
132 807 807 807 340
(DC.) Tzvel. T. vulgare L. [=Chrysanthemum vulgare (L.) Bernh.]
6a 6a 6a 6a
Ref.
(C15H2204)
Tanacetum lactone II
340
(C15H2204) Tanacetum lactone II1 (C15H22OJ
340
Ursinia U. alpina N. E. Br.
(351) (711) U. anethoides N. E. (156.5) Br. (155) U. anthemoides (156) Gaertn. (157)
Costunolide, 9/3-hydroxy Ursialpinolide Ursinolide B, 3-desacetoxy
la, 0a 2, 8/3 la, 6/3
163 163 163
Ursiniolide A Ursiniolide B Ursiniolide C
la, 6/3 la, 6/3 la, 6/3
811 811 811
7. SENECIONEAE A. 'Cacalioids' I. 'INSULARES'
Nod~a
1~
II. 'WOODY CACAL1OIDS'
Senecio S. Greyi Hook f.
Furanoeremophilane 3ot-(R)-
10/3-H
18
Bohlmann, F.,
UP.
SESQUITERPENE LACTONES---ASTERACEAE
431
Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
10, acid
114
10, acid 10, acid
114 114
t8
114
6
114
6
113
6, acid
114
(1) R = tiglinoyloxy
(2) R = (5-hydroxytiglinoyloxy) Bedfordia
B. salicina DC.
(1051) (1050)
(1290)
(1291)
(1347)
Bedfordia acid, 4-oxo (xanthane acid) Bedfordia acid, 4-hydroxyBedfordia acid methylester, cyclo (Methylester derivative of natural product) Furanoeremophilane, 10-/3H Ligularenolide, 8/3, 8'/3-bis1, 9-dihydro (=Bedfordia symmetric dimeric lactone) Ligularenolide, 8/3, 8'a-bis1, 9-dihydro (=Bedfordia unsymmetric dimeric lactone) Decal-8-one,4fl, 5fl-dimethyl-7/3-[ 1-carbomethoxyethyl]-9,10 dehydro (Methylester derivative of natural product)
Senecio
S. yegua S. praecoxDC.
no furanoeremophilane-type compounds Euryopsin-9-one, 6fl-(R) (1) R = isovaleryloxy (2) R = (3-methylvaleryloxy) (3) R = (3-methyl-2-transpentenoyloxy) Furanoeremophilane, 1/3,10/3-epoxy-6/3-(R) (1) R = isovaleryloxy
164 18
142
18
142
432
THE BOTANICAL REVIEW
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(2) R = isobutyryloxy (3) R = angeloyloxy (4) R = methylacryloxy Furanoeremophilane, 3a-(3-
18
142
18
142
18
142
18
142
Furanoeremophil-l-one, 6/3angeloyloxy-9,10-dehydro
18
110
Euryopsin-9-one, 6/3-(R) (1) R = angeloyloxy (2) R = senecioyloxy
18
1 l0
methyl-2-trans-pentenoyloxy)- 10t~-H Euryopsin-9-one, 6/3-isovaleryloxy Furanoeremophil-9-one, 6/3(R)-10ct-H (1) R = (3-methyl-2-transpentenoyloxy) (2) R = 3-methylvaleryloxy (3) R = senecioyloxy Furanoeremophil-9-one, 1/3,10/3-epoxy-6/3-(R) (1) R = 3-methylvaleryloxy (2) R = (3-methyl-2-transpentenoyloxy) (3) R = angeloyloxy (4) R = isovaleryloxy (5) R = isobutyryloxy (6) R = methylacryloxy
S. petasites DC.
Roldana Lallave & Lex
Aromatic furanoeremophilane
164
Tetradymia T. glabrata A. Gray
Furanoeremophilane, 10/3hydroxy
18
505
Furanoeremophilane,
18
142
Senecio
S. salignus DC.
lfl,10fl-epoxy-6/3-(R)
433
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(1) R = isobutyryloxy (2) R = isovaleryloxy (3) R = angeloyloxy Furanoeremophil-6-
18
142
18
142
18
142
Furanoeremophilane, 6/3-hydroxy
18
161
Furanoeremophilane, 6fl-angeloyloxy
18
161
Furanoeremophilane, 6/3-senecioyioxy
18
161
Furanoeremophilane, 3fl(R)-6fl-(R')- 10/3-n (1) R = angeloyloxy, R' = angeloyloxy (2) R = senecioyloxy, R' = angeloyloxy (3) R = acetoxy, R' = angeioyioxy (4) R = acetoxy, R' = senecioyloxy
18
one, 1/3,10/3-epoxy Furanoeremophil-9-one, 1/3, 10/3-epoxy-6/3-angeloyloxy Furanoeremophil-9-one, 1/3, 10/3-epoxy-4-hydroxy-6/3isobutyryloxy Gyuoxys G. psdophyHaKlatt
(5) R = angeloyloxy, R' = acetoxy Furanoeremophil-9-one, 3/3acetoxy-6/3-angeloyloxy-
161 161 161 161 161 18
161
18
88
18
88
10/3-n G. sancti antonii Hi-
eron
Furanoeremophilane, 3/3, 6/3-diangeloyloxyFuranoeremophilane, 3/3-senecioyloxy-6/3-angeloyloxy-10/3-H
434
THE BOTANICAL REVIEW Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
18
88
18
88
18
88
Adenostylone Adenostylone, desisopropionyl
18 18
364, 812 364
Neoadenostylone Adenostylone, iso
18 18
364, 812 364,812
furanoeremophilanes present
18
311
Cacalon Cacalol Decomposition product?
18 19 18
311 751 751
(1341)
Cacalolide
19
653
(1292)
Fukinanolide (=Bakkenolide - 14 A) Fukinanolide (= Bakkenolide 14 A)
367
Fukinanolide (=Bakkenolide A)
Bohlmann,
Compound Furanoeremophilane, 3fl-angeloyloxy-6O-acetoxy-
10t3-H Furanoeremophilane, 3a-senecioyloxy-6/3-acetoxy-
1O~-H Furanoeremophilane, 3a-tiglinoyloxy-6~-acetoxy-
10&H III. 'HERBACEOUSCACALIOIDS' Adenostyles A. alliarieae Kern
Psacalium Psacalium (2 spp.) Cacalia C. ampuUacea Greenm. C. delphiniifolia Sieb. et Zucc. C. hastata L. ssp. orientalis C. hastata L. var. Tanakae
(1292)
653
Ligularia L. calthaefolia (Max- (1292) ira.) Maxim.
14
F,,
UP.
435
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon
Structure number (Fig. 32) (1288)
Compound Furanoeremophilane- 14fl,6aolide
Skeletal type a t8
Ref. Bohlmann, F.,
L. fauriei (Fr.) Koidz.
(1289)
Ligucalthaefolin
(1276)
Eremophilenolide, 6-hydroxy Eremophil-7(1 l)-ene-12,8aolide, 6fl,8/3-dihydroxy Eremophil-7(11)-ene-12,8a; 14/3,6a-diolide Eremophil-7(11)-ene- 12,8a; 14/3,6a-diolide,8/3-hydroxy Eremophilenolide, 6-hydroxy Fukinanolide (= Bakkenolide A) Furanoeremophilan- 14/3,6aolide Furanoeremophilane, 6a(R)- 1/8,10ft-epoxy(1) R = [2-hydroxymethylacryloyloxy] (2) R = angeloyloxy (3) R = methylacryloyloxy (4) R = hydroxyangeloyloxy Furanoeremophilane-6fl, 10/3diol (and derivatives) Furanoeremophilane, 6/3-angeloyloxy- 10/~-H Furanoeremophilane, 6/3-angeloyloxy- 10fl-hydroxy Furanoeremophilane-14/3, 6a-olide Furanoeremophilane- 15-
(1277) (1282) (1283) L. fischerii Turez
(1276)
L. hodgsonii Hook
(1292) (1288)
L. intermedia Nakai
L. japonica Less. L. macrophylla DC.
UP. 18 04, 6a 81 lactone) 6, 8a 641,642 6, 8t~
641
6
641,642
6
641,642
6, 8~
495
14
496
6
497
18 104
18
104 104 104 881,882
18
86
18
86
18 (14, 6 86 lactone) 18 86
436
THE BOTANICAL REVIEW Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
acid-methylester, 6/3-angeloyloxy-10/3-H Furanoeremophil-6-one,
18
86
6 18 18
663 104 104
18
104
Furanoeremophilane- 15-
18
104
acid, 3/3-angeloyloxy-6/3angeloyloxy- 10/3-H Furanoeremophilane, 6/3-
18
Bohl-
10/3-H (1270) L. schmidtii Makino
Ligolide Furanoeremophilane Furanoeremophilane, 6/3-bydroxy Furanoeremophilane- 15acid, 3/3-isovaleryloxy-6/3angeloyloxy- 10/3-H
L. trichocephala Pojark.
(R)- 1/3,10/3-epoxy (1) R = acetoxy (2) R = angeloyloxy (3) R = methylacryloyloxy (4) R = [4-hydroxymethylacryloyloxy] (5) R = 4-hydroxyangeloyloxy Furanoeremophilane, 3a-an-
L. vorobiediWorosh
mann, F., UP
18
Bohl-
geloyloxy-6/3-acetoxy-
mann,
1/3,10/3-epoxy
F.,
Furanoeremophilane, 3amethylacryloyloxy-6/3-acetoxy- 1/3,10/3-epoxy
18
Furanoeremophilane, 6/3(R)- 1/3,10/3-epoxy (1) R = methylacryloyloxy (2) R = angeloyloxy (3) R = acetoxy
18
UP. Bohlmann,
F., UP. 969
SESQUITERPENE LACTONES---ASTERACEAE
437
Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
Compound (4) R = [4-hydroxymethylacryloyioxy] (5) R = (4-hydroxyangeloyloxy) Furanoeremophilane, 6/3acetoxy- 1/3,10ft-epoxy-3a[2-methylacryloyloxy]Furanoeremophilane, 6ftacetoxy-3a-angeloyloxy, 1/3,10ft-epoxyFuranoeremophilane, lft, 10ft-epoxy-6ft-hydroxy3t~-(2-methylacryloyloxy) Furanoeremophilane, 3c~-angeloyloxy- lft, 10ft-epoxy6ft-hydroxy
Skeletal type a
ReL
18
969
18
969
18
969
18
969
Farfugium F. japonicum Kita-
mura
Faffugin A Farfugin B
32 32
644 644
Furanoeremophilane, 3a-hydroxy-6ft-(R)- 1/3,1Oftepoxy (1) R = angeloyloxy (2) R = senecioyloxy Furanoeremophilane, 6ft(R)- 1/3,10ft-epoxy(1) R = acetoxy (2) R = angeloyloxy Furanoeremophil- 1-one, 613senecioyloxy-9,10-dehydro Furanoeremophil-9-one, 6/3(R)- lft, 10ft-epoxy (1) R = angeloyloxy (2) R = senecioyloxy Furanoeremophil-9-one, 6/3(R)-lOft-H
18
110
18
110
18
110
18
110
18
110
Senecio S. vellereus Franch.
438
THE BOTANICAL REVIEW Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(1) R = senecioyloxy (2) R = isobutyryloxy (3) R = (2-methylacryloyl oxy) Euryopsin-9-one, 6fl-(R) (t) R = angeloyloxy (2) R = senecioyloxy Ligularenolide, 6fl-hydroxy
18
110
6
110
Eremophilenolide Eremophilenolide, 6-hydroxy Fukinanolide (=Bakkenolide A) Furanoeremophilane, 2-angeloyloxy Japonicin, angelyl (=3Angeloyloxy-6-hydroxyfuranoeremophilane) Japonicin, diangelyl Fukinanolide (=Bakkenolide A) Eremophi!enolide
6, 8a 6, 8a
678 670
Eremophilene lactam Fukinanolide (= Bakkenolide A) Furanoeremophilane, dimethoxydihydro Furanopetasin (=2~Angeloyloxy-9a-hydroxy10fl-H-furanoeremophilane) Petasitolide A Petasitolide A, S Petasitolide B, S
Petasites P. albus (L.) Gaertn.
(1271) (1276) (1292)
P. fragrans Presl.
(1292)
P. hybridus Gaertn. Mey. et Scherb.
(1271) (1346) (1292)
(1273) (1274) (1275)
14 18
677,654, 850 678
18
678
18 14
678 502
6, 8a
472,671, 676
6, 8a 14
275 502
18
678
18
678
6 6 6
678 678 678
SESQUITERPENE LACTONES--ASTERACEAE
439
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
P. japonicus Maxim. (1296) Bakkenolide E (1276) Eremophilenolide, 6-hydroxy (1277) Eremophil-7(l 1)-en-12,Saolide, 6fl,8fl-dihydroxy (130l) Fukinanolide, 9-acetoxy (1294) Fukinolide (=Bakkenolide
Skeletal type a
Ref.
14 6, 8a
524 651
6, 8a
651
14 14
652 654,850
14 14 14 6, 8 14 !4 14 14
650 650 3 670 654, 677, 850 849 849 654, 850
18 18 18
678 678 678
18 18 18 6, 8a
B) (1298) (1297) P. japonicus (Sieb. (1293) & Zucc.) Maxim. (1276) ssp. giganteus Ki- (1292) tam.
(1295)
Fukinolide, dihydro Homofukinolide Bakkenolide C Eremophilenolide 6-hydroxy Fukinanolide (=Bakkenolide A) Fukinanolide F Fukinolide F Fukinolide S (=Bakkenolide
D) Japonicin, angelyl Japonicin, diangelyl P. kablikianus Furanoeremophilane, 2-anTauush ex Bercht. gelyl Japonicin, angelyl Japonicin, diangelyl Kablicin P. officinalis Moench (1273) Petasitolide A (1274)
Petasitolide A, S
6, 8a
(1272)
Petasitolide B
6, 8a
(1275)
Petasitolide B, S Japonicin, angelyl Japonicin, diangelyl
6, 8a 18 18
678 678 678 671,674, 675 671,674, 675 671,674, 675 674,675 678 678
(1299)
Bakkenolide A, 2-hydroxyangeloyl
14
365
P. spurius (Retz.) Reichenb.
Homogyne H. alpina (L.) Cass.
440
THE BOTANICALREVIEW Table X X H I
Continued.
Taxon
Structure number (Fig. 32) (1300) (1292)
Compound
Skeletal typea
Ref.
Bakkenolide A, 3a-hydroxytigloyloxy Fukinanolide (=Bakkenolide a)
14
365
14
365
Albopetasin (=Furanoeremophilane, 6-angeloyloxy) Furanopetasin (=Furanoeremophilane, 3a-angeloyloxy- 14-hydroxy-) Petasitolide A, S
18
480
18
480
6
480
Tussilago
T. petasites L.
(1274) Doronicum
D. pardalianches L.
no furanoeremophilanes
164
B. Tephroseroid Group IV. Senecio
S. rivularis S. brachychaetus DC.
S. capitatus S. aucheri S. helenitis V. Senecio
no furanoeremophilanes Furanoeremophilane, 9/3-hydroxy-6/3-angeloyl0xy Furanoeremophilane, 9/3-hydroxy-6/3-isovaleryloxy Furanoeremophil-9-one, 6/3angeloyloxy Furanoeremophil-9-one, 6/3isovaleryloxy no furanoeremophilanes no furanoeremophilanes no furanoeremophilanes
18
164 110
18
110
18
110
18
110 164 164 164
No reports available
C. Senecionoid Group VI. a. Senecio
S. digitalifolius DC.
Cacalohastine Cacalohastine, dehydro Cacalohastine, 3fl-acetoxy Cacalohastine- 14-al, 13-acetoxy-dehydro
19 19 19 19
152 152 152 152
441
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon
S. panduriformis Hilliard
S. gathlambanus Hilliard
S. inornams DC.
S. affinis DC.
Structure number (Fig. 32)
Compound Furanoeremophilane, 7, 8-dihydro- 1,10-dehydro Furanoeremophil-9-one, 6flisobutyryloxy- la-(R)10a-H (1) R = senecioyloxy (2) R = hydroxy Furanoeremophil-9-one, 2/3hydroxy-6/3-isobutyryloxyla-senecioyloxy- 10a-H Cacalol Cacalol-propionate, 6-acetoxy Calcalol-propionate, 14-angeloyloxy Cacalol Cacalol propionate Cacalol propionate, 14-acetoxy Cacalol propionate, 14-hydroxy Cacalohastine Cacalohastine- 14-al, dehydro Cacalohastine Cacalohastine, 3fl-acetoxy Cacalohastine- 14-AL, 13acetoxy-dehydro Cacalohastine-propionate, 14-angeloyloxy Cacalohastine, dehydro Cacalohastine-propionate, 14-acetoxy Cacalohastine-propionate, 14-angeloyloxy-dehydro Cacalol Cacalol-propionate Cacalol-propionate 14-acetoxy
Skeletal type a
Ref.
18
152
18
167
18
167
19 19
164 164
19
164
19 19 19
154 154 154
19
154
19 19 19 19 19
154 154 164 164 164
19
164
19 19
164 164
19
164
19 19 19
164 164 164
442
THE BOTANICAL REVIEW Table XXlII
Continued.
Taxon
S. macrospermus
DC. S. mauriciae
Structure number (Fig. 32)
Compound Cacalol-propionate, 14angeloyloxy Calcalol-propionate, 14-angeloyloxy-2fl-hydroxy Cacalol-propionate, 14angeloyloxy-3/3-hydroxy Cacalol-propionate, 13, 14diacetoxy-2/3-hydroxy Cacalol-propionate, 2/3, 13,14-triacetoxy Cacalol-isobutyrate, 2/3,14diacetoxy Furanoeremophilane, lfl, 10/3-epoxy-6-(2-methylacryloyloxy) aromatic furanoeremophilanes furanoeremophilanes, aromatic furanoeremophilanes
Skeletal type a
Ref.
19
164
19
164
19
164
19
164
19
164
19
164
18
164
164 164 164
VI.b. Seneeio S. paludosus L.
S. umbrosus Waldst.
et Kit.
Furanoeremophil- 1-one,6~hydroxy, 9, 10-dehydro Furanoeremophii- 1-one, 6/3isobutyryloxy-9, 10-dehydro aromatic furanoeremophilanes Furanoeremophilane, 6B(R)- 1~8,10/3-epoxy (1) R -- angeloyloxy (2) R -- (2-methylacryloyioxy) Euryopsin, 6/3-(2-methylacryloyloxy)-9/3-hydroxy Furanoeremophil-9-one, 6/3-
18
110
18
110
164 18
110
18
110
18
110
SESQUITERPENE LACTONES----ASTERACEAE
443
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
S. tournefortii
(1265) (1263) (1262) (1264)
S. fuchsii C. C. Gmel
S. doronicum Willk. S. fluviatilis Wallr.
Skeletal type a
(2-methylacryloyloxy)IO/3-H Furanoeremophilanes
S. ruthenensis Maz. et Timb. S. jaquinianus Reichb.
S. nemorensis var. bulgaricus
Compound
Furanoeremophilane, 6/3-angeloyloxy, 1/3,10/3-epoxy Furanoeremophil- 1-one, 6/3(R)-9,10-dehydro (1) R = hydroxy (2) R = angeloyloxy (3) R = isobutyryloxy furanoeremophilanes Eremophila- 1,7-dien-8,12olide, 3-oxo-8a-ethoxy Eremophila- 1,7-dien-8,12olide, 3-oxo-8a-hydroxy Eremophila- 1,7-dien-8, 12olide, 3-oxo-8a-H Eremophila- 1,7-diene-8, 12olide, 3-oxo-8ot-methoxy Furanoeremophilane 1,10epoxy-3a-hydroxy-6angeloyloxy Furanoeremophilane, 1,10epoxy-3a-acetoxy-6/3-isobutyryloxy Furanoeremophil- 1-one, 6/3isobutyryloxy-9,10-ene furanoeremophilanes Furanoeremophil- 1-one, 6/3senecioyloxy-9, 10-ene Furanoeremophil- 1-one, 6/3isobutyryloxy-9,10-ene Furanoeremophil-9-one, 6/3isobutyryloxy-10/3-H
Ref.
164 18
128
18
128
164 6
507a
6
507a
6
507a
6
507a
18
18
Bohlmann, F., UP Bohlmann, F., UP Bohlmann, F., UP 164 110
18
110
18
110
18
18
444
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
S. macrophyllus
M.B.
S. doria L.
S. coriaceus Ait.
Structure number (Fig. 32)
Compound Furanoeremophil-9-one, 6/3senecionyloxy- 10/3-H Euryopsin, 6/3-(R)-9/3-hydroxy (1) R = angeloyloxy (2) R = senecioyloxy Furanoeremophilane, 6/3(R)-I/3,10/3-epoxy (1) R = angeloyloxy (2) R = senecioyloxy Furanoeremophil-3-one, 6/3(2-methylbutyryloxy)-10/3hydroxy-2,3-dehydro Furanoeremophilane, 1/3,10/3-epoxy-6/3-angeloyloxy Furanoeremophilane, 1/3,10/3-epoxy-6B-senecioyloxyFuranoeremophil-3-one, 10/3-hydroxy-6/3-angeloyloxy- 1-2-ene Furanoeremophil-3-one, 10B-hydroxy-6/3-(2-methylbutyryloxy)-1,2-ene Euryopsin, 9/3-hydroxy-6/3angeloyloxy Euryopsin, 9/3-hydroxy-6/3senecioyloxy Euryopsin Euryopsin, 6/3-angeloyloxy Furanoeremophil-3-one, 10/3-hydroxy-6/3-angeloyloxy-1,2-ene Furanoeremophil-3-one, I0fl-hydroxy-6/3-(2-methylbutyryloxy)-1,2-ene
Skeletal type a
Ref.
18
ll0
18
110
18
110
18
110
18
110
18
110
18
110
18
110
18
110
18
110
18 18 18
110 110 110
18
110
SESQUITERPENE LACTONES--ASTERACEAE
445
Table XXIII Continued.
Taxon S. arachnoides Scop.
Structure number (Fig. 32)
Compound Furanoeremophilane,
Skeletal type a
Ref.
18
110
18
110
18
110
18
164 164 110
18
110
18
110
18
110
18
110
1/3,10/3-epoxy-
VI.c.S. warscewiczii VI.d.S. tomentosus S. aureus L.
Furanoeremophilane, 1/3,10/3-epoxy-6/~-acetoxy Furanoeremophilane, 1/3,10/3-epoxy-6/3-(2methylacryloyloxy) no furanoeremophilanes no furanoeremophilanes Furanoeremophilane, 9/3-hydroxy-6/3-isovaleryloxy Euryopsin, 6-(R) (1) (2) (3) (4) (5)
R R R R R
=/3-acetoxy =/3-angeloyloxy =/3-isobutyryloxy =/3-epoxyangeloyloxy = a-epoxyangeloyloxy
VII. Austroamericanae Senecio S. suaveolens Ell.
Sketch.
S. teretifolius DC.
Euryopsin-9-one, 6/3-(R) (1) R = angeloyloxy (2) R = isobutyryloxy Furanoeremophil-9-one, 6/3(R)-10fl-H (1) R = isobutyryloxy (2) R = isovaleryloxy Furanoeremophil- 1-one, 6/3(R)-9,10-dehydro (1) R = hydroxy (2) R = isobutyryloxy aromatic furanoeremophilanes
164
Furanoeremophilane, 9,10-
18
151
dehydro Furanoeremophil-l-one, 9,10-dehydro
18
151
THE BOTANICAL REVIEW
446
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound Furanoeremophil-9-one, 10a-H Furanoeremophil-9-one, 6/3acetoxy-10a-H
Skeletal type a
Ref.
18
15 1
18
15 l
VIII. Neotropicae Seneeio
S. scytophyllus
S. depeanus Hemsl.
furanoeremophilane aromatic furanoeremophilane Euryopsin, 4c~-hydroxy-6/3isobutyryloxy Euryopsin, 4a-hydroxy-6/3angeloyloxy
164 164 18
1 10
18
110
1X.a. Eusenecionoids Senecio
(a) S. othonnae Bieb.
(b) S. erraticus Bertol
S. maritimus L.
S. cineraria DC.
S. jacobaea L.
furanoeremophilanes aromatic furanoeremophilanes Furanoeremophil-l-one, 6/3hydroxy-9,10-ene Furanoeremophil-l-one, 6/3angeloyloxy-9,10-ene Euryopsin-9-one, 6Bangeloyloxy Furanoeremophil- 1-one, 6/3angeloyloxy-9,10-dehydro Furanoeremophil-l-one, 6/3hydroxy-9,10-dehydro Euryopsin-9-one, 6/3-angeloyloxy Euryopsin, 6/3-angeloyloxy Euryopsin-9-one, 6/3angeloyloxy Euryopsin-9-one, 6/3angeloyloxy
164 164 18
110
18
110
18
1I0
18
110
18
110
18
110
18 18
110 110
18
128
SESQUITERPENE LACTONE S---ASTERACEAE
447
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound Furanoeremophil- 1-one, 6/3-
S. lyratifolius
Skeletal type a 18
angeloyloxy-9,10-dehydro furanoeremophilane
Ref. 128 164
Reichb.
S. chrysanthemoides DC. (c) S. bicolor
S. grandidentatus S. erucifolius S. palmatus S. subalpinus S. alpinus S. aquaticus (d) S. abrotanifolius S. adonidifolius (e) S. bupieuroides S. latifolius S. adnatus S. hygrophilus S. isatideus S. lineatus S. seminiveus S. glaberrimus S. pinifolius S. brevilobus S. haygarthii S. hastatus S. paniculatus S. ilicifolius (f) S. polyanthemoides Sch. Bip.
Furanoeremophilane,
18
1 10
1/3,10/3-epoxy-6/3-angeloyloxy no furanoeremophilanes no furanoeremophilanes
164 164
no furanoeremophilanes no furanoeremophilanes
164 164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes no furanoeremophilanes
164 164
no furanoeremophilanes no furanoeremophilanes
164 164
no no no no
furanoeremophilanes furanoeremophilanes furanoeremophilanes furanoeremophilanes
164 164 164 164
no no no no
furanoeremophilanes furanoeremophilanes furanoeremophilanes furanoeremophilanes
164 164 164 164
no furanoeremophilanes no furanoeremophilanes
164 164
no furanoeremophilanes no furanoeremophilanes
164 164
Furanoeremophil- l-one, 6/3-
18
128
18
128
(R)-9,10-dehydro(1) R = hydroxy (2) R = isobutyryloxy Euryopsin-9-one, 6/3-(R) (1) R = angeloyloxy (2) R = isobutyryloxy
448
THE BOTANICAL REVIEW
Table X X I I I Continued.
Taxon
Structure number (Fig. 32)
S. pterophorus DC.
Compound Euryopsin-9-one, 6fl-(R)
Skeletal type a 18
(1) R = angeloyloxy
167
(2) R = isobutyryloxy Furanoeremophil-9-one,
Ref.
137, 167 18
137
Bakkenolide A
14
164
F u r a n o e r e m o p h i l a n e , 6/3-tig-
18
164
18
164
18
164
6
164
1ct-hydroxy-6O-isobutyryloxy-10a-H
S. pyramidatus DC.
(1292)
linoyloxy-9fl-hydroxy-
IO&H F u r a n o e r e m o p h i l a n e , 3/3(R)-6/3-(R')- 10/3-n (1) R = H, R ' = angeloyloxy (2) R = H, R' = tiglinoyloxy (3) R = H, R' = senecioyloxy (4) R = acetoxy, R ' = angeloyloxy (5) R = acetoxy, R ' = tiglinoyloxy (6) R = acetoxy, R ' = senecioyloxy (7) R = h y d r o x y , R ' = angeloyloxy (8) R = h y d r o x y , R ' = tiglinoyloxy Furanoeremophil-9-one, 3/3(R)-6/3-(R')- 10/3-H (1) R = H, R ' = tiglinoyloxy (2) R = H, R' = senecioyloxy (3) R = H, R' = tiglinoyloxy Eremophilenolide, 3/3-hydroxy-6/3-(R)-7,8-epoxy
449
SESQUITERPENE LACTONES--ASTERACEAE
Table XXIII Continued.
Taxon
S. hypochoerideus DC. (nonradiate form)
Structure number (Fig. 32)
Compound
(1286)
(1) R = angeloyloxy
(1287)
(2) R = tiglinoyloxy Furanoeremophil-9-one, let-
Skeletal type a
Ref.
18
80
18
80
18
80
18
80
(R)-6fl-(R')- 10a-H (1) R = acetoxy, R ' = isobutyryloxy (2) R = acetoxy, R ' = isovaleryloxy (3) R = acetoxy, R ' = tiglinoyloxy (4) R = acetoxy, R ' = senecioyloxy (5) R = h y d r o x y , R ' = senecioyloxy (6) R = h y d r o x y , R' = angeloyloxy (7) R = h y d r o x y , R' = isobutyryloxy (8) R = h y d r o x y , R ' = isovaleryloxy (9) R = h y d r o x y , R ' = tiglinoyloxy (10) R = R ' = h y d r o x y Furanoeremophil-9-one, la,6/3-dihydroxy-10B-H-
S. hypochoerideus DC. (radiate form)
C o m p o u n d s 1, 2, 5, 6, 7, 8 above and: Furanoeremophil-9-one, Its(R)-6/3-(R')- 10a-H (1) R = senecioyloxy (2) R = angeloyloxy (3) R = isobutyryloxy (4) R = isovaleryloxy (5) R = tiglinoyloxy Euryopsin-9-one, 6B-(R ) (1) R = senecioyloxy (2) R = angeloyloxy
450
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(3) R = isobutyryloxy (4) R = isovaleryloxy
S. hirsutilobus Hilliard
Furanoeremophilane, 9, 10ene Furanoeremophilane,
18
164
18
164
Furanoeremophilane, 10/3-H
18
154
Furanoeremophilane, 3/3acetoxy-6/3-(2-methylbu-
18
154
18
154
18
137
18
137
18
137
18
137
let, 10a-epoxy
S. medley-woodii Hutch.
tyryloxy)- 10a-H Furanoeremophil-9-one, 3/3acetoxy-6/3-(2-methylbutyryloxy)- 10/3-H
S. umbellatus L.
Furanoeremophil-9-one, la(R)-6/3-(R')- 10ct-H (1) R = hydroxy, R' = isobutyryloxy (2) R = acetoxy, R' = isobutyryloxy (3) R = hydroxy, R' = tiglinoyloxy Furanoeremophil-9-one, 6/3(R)-10a-H (1) R = isobutyryloxy (2) R = angeloyloxy (3) R = isovaleryloxy
S. rigidus L.
Furanoeremophilane, 6/3(R)- 1/3,10ft-epoxy (1) R = (2-methylacryloyloxy) (2) R = senecioyloxy (3) R = acetoxy Furanoeremophil-9-one, la(R)-6/3-(R')-10a-H (1) R = acetoxy, R' = angeloyloxy
SESQUITERPENE LACTONES--ASTERACEAE
451
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(2) R = angeloyloxy, R' = acetoxy (3) R = hydroxy, R' = angeloyloxy Furanoeremophil-9-one, 6/3-
18
137
18
137
(R)- 1/3,10ft-epoxy (1) R = acetoxy (2) R = tiglinoyloxy (3) R = senecioyloxy (4) R = methylacryloyloxy Furanoeremophil-9-one, 6/3angeloyloxy- 1,10-dehydro
S. elegans L.
Euryopsin, 4a-hydroxy 6/3-
18
(R)
S. glastifolius L.
(1) R = (2-methylbutyryl-
110, 137
oxy) (2) R = senecioyloxy
137
(3) R = tiglinoyloxy
137
(4) R = lsobutyryloxy Euryopsin-9-one Furanoeremophilane,
18 18
110 110 110
1/3,10ft-epoxy Furanoeremophil-9-one, 6/3-
18
110
18
167
18
167
(R)- 1/3,10ft-epoxy (1) R = angeloyloxy (2) R = senecioyloxy (3) R = (2-methylacryloyloxy)
S. grandiflorus Berg S. lanceus Ait.
Furanoeremophilanes Euryopsin-9-one, 6ft-(R)
164
(1) R = angeloyloxy (2) R = isobutyryloxy (3) R = senecioyloxy (4) R = propionyloxy (5) R = hydroxy Furanoeremophil-6,9-dione,
10&H
452
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon S. ruthenensis Maz.
et Timb.
(g) S. inaequidens DC.
S. harveianus Mac-
Owan. S. saniensis S. halimifolius L.
S. sandersonii Harv.
Structure number (Fig. 32)
Compound Furanoeremophilane, 1/3,10/3-epoxy Furanoeremophilane, 6/3acetoxy- 1/3,10B-epoxy Furanoeremophilane, 3aacetoxy-6B-senecioyloxy Furanoeremophil-6-one, 1/3,10B-epoxy Cacalohastine Cacalohastine, 14-(R) (1) R = hydroxy (2) R = angeloyloxy (3) R = isovaleryloxy Cacalol, 4-hydroxy-3-methoxy- 1-oxo-O-methyl-2-3dehydro Cacalol, 3-methoxy- 1-oxo2,3-dehydro Cacalol, 3-methoxy- 1-oxo-Omethyl-2,3-dehydro Calcalol, 14-hydroxy3-methoxy- 1-oxo-O-methyl2, 3-dehydro Euryopsin-9-one, 6B-isobutyryloxy Euryopsin-9-one, 6/3-isovaleryloxy aromatic furanoeremophilanes aromatic furanoeremophilanes Furanoeremophil- 1-one, 6aangeloyloxy-9,10-dehydro Cacalohastine Cacalol-propionate, 14angeloyloxy-3/3-hydroxy
Skeletal type a
ReL
18
110
18
110
18
110
18
110
19 19
154 154
19
154
19
154
19
154
19
154
18
llO
18
110 164 164
18
154
19 19
154 164
SESQUITERPENE LACTONES----ASTERACEAE
453
Table XXIII Continued.
Taxon (h) S. erubescens
S. purpureus S. S. S. S. S. S. S. (i) S.
variabilis rhyncholaenus polyodon gerardii speciosus grisebachii scaposus lautus Soland.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes Furanoeremophil-9-one, 6/3-
164 18
110
18
110
18
110
(R)-10B-H (1) R = angeloyloxy (2) R = isobutyryloxy
(j) S. sylvaticus L.
Furanoeremophilane, 1,10epoxy Euryopsin-9-one, 6B-angeloyloxy
S. viscosus S. lividus S. aegypticus Linn. S. gallicus S. vernalis S. squalidus S. rodriguezii S. rupestris S. leucanthemifolius S. aetnensis S. joppensis S. vulgaris S. S. S. S. S. S. S.
echinatus tussilaginis cruentus webbii oxyriifolius rhomboideus angulatus
no furanoeremophilanes
164
no furanoeremophilanes
164
Senecio aegypticus Ketolac-
ND
tone (C16H2203) no furanoeremophilanes no furanoeremophilanes
164
no furanoeremophilanes
164
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
THE BOTANICAL REVIEW
454
Table X X I I I Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(k) Sukkulente 164
acaulis arched articulatus barbertonicus crassulifolius ficoides serpens radicans
no furanoeremophilanes
no furanoeremophilanes
164 164 164
S. viminalis S. phonolithicus
no furanoeremophilanes
164
no furanoeremophilanes
164
(a) S. helminthoides
no furanoeremophilanes
S. macroglossus S. syringifolius S. stuhlmannii S. tarnoides S. brachypodus (b) Gynura Emilia Crassocephalum (c) Senecio S. longiflorus Kleinia Notonia (d) Cineraria Senecio
no furanoeremophilanes
164 164
S. S. S. S. S. S. S. S.
no furanoeremophilanes
164
no furanoeremophilanes no furanoeremophilanes
164 164 164
no furanoeremophilanes no furanoeremophilanes no furanoeremophilanes
IX. b. Gynuroide Senecio
no no no no no no
164 164
furanoeremophilanes furanoeremophilanes furanoeremophilanes furanoeremophilanes furanoeremophilanes furanoeremophilanes
164 164 164 164 164
no furanoeremophilanes no furanoeremophilanes no furanoeremophilanes
164
no furanoeremophilanes
164
no furanoeremophilanes
164
S. deltoideus
no furanoeremophilanes
Steirodiscus
no furanoeremophilanes
164 164
164
Lopholaena L. dregeana DC.
(1292)
Fukinanolide (=Bakkenolide
14
179
A) Furanoeremophilane, 10/3-H
18
179
18
179
Furanoeremophilane, 3/3methylacryloyloxy
455
SESQUITERPENE LACTONES--ASTERACEAE
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
L. platyphylla Benth.
Compound
Skeletal typea
Ref.
Furanoeremophilane, 6/3acetoxy- 10fl-H Furanoeremophilane, 6fl-hydroxy- 10fl-H Furanoeremophilane, 2fl-angeloyloxy-10fl-hydroxy Furanoeremophilane, 6/3,10fl-dihydroxy-3/3-(R) (1) R = angeloyloxy (2) R = senecioyloxy (3) R = methylacryloyloxy
18
179
18
179
18
179
18
179
Furanoeremophilane, 3a-angeloyloxy-9-oxo Furanoeremophilane, 2fl-angeloyloxy-10fl-hydroxy Furanoeremophilane, 10ftangeloyloxy-2/3-hydroxy Furanoeremophilane, 6fl-angeloyloxy-1,10-epoxy-4ahydroxy Furanoeremophilane, 1,10epoxy-4t~-hydroxy-6fl-isovaleryloxy Furanoeremophilane, 6fl-angeloyloxy-1,10-epoxy Furanoeremophil-9-one, 6/3angeloyloxy-1,10-epoxy Furanoeremophilane, 4a-hydroxy-6fl-senecioyloxy-9-
18
166
18
166
18
166
18
166
18
166
18
166
18
166
18
166
18
166
18
166
X. Othonnoide
Euryops E. abrotanifolius DC.
OXO
Furanoeremophilane, 4a-hydroxy-6fl-isovaleryloxy-9OXO
Furanoeremophilane, 10/3-
456
THE BOTANICALREVIEW Table XXHI
Continued.
Taxon
E. acraeus M. D.
Hend.
Structure number (Fig. 32)
Compound hydroxy-2/3-(2-methylacryloyloxy) Furanoeremophilane, 1/3,10/3-epoxy-6fl-angeloyloxy Furanoeremophilane, 4a-hydroxy-6/3-isovaleryloxy1/3,10ft-epoxy Furanoeremophil-9-one, 6/3angeloyloxy- 1/3,10/3,epoxy Furanoeremophil-9-one, 6/3senecioyloxy- 10/3-H Furanoeremophilane, 10/3hydroxy-Ia-angeloyloxy Furanoeremophilane, 10/3hydroxy- la-(2-methylacryloyloxy) Euryopsin-9-one, 6/3-angeloyloxy Euryopsin-9-one, 6/3-(2methyl-2,3-epoxybutyryloxy) Euryopsin, 6-angeloyloxy4,5-didehydro-5,6-seco Neoadenostylon, 17,18epoxy- 17,18-dihydro Furanoeremophilane, 3a-angeloyloxy-1/3,10/~-epoxy Furanoeremophilane, 3a-tiglinoyloxy- 1/3,l 0/3-epoxy Furanoeremophilane, 3a-(3methyl-pent-2T-enoyloxy)1/3,10/3-epoxy Furanoeremophilane, 3a-(3methyl-pent-2C-enoyloxy)1/3,10/3-epoxy
Skeletal typea
Ref.
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
27
166
18
166
18
153
18
153
18
153
18
153
SESQUITERPENELACTONES--ASTERACEAE
457
Table XXIII
Continued. Structure number (Fig. 32)
Taxon
E. a n n a e
Phill.
E. brevilobus
Compt.
Compound Furanoeremophil-9-one, 6/3angeloyloxy- 1/3,10ft-epoxy Furanoeremophil-9-one, 6/3tiglinoyloxy- lft, 10•epoxy Furanoeremophil-9-one, 3aangeloyloxy Furanoeremophilane, 10fl-hydroxy-lc~-(3-methylpent-2t-enoyloxy) Furanoeremophilane, 10fthydroxy-la-(3-methylpent2c-enoyloxy) Cacalol Cacalolacetate Cacalolmethylether Cacalolmethylether, 13-hydroxy Euryopsin-9-one, 6ft-angeloyloxy Euryopsin-9-one, 6ft-senecioyloxy Euryopsin-9-one, 6ft-isobutyryloxy Euryopsin-9-one, 6ft-isovaleryloxy Furanoeremophil-9-one, 6/3angeloyloxy- 10ft-H Furanoeremophil-9-one, 6/3tiglinoyloxy Furanoeremophil-9-one, 6/3senecioyloxy Furanoeremophil-9-one, 6ftisobutyryloxy Furanoeremophil-9-one, 6/3isovaleryloxy Furanoeremophilane, lft, 10ft-epoxy
Skeletal type a
Ref.
18
153
18
153
18
153
18
153
18
153
19 19 19 19
153 153 153 153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
458
THE BOTANICALREVIEW Table XXIII Continued.
Taxon
E. brevipapposus M. D. Hend.
Structure number (Fig. 32)
Compound
Skeletal type a
Furanoeremophilane, 18 1/3,10fl-epoxy-6/3-angeloyloxy Furanoeremophilane, 18 1/3,10/3-epoxy-6B-acetoxy Furanoeremophilane, lc~-an- 18 geloyloxy-6/3-acetoxy-10/3hydroxy Furanoeremophil-9-one, 3t~18 angeloyloxy Furanoeremophil-9-one, 3t~18 (3-hydroxyangeloyloxy) Cacalolmethylether 19 Cacalolmethylether, 13-hy19 droxy Euryopsin, 6fl-angeloyloxy 18 Euryopsin, 6fl-tiglinoyloxy 18 Euryopsin, 6fl-(2-methylac18 ryloyloxy)Euryopsin, 6fl-senecioyloxy 18 Euryopsin, 9a-hydroxy-618 angeloyloxy Euryopsin, 9a-hydroxy-6/318 (2-methylacryloyloxy) Euryopsin, 9a-hydroxy-6fl18 senecioyloxy Euryopsin-9-one, 6/3-angel18 oyloxy Euryopsin-9-one, 6fl-(218 methylacryloyloxy) Euryopsin-9-one, 6/3-sene18 cioyloxy Euryopsin-9-one, 6fl-acetoxy 18 Euryopsin-9-one, 6/3-hy18 droxy Furanoeremophilane, 18 1B, 10/3-epoxy-6/3-angeloyloxy
Ref. 153
153 153
153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153
SESQUITERPENELACTONES--ASTERACEAE
459
Table XXIII Continued.
Taxon
E. chrysanthemoides ( =Gamolepsis chrysanthemoides DC.)
E. empetrifolius DC.
Structure number (Fig. 32)
Compound
Furanoeremophilane, lfl, 10fl-epoxy-6/3-(2-methylacryloxy) Furanoeremophilane, 1/3,10fl-epoxy-6/3-senecioyloxy Furanoeremophilane, 6/3acetoxy- 12/3-hydroxy8,12H- 1(10), 8(9)-didehydro Furanoeremophilane, 6/3acetoxy- 12a-hydroxy-8, 12H- 1(10), 8(9)-didehydro (1269) Ligularenolide, 6#-acetoxy Euryopsin, 6fl-angeloyloxy4a-hydroxy Euryopsin, 6fl-isobutyryloxy-4a-hydroxy Euryopsin, 6B-angeloyloxy4,5-didehydro-5,6-seco Furanoeremophilane, 10/3angeloyloxy-2/3-hydroxy Furanoeremophil-9-one, 3t~angeloyloxy Euryopsin, 6#-angeloyloxy Euryopsin, 6/3-tiglinoyloxy Euryopsin, 3fl-acetoxy-6flangeloyloxy Euryopsin, 3fl-acetoxy-6fltiglinoyloxy Euryopsin, 3fl-acetoxy-6fl(3-methyl-pent-2-enoyloxy) Euryopsin, 3fl-acetoxy-6flsenecioyloxy Euryopsin, 3fl-hydroxy-6flangeloyloxy
Skeletal type a
Ref.
18
153
18
153
18
153
18
153
6 18
153 166
18
166
27
166
18
166
18
166
18 18 18
153 153 153
18
153
18
153
18
153
18
153
460
THE BOTANICAL REVIEW
Table XXHI Continued.
Taxon
E. evansii Schltr.
E. floribundus N. E.
Br.
Structure number (Fig. 32)
Compound Euryopsin, 3ft-hydroxy-6ftsenecioyloxy Euryopsin, 3ft-hydroxy-6fttiglinoyloxy Euryopsin, 3ft-hydroxy-6ft(3-methyl-pent-2-enoyloxy) Euryopsin-9-one Furanoeremophilane, 9,10dehydro Furanoeremophilane, 1/310ft-epoxy-6ft-acetoxy Furanoeremophilane, 1/3,10ft-epoxy-6ft-angeloyloxy Furanoeremophilane, 1/3,10ft-epoxy-6ft-senecioyloxy Furanoeremophilane, 1/3, 10ft-epoxy-6ft-tiglinoyloxy Furanoeremophil-9-one, 6/3tiglinoyloxy-1/3,10ft-epoxy Furanoeremophil-9-one, 6/3senecioyloxy- 1/3,1Oftepoxy Furanoeremophil-9-one, 6/3acetoxy- 1/3,10ft-epoxy Furanoeremophil-9-one, 10a-H Furanoeremophilane, 1/3, ! 0ft-epoxy-6ft-(R) (1) R = angeloyloxy (2) R = (2-methylacryloyloxy) (3) R = acetoxy (4) R = isobutyryloxy Furanoeremophilane, 4a-hy-
Skeletal type a
Ref.
18
153
18
153
18
153
18 18
153 153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18 153 153
18
153 153 153
461
SESQUITERPENE LACTONES--ASTERACEAE
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
E. galpinii Bol.
(1267) E. hebecarpus (DC.) B. Nord
Compound
droxy-61-(2-methylacryloyloxy)-1t , 10t-epoxy Furanoeremophilane, 4a-hydroxy-61-angeloyloxy-1t , 10t-epoxy Furanoeremophilane, 4a-hydroxy-61-isobutyryloxylt,10t-epoxy Furanoeremophilane, 10t hydroxy- la-angeloyloxy Furanoeremophilane, l0t hydroxy- la-(2-methylacryloyloxy) Furanoeremophil-9-one, 3aangeloyloxy-10a-H Furanoeremophil-9-one, 6t isobutyryloxy-10a-H Euryopsin Euryopsin-9-one Furanoeremophil-9-one, 10t-H Furanoeremophil-9-one, 3aangeloyloxy-10a-HLigularenolide Euryopsin, 61-angeloyloxy4a-hydroxy Euryopsin, 4a-hydroxy-6t isovaleryloxy Euryopsin-9-one Euryopsin, 6-angeloyloxy4,5-didehydro-5-6-seco Euryopsin-2-methylacrylate, 6-hydroxy-4,5-didehydro5,6-seco Euryopsin, 4a-hydroxy-6t isobutyryloxy Furanoeremophilane, 1,10-
Skeletal typea
Ref.
18
153
18
153
18
153
18
153
18
153
18
153
18 18 18
153 153 153
18
153
6 18
153 166
18
166
18 27
166 166
27
166
18
166
18
166
462
THE BOTANICALREVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound epoxy-4a-hydroxy-6/3-isobutyryloxy Furanoeremophilane, 1,4; 3,14-diepoxy-4-hydroxy5,6,9,10-tetradehydro-4,5-
Skeletal type a
Ref.
27
166
27
153, 166
Furanoeremophil-9-one, 3a18 angeloyloxy-10~-H Furanoeremophil-9-one, 4a18 hydroxy-6/3-isobutyryloxy10a-H Euryopsin, 3/3-hydroxy-6/318 angeloyloxy Euryopsin-9-one, 3/3-angel18 oyloxy-6/3-isobutyryloxy Euryopsin-9-one, 3/3, 6/318 diangeloyloxy Euryopsin-9-one, 3/3, 6/3-di18 propionyloxy Euryopsin-9-one, 3/3-angel18 oyloxy-6/3-propionyloxy Furanoeremophilane, 4a-hy18 droxy-6/3-angeloyloxy1/3,10/3-epoxy Furanoeremophilane, 4a-hy18 droxy-6B-isobutyryloxy1/3, 10/3-epoxy Euryopsin, 6-angeloyloxy27 4,5-didehydro-5,6-seco Euryopsin, 4a-hydroxy-6/318 angeloyloxy Euryopsin, 4a-hydroxy-6fl18 isobutyryloxy
153, 166
seco
Furanoeremophilane, 5,1carbolactone, 4-oxo5,6,9,104etradehydro-4,5seco
E. lateriflorus (L.F.) DC.
E. linearis Harv.
166
153 153 153 153 153 153
153
153 153 153
463
SESQUITERPENELACTONES--ASTERACEAE Table XXHI Continued.
Taxon
E. linifolius (L.) DC.
E. microphyllus (Compt.) B. Nord
Structure number (Fig. 32)
Compound Euryopsin, 4a-hydroxy-6fl(2-methylbutyryloxy) Furanoeremophil-9-one, 3aangeloyloxy- 10a-H Furanoeremophil-9-one, 3a(3-hydroxyangeloyloxy)10a-H Cacalolmethylether Euryopsonol-(2-methylacrylate) Furanoeremophilane, 2B-angeloyloxy- 10fl-hydroxy Furanoeremophilane, 10/3angeloyloxy-2/]-hydroxy Furanoeremophilane, 10/3hydroxy-2fl-(2-methylacryloyloxy) Furanoeremophilane, 10fthydroxy- la-angeloyloxy Furanoeremophilane, 10fthydroxy- la-(2-methylacryloyloxy) Furanoeremophil-9-one, 6/3angeloyloxy- lfl, 10ff-epoxy Furanoeremophil-9-one, 6/3acetoxy-1/3,10/3-epoxy Furanoeremophil-9-one, 6/3(2-methylacryloyloxy)lfl, 10ft-epoxy Furanoeremophil-9-one, 3aangeloyloxy- 10a-H Furanoeremophil-9-one, 3a(2-methylacryloyloxy)10a-H Euryopsin-9-one Furanoeremophil-9-one,
10~-n
Skeletal typea
Ref.
18
153
18
153
18
153
19 18
153 166
18
166
18
166
18
166
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18 18
153 153
464
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon E. multifidus
(Thunb.) DC.
Structure number (Fig. 32)
Compound Furanoeremophilane, 1/3,10ft-epoxy-6ft-angeloyloxy Furanoeremophilane, 1/3,10ft-epoxy-6fl-(2-methylacryloyloxy) Furanoeremophilane, 1/3,10ft-epoxy-6ft-senecioyloxy Furanoeremophilane, 1/3,10ft-epoxy-6fl-acetoxy Furanoeremophilane, 9a-hydroxy-6ft-angeloyloxy 1/3,10ft-epoxy Furanoeremophilane, 9a-hydroxy-6ft-(2-methylacryloyloxy- 1/3,10ft-epoxy Furanoeremophilane, 9a-hydroxy-6ft-senecioyloxylft,10ft-epoxyFuranoeremophil, 3-one, 1, 2-ene- 10a-H Furanoeremophil-9-one, 6/3tiglinoyloxy- 10ft-H Furanoeremophil-9-one, 6/3(2-methylacryloyloxy)10ft-H Furanoeremophil-9-one, 6/3senecioyloxy- 10fl-H Furanoeremophil-9-one, 6fttiglinoyloxy- lft, 10ft-epoxy Furanoeremophil-9-one, 6ft(2-methylacryloyloxy)lft, 10ft-epoxy Furanoeremophil-9-one, 6ftsenecioyloxy- lft, 10ftepoxy
Skeletal type a
Ref.
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
465
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon
Structure number (Fig. 32)
E. oligoglossus DC. ssp. oligoglossus
Compound
Skeletal type a
Ref.
Euryopsin-9-one, 3fl-hy-
18
153
droxy-6fl-(2-methylacryloyloxy) Euryopsin-9-one, 3fl-hydroxy-6fl-angeloyloxy Furanoeremophilane,
18
153
18
153
18
153
18
153
18
153
18
153
18 18
153 153
lfl, 10fl-epoxy-6fl-(R) (1) R = tiglinoyloxy (2) R = angeloyloxy (3) R = (2-methylacryloyloxy) (4) R = senecioyloxy Furanoeremophilane, 9a-hydroxy-6fl-(R)- lfl, 1Offepoxy (1) R = angeloyloxy (2) R = senecioyloxy (3) R = tiglinoyloxy (4) R = isobutyryloxy (5) R = isovaleryloxy (6) R = (3-methylpent-3t-enoyloxy) Furanoeremophilane, 10fthydroxy- lot-(R)(1) R = tiglinoyloxy (2) R = angeloyloxy (3) R = senecioyloxy (4) R = (3-methylpent-2enoyloxy) Furanoeremophil-3-one, 1,2ene-10a-HFuranoeremophil-9-one, 3/3-
E. othonnoides DC. B. Nord (mature plante)
(i)
acetoxy-6fl-(2,3-epoxy-2methylbutyryloxy) 10ct-HEuryopsin, 6fl-angeloyloxy Euryopsin-9-one, 3fl-hydroxy-6fl-isovaleryloxy
466
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
E. othonnoides DC.
B. Nord (young shoots)
Structure number (Fig. 32)
Compound
Euryopsin-9-one, 3/3-hydroxy-6/3-isobutyryloxy Euryopsin-9-one, 6/3-acetoxy (ii) Furanoeremophilane, 1/310/3-epoxy-6/3-angeloyloxy (iii) Furanoeremophilane, 1/3,10/3-epoxy-6/3-acetoxy Furanoeremophilane, 10/3hydroxy- la-angeloyloxy Furanoeremophilane, 10/3hydroxy-la-senecioyloxy Furanoeremophil-9-one, 6/3(R)- 1/3,I 0ff-epoxy (1) R = angeloyloxy (iiii) (2) R = acetoxy (3) R = isobutyryloxy (4) R = isovaleryloxy Furanoeremophil-9-one, 10a-HFuranoeremophil-9-one, 6/3acetoxy- 10/3-H Euryopsin, 9a-hydroxy-6/3angeloyloxy Euryopsin-9-one, 6/3-(2methyl-2,3-epoxybutyryloxy) Euryopsin-9-one, 6/3-angeloyloxy Furanoeremophilane, 9a-hydroxy-6/3-angeloyloxy-1/3, 10/3-epoxy Furanoeremophilane, 10/3hydroxy- Ict-angeloyloxy Furanoeremophil-9-one,
Skeletal type ~
Ref.
18
153
18 18
153 153
18
153
18
153
18
153
18
153
18 18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
10/3-H Furanoeremophil-9-one, 6/3angeloyloxy- 10/3-H-
467
SESQUITERPENE LACTONES---ASTERACEAE Table XXIII Continued.
Taxon
Structure number (Fig. 32)
E. pectinatus (L.)
Cass.
E. pectinatus (L.)
Cass. x E. chrysanthemoides
(DC.) B. Nord ( F 1 )
Compound Furanoeremophil-9-one, 6/3(2-methyl-2,3-epoxybutyryloxy)-10~x-H Furanoeremophil-9-one, 3czangeloyloxy-10a-H plus (i) through (iiii) above Furanoeremophilane, lft, l 0ft-epoxy-6fl-angeloyloxyFuranoeremophilane, lft, 10ft-epoxy-6ft-acetoxy Euryopsin, 4t~-hydroxy-6ftangeloyloxy Furanoeremophil-9-one, 60(2,3-epoxy-2-methylbutyryloxy)- lft- 10ft-epoxy Furanoeremophil-9-one, 6/3angeloyloxy- lft, 10ft-epoxy Furanoeremophil-9-one, 6/3angeloyloxy- 10fl-H Furanoeremophil-9-one, 6ftisovaleryloxy- 10ft-H Furanoeremophil-9-one, 3ctangeloyloxy-10a-H Furanoeremophil-9-one, 3tz(3-hydroxyangeloyloxy)10t~-H Furanoeremophil-9-one, 4ahydroxy-6ft-isovaleryloxy10a-H Furanoeremophil-9-one, 4ahydroxy-6ft-angeloyloxy10a-H Euryopsin, 6ft-angeloyloxy Eulyopsin, 3ft-angeloyloxy Euryopsin 6-angeloyloxy, 4,5-didehydro-5,6-seco
Skeletal type a
Ref.
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18 18 27
153 153 153
THE BOTANICALREVIEW
468
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound Euryopsin, 4t~-hydroxy-6flangeloyloxy Euryopsin, 4a-hydroxy-6/3isovaleryloxy Furanoeremophilane, I/3,10/3-epoxy-6O-angeloyloxy Furanoeremophilane, 1/3,10/3-epoxy-6fl-acetoxy Furanoeremophilane, 4a-hydroxy-6fl-angeloyloxy-
E. pedunculatus N. E. Br.
1/3, I0ff-epoxy Furanoeremophilane, 4a-hydroxy-6fl-isovaleryloxy1/3,10/3-epoxy Furanoeremophilane, 10/3hydroxy- lot-angeloyloxy Furanoeremophil-9-one, 3aangeioyloxy-10c~-H Furanoeremophil-9-one, 3c~(3-hydroxyangeloyloxy)10a-H Furanoeremophil-9-one, 4ahydroxy-6/3-isovaleryloxy10ct-H Furanoeremophil-9-one, 4ahydroxy-6/3-angeloyloxy10a-H Euryopsin, 3/3-(3-methylpent-2c-enoyloxy) Euryopsin, 3fl-(3-methylpentanoyloxy) Euryopsin, 3fl-acetoxy-6/3angeloyloxy Euryopsin, 3fl-hydroxy-6flangeloyloxy Furanoeremophilane, 3a-angeloyloxy-1/3,10ft-epoxy
Skeletal typea
Ref.
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
469
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon
E. rehmannii Compt.
E. rupestris (Schltr.) var. rupestris E. spathaceus DC.
Structure number (Fig. 32)
Compound Furanoeremophilane, 3a-(3methyl-pent-2c-enoyloxy)1/3,10ft-epoxy Furanoeremophilane, 3ct-hydroxy-6ft-(3-methylpentanoyloxy)-113,10ft-epoxy Furanoeremophilane, 10fthydroxy-la-angeloyloxy Cacalolmethylether Euryopsin, 9a-hydroxy-6ftangeloyloxy Furanoeremophilane lft,10ftepoxy-6ft-angeloyloxy Furanoeremophilane, lOfthydroxy-la-angeloyloxy Furanoeremophil-9-one, 3/3(2-methylacryloyloxy)-6ft(angeloyloxy)- 10ct-HFuranoeremophil-9-one, 3/3(2-methylacryloyloxy)-6fltiglinoyloxy- 10c~-H Furanoeremophil-9-one, 3/3(2-methylacryloyloxy)-6fl(2-methylacryloyloxy)10a-H Furanoeremophilane, 1/3,10ft-epoxy-6ft-acetoxy Euryopsin, 6ft-angeloyloxy Euryopsin-9-one, 3/3, 6ft-bis(2-methylacryloyloxy) Euryopsin-9-one, 3ft,6ft-bis(angeloyloxy) Euryopsin-9-one, 6ft-angeloyloxy-3ft-(2-methylacryloyloxy)
Skeletal type a
Ref.
18
153
18
153
18
153
19 18
153 153
18
153
18
153
18
153
18
153
18
153
18
153
18 18
153 166
18
166
18
166
THE BOTANICALREVIEW
470
Table XXIII
Continued.
Taxon
E. subcarnosus DC.
ssp. vulgaris B. Nord.
E. sulcatus (Thunb.)
Harv.
Structure number (Fig. 32)
Compound Euryopsin-9-one, 6ft-(2methylacryloyloxy)-2,3-didehydro Euryopsin-9-one, 6ft-angeloyloxy-2,3-didehydro Euryopsin-9-one, 6ft-angeloyloxy-3ft-hydroxy Euryopsin-9-one, 3ft-hydroxy-6ft-(2-methylacryloyloxy) Euryopsin-9-one, 6ft-(2methylacryloyloxy) Furanoeremophilane, 2ft-angeloyloxy- 10ft-hydroxy Furanoeremophilane, 10ftangeloyloxy-2ft-hydroxy Furanoeremophilane, 1/3,10ft-epoxy-6ft-(2-methylacryloyloxy) Furanoeremophilane, lft, I0ft-epoxy-6ft-acetoxy Furanoeremophilane, 9r droxy-6ft-senecioyloxylft, 10f t-epoxy Furanoeremophilane, 9a-hydroxy-6ft-(2-methylacryloyloxy)- 1/3,10ft-epoxy Furanoeremophilane, 4a-hydroxy-6ft-(2-methylacryloyloxy)- lft, 10ft-epoxy Furanoeremophilane, 4a-hydroxy-6ft-(isobutyryloxy)lft, 10ft-epoxy Euryopsin, 3ft-acetoxy-6ftangeloyloxy Euryopsin, 3ft-hydroxy-6ftangeloyloxy Euryopsin, 3ft-hydroxy-6fttiglinoyloxy
Skeletal type a
Ref.
18
166
18
166
18
166
18
166
18
153, 166
18
166
18
166
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
SESQUITERPENE LACTONES--ASTERACEAE
471
Table XXllI Continued.
Taxon
E. tenuisissimus
Less.
E. thunbergii B.
Nord.
E. transvaalensis Klatt. ssp. setilobus (N. E. Br.) B.
Nord.
Structure number (Fig. 32)
Compound Euryopsin, 3fl-hydroxy-6/3(3-methyl-pent-2-enoyloxy) Furanoeremophil-3-one, 1, 2-ene- 10fl-H Furanoeremophilane, lfl, 10fl-epoxy-6fl-(2-methylacryloyloxy) Euryopsin, 6fl-angeloyloxy4a-hydroxy Euryopsin, 6-angeloyloxy4,5-didehydro-5, 6-seco Euryopsin, 2,9-dioxo Euryopsin-2-methylacrylate, 6-hydroxy-4, 5-didehydro5,6-seco Furanoeremophilane, 1,10epoxy-4a-hydroxy-6fl-isobutyryloxy Furanoeremophilane, 2fl-angeloyloxy-10fl-hydroxy Furanoeremophilane, 10ftangeloyloxy-2fl-hydroxy Furanoeremophil-9-one, 3aangeloyloxy Cacalolmethylether Cacaiolmethylether, l, 2-ene Furanoeremophil-9-one, 6/3angeioyloxy-lfl,10•epoxy Furanoeremophil-9-one, 3t~angeloyloxy-10a-H Furanoeremophil-9-one, 3amethylacryloyloxy-10a-H Furanoeremophilane, lOfthydroxy-la-angeioyloxy Furanoeremophilane, 10fthydroxy- lc~-senecioyloxy
Skeletal typea
Ref.
18
153
18
153
18
153
18
166
27
166
18 27
166 166
18
166
18
166
18
166
18
166
19 19 18
153 153 153
18
153
18
153
18
153
18
153
THE BOTANICALREVIEW
472
Table XXIII
Continued.
Taxon E. trilobus Harv.
E. tysonii Phillips
Structure number (Fig. 32)
Compound
Furanoeremophilane, 1/3, 10/3-epoxy-6/3-angeloyloxy Furanoeremophilane, 1/3,10/3-epoxy-6/3-acetoxy Furanoeremophil-9-one, 3aangeloyloxy- 10a-H Furanoeremophil-9-one, 6/3angeloyloxy- 1/3,10/3-epoxy Furanoeremophil-9-one, 6/3tiglinoyloxy- 1/3,10B-epoxy Furanoeremophilane, 1/3,10fl-epoxy-6/3-tiglinoyloxy Furanoeremophilane, 1/3,10/3-epoxy-6/3-angeloyloxy Furanoeremophilane, 1/3,10/3-epoxy-6/3-(2-methylacryloyloxy) Furanoeremophilane, 10/3hydroxy-la-tiglinoyloxy Furanoeremophilane, 10fthydroxy- 1a-angeloyloxy Furanoeremophilane, 6/3-(2methylacryloyloxy)- 12ahydroxy-8,12H- 1(10), 8(9)dehydro Furanoeremophilane, 6/3-(2methylacryloyloxy)- 121]hydroxy-8,12H-l(10), 8(9)dehydro Furanoeremophil-9-one, 6/3tiglinoyloxy- 10/3-H Furanoeremophil-9-one, 6/3(2-methylacryloyloxy)
10/3-H
Skeletal type a
Ref.
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
18
153
SESQUITERPENE LACTONES---ASTERACEAE
473
Table XXIII Continued.
Taxon E. virgineus (L.f.) DC.
E. wagneri Compt.
Structure number (Fig. 32)
Compound Euryopsin, 4a-hydroxy-6/3(tiglinoyloxy) Euryopsin-9-one Furanoeremophilane, 2/3-angeloyloxy- 10/3-hydroxy Furanoeremophilane, 10/3angeloyloxy-2/3-hydroxy Furanoeremophil-9-one, 4ahydroxy-6fl-figlinoyloxy Furanoeremophilane, 10/3hydroxy- la-angeloyloxy Furanoeremophilane, 10/3hydroxy- la-(2-methylacryloyloxy) Furanoeremophil-9-one, 4ahydroxy-6/3-(2-methyl-2,3epoxybutyryloxy)- 10a-H Furanoeremophil-9-one, 4ahydroxy-6/3-angeloyloxy10a-H
Skeletal type a
Ref.
18
166
18 18
166 166
18
166
18
166
18
153
18
153
18
153
18
153
18
165
18
165
18
165
Othonna
O. amplexicaulis Thunb.
O. arborescens L.
Furanoeremophilane, 10/3hydroxy-6/3-(R) (1) R = (2-methylbutyryloxy) (2) R = isovaleryloxy (3) R --- senecioyloxy (4) R = tiglinoyloxy (5) R --- H (6) R = angeloyloxy Furanoeremophilane-15acid, 3/3,6/3-bis-(angeloyloxy) Furanoeremophilane-15acid, 3/3,6/3-bis-(angeloyloxy)
474
THE BOTANICALREVIEW Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
Compound Furanoeremophilane- 15acid, 3a,6/3-bis-(angeloyloxy) Furanoeremophilane- 15-acid methylester, 3/3-angeloyloxy-6/3-senecioyloxy-
Skeletal type a
Ref.
18
165
18
103
18
103
18
103
18
165
18
165
18
165
18
165
18
165
18
165
18
165
18
165
18
165
10/3-H
O. barkerae Comp-
ton
O. bulbosa L.
Furanoeremophilane- 15-acid methylester, 3/3-angeloyloxy-6/3-(3-methylpent2c-enoyloxy)- 10/3-H Furanoeremophilane 3/3-angeloyloxy- 10/3-H Furanoeremophilane, 2/3acetoxy-3/3-angeloyloxy Furanoeremophilane, 2/3, 3/3-bis-(angetoyloxy) Furanoeremophilane- 15acid, 3/3, 6/3-bis-(angeloyloxy) Furanoeremophilane- 15acid, 3a, 6/3-bis-(angeloyloxy) Furanoeremophilane- 15acid, 6/3-angeloyloxy-3/3(isobutyryloxy) Furanoeremophilane, 2/3,3abis-(angeloyloxy)- 10a-H Furanoeremophilane, 2/3-angeloyloxy-3a-senecioyloxy-10a-H Furanoeremophilane, 3aacetoxy-2/3-angeloyloxy10a-H Furanoeremophilane, 3aacetoxy-2/3-senecioyloxy10a-H
SESQUITERPENELACTONES--ASTERACEAE
475
Table XXHI Continued.
Taxon O. coronopifolia L.
O. dentata L.
O. euphorbioides
Hutchinson
O. filicaulis L.
Structure number (Fig. 32)
Compound Furanoeremophilane- 15acid,3/3,6B-bis-(angeloyloxy) Furanoeremophilane- 15acid, 6fl-angeloyloxy-3/3isobutyryloxy Furanoeremophilane- 15acid, 3/3-angeloyloxy Furanoeremophilane- 15-acid methylester, 3/3-(2-methylacryloyloxy) Furanoeremophilane- 15acid, 3/3,6/3-bis-(angeloyloxy) Furanoeremophil-9-one, 6/3isobutyryloxy-3/3-(2-methylacryloyloxy)- 10fl-H Furanoeremophi|-9-one, 3/3,6/3-bis-(2-methylacryloyloxy)- 10/3-H Furanoeremophil-9-one, 3/3tiglinoyloxy-6/3-(2-methylacryloyloxy)- 10/3-H Furanoeremophil-9-one, 3/3tiglinoyloxy-6/3-isobutyryloxy-10/3-H Furanoeremophil-9-one, 3/3senecioyloxy-6/3-isobutyryloxy-10/3-H Furanoeremophil-9-one, 3/3senecioyloxy-6/3-(2-methylacryloyloxy)- 10/3-H Furanoeremophilane, 3/3-angeloyloxy Furanoeremophilane, 6/3acetoxy-3/3-angeloyloxy Furanoeremophilane, 3/3-angeloyloxy-6/3-hydroxy
Skeletal typea
Ref.
18
165
18
165
18
165
18
165
18
165
18
103
18
103
18
103
18
103
18
103
18
103
18
165
18
165
18
165
476
THE BOTANICAL REVIEW Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
O. heterophylla L.f.
Compound Furanoeremophilane, 9fl-angeloyloxy-6fl-(3-methyl-2trans-pentenoyloxy)- 10fthydroxy Furanoeremophilane, 6fl-angeloyloxy-9fl-(3-methyl-2trans-pentenoyloxy)- 1Offhydroxy Furanoeremophilane, 6/3-(3methyl-2-trans -pentenoyloxy)- l 0fl-hydroxy Furanoeremophilane 15fl,6flolide, 3fl-angeloyloxy-
Skeletal type a
Ref.
18
127
18
127
18
127
18
127
18
127
18
127
18
127
18
127
18
127
18
127
18
127
10/3-H
0. intermedia Compton
Furanoeremophilane- 15/3,6/3olide, 3,4-ene-10fl-H Furanoeremophilane-15acid, 6/3-angeloyloxy-3fl(3-methyl-2-trans -pentenoyloxy)- 10fl-H Furanoeremophilane-15acid, 6fl-angeloyloxy-3/3(methylvaleryloxy)-I 0fl-H Furanoeremophilane, 3fl,6flbis-(methacryloyloxy)-
10/3-H Furanoeremophilane, 3fl,6flhis (senecioyloxy)-10fl-H Furanoeremophilane, 3/3(R)-6fl-(R')-10fl-H (1) R = methacryloyloxy, R' = senecioyloxy (2) R = senecioyloxy, R' = methacryloyloxy (3) R = methacryloyloxy, R' = tiglinoyloxy Furanoeremophilane, 3fl,
SESQUITERPENE LACTONES--ASTERACEAE
477
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
6/3-bis-(methacryloyloxy)10/3-H-9/3-hydroxy Furanoeremophilane, 3/3(R)-6/3-(1~)- 10/3-H-9/3-hy-
18
127
droxy (1) R = methacryloyloxy,
127
R' = senecioyloxy (2) R = senecioyloxy,
127
R' = methacryloyloxy (3) R = methacryloyloxy,
127
R' = tiglinoyloxy Furanoeremophilane, 3/3,6/3-
18
127
18
103
18
103
18
103
bis-(senecioyloxy)- 10/3-H9/3-hydroxy O. Iobata Schltr.
Furanoeremophilane, 3/~(R)-6/3,15-epoxy- 10/3-H (1) R = angeloyloxy (2) R = (2-methylacryloyloxy) Furanoeremophilane, 3/3(R)-6/3-(R')- 10/3-H (1) R = (2-methylacryloyloxy) R' = acetoxy (2) R = (2-methylacryloyloxy) R' = isovaleryloxy (3) R = R' = angeloyloxy (4) R = angeloyloxy R' = isovaleryloxy (5) R = isovaleryloxy R' = (3-methylacryloyloxy) Furanoeremophilane- 15-acid lactone, 3/3-(R)-6/3-hydroxy-10/3-H (1) R = angeloyloxy
478
THE BOTANICAL REVIEW
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound (2) R = (2-methylacryloyloxy) Furanoeremophil-9-one, 3/3, 6/3-bis-(2-methylacryloyloxy)- 10~-H Furanoeremophil-9-one, 3/3tiglinoyloxy-6/3-(2-methylacryloyloxy)-10OH Furanoeremophil-9-one, 3/3-
O. macrophylla DC.
(R)-6fl-(R')- 10fl-H (1) R = angeloyloxy R' = (2-methylacryloyloxy) (2) R = (2-methylacryloyloxy) R' = isovaleryloxy (3) R = tiglinoyloxy R' = angeioyloxy Furanoeremophilane, 3/3methacryloyloxy- 10fl-H Furanoeremophilane, 3fl,6/3bis-(methacryloyloxy)-
Skeletal type a
Ref.
18
103
18
103
18
103 103
103
103 18
127
18
127
18
127
18
127
18
127
18
103
I0&H
O. natalensis Sch.
Bip.
Furanoeremophilane, 3/3(methacryloyloxy)-6/3tiglinoyloxy-10/3-H Furanoeremophilane, 3/3, 6/3-bis-(methacryloyloxy)10/3-hydroxy Furanoeremophilane, 3/3-(2methacryloyloxy)-6/3tiglinoyloxy-10/3-hydroxy Furanoeremophilane- 15-acid methylester, 3/3-(R)-6/3(R')-I 0/3-H (l) R = angeloyloxy, R' = (3-methylvaleryloxy)
103
SESQUITERPENE LACTONES---ASTERACEAE
479
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
(2) R --- angeloyloxy
Ref. 103
R' = isobutyryloxy (3) R = angeloyloxy R' = (2-methylbutyryloxy)
O. quercifolia DC.
Furanoeremophilane-15acid, 3/3,6/3-bis-(angelo-
18
165
18
165
18
103
18
103
Furanoeremophilane, 3/3-an-
18
103
geloyloxy-10/3-H Furanoeremophilane, 3B-angeloyloxy-6/3, 15-epoxy-
18
103
18
103
yloxy) Furanoeremophilane- 15-
acid, 6/3-angeloyloxy-3/3(senecioyloxy)
Othonna sp. nov.
Furanoeremophilane, 3/3-15bis-angeloyloxy- 10/3-H Furanoeremophilane- 15acid, 3~-angeloyloxy-6/3(R)-10fl-H (1) R = angeloyloxy (2) R = senecioyloxy (3) R = (3-methylpent-2c-enoyloxy) (4) R = isovaleryloxy (5) R = 3-methylvaleryloxy
O. triplinervia DC.
10f~-H Furanoeremophilane- 15 acid methylester, 3B-(R)-6fl(R')- 10/3-H (1) R = R' = angeloyloxy (2) R = angeloyloxy, R' = senecioyloxy (3) R = angeloyloxy, R' = isovaleryloxy (4) R = angeloyloxy,
480
THE BOTANICAL REVIEW Table XXlII Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
18
103
Furanoeremophil-9-one, 3/3angeloyloxy- 15-hydroxy 6/3-senecioyloxy- 10/3-H
18
103
Cacalohastine
19
164
Cacalohastine Cacalohastine, dehydro Cacalohastine-14-al, 13-aceIoxy-dehydro Cacalohastine- 14-al, 13-hydroxy-dehydro Furanoeremophilane,
19 19 19
164 164 164
19
164
Compound R' = (3-methylvaleryloxy) Furanoeremophil-9-one, 3/3(R)-6/3-(R')-10/3-H (1) R = senecioyloxy, R' = angeloyloxy (2) R = angeloyloxy, R' = senecioyloxy
South African (Natal) Species: Seneciu
S. albanensis DC. var. doronicoflorus (DC.) Harv. S. brevidentatus M. D. Henderson
S. chrysocoma Meereburgh
S. paludaffinis Hilliard
18
164
1/3,10fl-epoxy-6/3-angeloyloxy Furanoeremophilane, l fl, IOfl-epoxy-6/3-(2-methylacryloyloxy)
18
164
Furanoeremophil-9-one,
18
164
19 19 19 19
164 164 164 164
1/3,10/3-epoxy-6fl-(2-methylacryloyloxy) Cacalohastine Cacalohastine, 3/3-acetoxy Cacalohastine, dehydro Cacalohastine- 14-al, 13-acetoxy
SESQUITERPENE LACTONES--ASTERACEAE
481
Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
XI. Synotoide Seneeio
S. alatus Wall.
(1278)
Eremophilanolide, 2fl-[5'hydroxyangeloyloxy]
6
188
(1280)
Eremophilanolide, 2/3-[5'hydroxyangeloyloxy]-8flhydroxy- 10/3-H Eremophilanolide, 2/3-angeloyloxy- 10/3-H Eremophilanolide, 2/3-angeloyloxy-8/3-hydroxy-10/3-H no furanoeremophilanes no furanoeremophilanes
6
188
6
188
6
188
Cacalomethylether, 13-hydroxy Furanoeremophil-9-one, 6/3(R)-I0c~-H (1) R = angeloyloxy (2) R = isovaleryloxy Euryopsin Secomacrolide, 6fl-angeloyloxy Secomacrolide, 8-epi-6/3-angeloyloxy Secomacrotolide, 6/3-tiglinoyloxy Secomacrotolide, 8-epi-6/3tiglinoyloxy Secomacrotolide, 6/3-isovaleryloxy Secomacrololide, 8-epi-6/3isovaleryloxy
19
158c
18
158c
18 31
110 90
31
90
31
90
31
90
31
90
31
90
10/3-a
(1279) (1281) S. cissampelinus S. mikanioides
164 164
Miscellaneous species: Senecio
S. longilinguae Cuatr.
S. lyraticus Reicbb. S. macrotis Baker
(747) (748) (749) (750) (751) (752)
482
THE BOTANICAL REVIEW
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
S. serratifolius (Mey-
er et Walp.) Cuatr.
S. pampse L.
S. vitalis N. E. Br.
(1266)
Compound Euryopsin, 6fl-angeloyloxy Euryopsin, 6,8 senecioyloxy Euryopsin-9-one, 6/3-angeloyloxy Euryopsin-9-one, 6/3-tiglinoyloxy Furanoeremophil-9-one, 6/3angeloyloxy- 10a-H Furanoeremophil-9-one, 6/3tiglinoyloxy-10a-H Furanoeremophil-9-one, 6/3isovaleryloxy- 10a-H Cacalol, 1-oxo-9-desoxy Euryopsin-9-one Furanoeremophil-9-one, 10a-H Furanoeremophil-9-one, 1,10-epoxy-6/3-isobutyryloxy Furanoeremophilane, la, 10~-epoxy Euryopsin, 6B-hydroxy Euryopsin, 6/3-acetoxy Euryopsin-l-one, 6/3-angeloyloxy Euryopsin- l-one, 6/3-propionyloxy Furanoeremophil-9-one, 6/3acetoxy- 10/3-H Furanoeremophil-9-one, 6/3acetoxy-la-(R)-10a-H (1) R = hydroxy (2) R = angeloyloxy (3) R = acetoxy Eremophil-1,7(11)-dien-12oic acid lactone, 8/3-hydroxy-8a-methoxy-3-oxo
Skeletal type a
Ref.
18 18 18
90 90 90
18
90
18
90
18
90
18
90
19 18 18
158c 158c 158c
18
158c
18
158c
18 18 18
158c 158c 158c
18
158c
I8
158c
18
158c
6
187
SESQUITERPENE LACTONES--ASTERACEAE
483
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
ND
275
Parthenolide Zaluzanin C, dehydro Arctolide Zaluzanin C, 3-dehydro4ct, 15,1 la, 13 tetrahydro-9hydroxy Parthenolide Zaluzanin C, dehydro Zaluzanin C, 4/3,15-dihydro3-dehydro Zaluzanin C, 4/3,15, 11/3,13tetrahydro-3-dehydro Zaluzanin C, 4/3,15, lla,13tetrahydro-3-dehydro
la, 6a 3, 6a 3, 8a 3, 6a
112 112 814 356
la, 6a 3, 6a 3, 6a
112 112 I 12
3, 6a
112
3, 6a
112
(48)
Salonitenolide
la, 6a
116
(50)
Onopordopicrin
la, 6a
116
(606) (607)
Gazaniolide Gazaniolide, 8ct-isovaleryloxy
2, 6a 2, 6a
160 160
(57) (146)
Salonitenofide, 8-desoxy Salonitenolide, llfl, 13-dihydro-8-desoxy
la, 6a la, 6a
150 150
Compound 8. CALENDULEAE
Calendula Calendin (C15H220~)
C. officinalis
9. ARCTOTEAE
Arctotis A. aspera L. A. grandis Thunb.
A. repens Jacq. A. revoluta Jacq.
(112) (825) (988) (952)
(112) (825) (869) (956)
Berkheya B. speciosa (DC.) O.
Hoffm. Gazania G. krebsiana Less.
Platycarpha P. glomerata L.
THE BOTANICAL REVIEW
484
Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
Venidium (=Arctotis) V. decurens Less.
(870)
Grosshemin
3, 6a
341,342
Hirsutolide (Ct6H2oOs)
ND
341
Venidolide (C~0H2sOr)
ND
341
3, 6a 3, 6a 3, 6a 3, 6c~ 3, 6a
262,266, 319 791 791 791 791
3, 6a
791
(=Arctotis arctotoides [L. J.]
Hoffm.) V. hirsutum Harv. [=Arctotis hirsuta
(Harv.) Lewin] 10. CYNAREAE Carduinae Dumort. Acroptilon A. repens DC.
(829)
(=Centaurteapicris)
(862) (828) (833) (855)
(868)
Acroptilin (=Chlorohyssopifolin C) Chlorohyssopifolin A Repin Janerin Costuslactone, 2, 3-dihydroxy-8a-methacryloyloxy-dehydro Acrorepiolide
Aretium A. lappa L. A. minus Bernh. A. nemorosum Lej.
(49) (49) (50) (49)
Arctiopicrin Arctiopicrin Onopordopicrin Arctiopicrin
la, la, la, la,
6a 6a 6a 6a
250 275 5 250
(49)
Arctiopicrin
la, 6a
250
Costuslactone, dehydro
3,6a
64b
et Court A. tomentosum Mill.
Cirsium C. carolinianum
(Walt.) Fern. et Schub.
(834) (946)
Costuslactone, dehydrodihydro
3,6a
64b
(841) (841)
Cynaropicrin Cynaropicrin
3,6a 3, 6a
823,867 219,806
Cynara C. cardunculus L. C. scolymus L.
485
SESQUITERPENE LACTONES--ASTERACEAE Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
Cynaropicrin, dehydro Grosshemin
3, 6a 3, 6a
219, 806 816
Alatolide Albicolide
la, 6~ la, 6~
253 876
(833) (828) (830) (55)
Janerin Repin Repin, 8-desacyl Jurineolide
3, 6a 3, 6a 3, 6a la, 6a
792 792 792 854,865
(957)
Amberboin, iso (=Maximo-
3, 6a
219, 962
(48) (191) (939)
lide) Salonitenolide Salonitolide Jurmolide
la, 6a la, 8a 3, 6a
964 964 523
la, 6a la, 6a
252 788
la, 6a
788
7, 6a
789
7, 6a
789
la, 6a la, 6a
788 252
3, 6a
186
(826) (870)
Compound
Jurinea J. alata Cass. J. albicaulis Bge.
(53) (56)
var. kilaea (Aznar) Stoj. et Stef. J. carduiformis
Boiss. J. cyanoides (L.)
Rchb. J. maxima C. WinE.
Onopordon O. acanthium L. O. leptolepsis DC.
(50) (64) (65) (1054)
(1057)
O. tauricum Willd.
(50) (50)
Onopordopicrin Costunolide, 15-hydroxy-8a[a-methylacryloyloxy] Costunolide, 15-hydroxy-8a[isobutyryloxy] Melitensin, 1l(13)-dehydro8-(O)-[4'-hydroxymethacrylate] Melitensin, dehydro-15-dehydro-8-(O)-[4'-hydroxymethacrylate] Onopordopicrin Onopordopicrin
Ptilostemon P. afer (Jacq.) Greu-
ter
(832)
Subluteolide, 8-desacyloxy8a-[2-methylacryloyloxy]
486
THE BOTANICAL REVIEW Table X X H I
Continued.
Taxon
Structure number (Fig. 32) (944)
P. diacanthum (La-
(832)
bill.) Greuter (944)
Compound Subluteolide, 8-desacyloxy8a-[2-methylacryloyloxy]11/3,13-dihydro Subluteolide, 8-desacyloxy8a-[2-methylacryloyloxy] Subluteolide, 8-desacyloxy8a-[2-methylacryloyloxy]1lfl, 13-dihydro
Skeletal type a
Ref.
3, 6~
186
3, 6~
186
3, 6a
186
3, 6a 3, 6a la, 6a la, 6a la, 6a 3, 6a 3, 6a
549 847,848 797 374, 734 512, 838 606, 753 510
7, 6a 3, 6
735a, 853 214
3, 6
9, 214
3, 6
9
Saussurea
S. amara S. elegans S. elongata S. lappa Clarke
S. neopulchella
(841) (867) (117) (1) (137) (834) (946) (1062) (978)
Cynaropicrin Elegin Stizolicin Costunolide Costunolide, ll,13-dihydro Costuslactone, dehydro Costuslactone, dehydro-dihydroSaussurea lactone Saupirin
Lipsch. S. pulchella Fisch.
ex DC.
(978) (977)
Saupirin Saurin Centaureinae Dumort.
Amberboa
A. lippii DC. (=Centaurea lippii L.)
A. muricata DC.
(958) (870) (955) (954) (841)
Amberboin Grosshemin Lippidiol Lippidiol, iso Cynaropicrin
3, 6a 3, 6a 3, 6a 3, 6a 3, 6a
(844) (863)
Cynaropicrin, desacyl Muricatin
3, 6a 3, 6a
52 334 334, 334 334 Bohlmann, F., UP. 328 328
(841)
Cynaropicrin Stenophyllolide (C15H2004)
3, 6a ND
681 817
Centaurea
C. americana Nutt. C. aspera Linn.
487
SESQUITERPENE LACTONES---ASTERACEAE Table XXHI Continued.
Taxon C. calcitrapa L. C. canariensis Willd.
C. canariensis var.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(52) (176) (847) (848) (841) (844) (848)
Cnicin Scabiolide Aguerin A Aguerin B Cynaropicrin Cynaropicrin, desacyl Aguerin B
la, 6e~ la, 8a 3, 6a 3, 6~ 3, 6a 3, 6a 3, 6a
249, 516 249 324 324 324 324 324
(52) (829)
Cnicin Acroptilin (=Chlorohyssopifolin C) Repin Chlorohyssopifolin A Chlorohyssopifolin B Chlorohyssopifolin C (=Acroptilin) Chlorohyssopifolin D Chlorohyssopifolin E Vahlenin Cnicin Janerin Janerin, chloroCostunolide Aguerin B Chlorohyssopifolin A Chlorohyssopifolin B Chlorohyssopifolin C Chlorohyssopifolin D Chlorohyssopifolin E Linichlorin A Linichlorin B Linichlorin C Vahlenin Melitensin Melitensin, 1l(13)-dehydro/3-hydroxyisobutyrate Scabiolide
la, 6a 3, 6a
248 319
3, 3, 3, 3,
319 319, 321 319, 321 319, 320
subspinnata C. diffusa Lam. C. hyrcanica Bornm.
C. hyssopifolia Vahl.
C. iberica Trev. C. janeri Graells C. kurdica Reichardt C. linifolia Linn.
C. mellitensis L.
(828) (862) (859) (829) (861) (860) (612) (52) (833) (864) (1) (848) (862) (859) (829) (861) (860) (865) (849) (866) (612) (1063) (1056) (176)
6a 6a 6a 6a
3, 6a 3, 6a 2, 6a la, 6a 3, 6~ 3, 6~ la, 6a 3, 6a 3, 6a 3, 6a 3, 6a 3, 6a 3, 6a 3, 6a 3, 6a 3, 6a 2, 6a 7, 6a 7, 6a
319, 320 319, 320 320 249 322 322 275 324 323 317 317 317 317 317 317 317 317 313,315 316
la, 8~
250
488
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32) (1064)
C. micranthus I. F.
(52)
Compound
Skeletal type a
Ref.
Melitensin-(/3-hydroxyisobutyrate) Cnicin
7, 6a
250, 316
la, 6a
250
3, 6a la, 6a 7, 6a 7, 6a
323 249 323 323
3, 6a
319, 363
la, 6a la, 8a la, 8a
874,949 873 871,875
Gmel. C. nigra Linn.
C. repens L.
(862)
C. salonitana Vis.
(48) (191) (176)
Chlorohyssopifolin A Cnicin Melitensin, 11,13-dehydro Melitensin, 11,13-dehydro(fl-hydroxyisobutyrate) Centaurepensin (=Chlorohyssopifolin A) Salonitenolide Salonitolide Scabiolide
(169) (170) (191) (862) (176) (948) (949) (117) (52)
Artemisiifolin Artemisiifolin-15-acetate Salonitolide Chlorohyssopifolin A Scabiolide Solstitialin A Solstitialin A acetate Stizolicin Cnicin
la, 8a la, 8a la, 8t~ 3, 6a la, 8a 3, 6a 3, 6a la, 6a la, 6a
314 314 314 323 250, 643 895 966 643 248
C. sventenii
(848)
Aguerin B
3, 6a
324
C. webbiana Sch.
(956)
Estafietone, dihydro
3, 6a
330
Cnicin Salonitenolide
la, 6a la, 6a
809 919
33
665
C. ovina Pal. C. pullata L.
C. scabiosa (L.)
(862) (52) (1053) (1056)
Presl. C. seridis Linn.
C. solstitialis L.
C. stoebe (L.) Sch.
et Thel.
Bip. Cnleus C. benedictus L. (=Carbenia bene-
(52) (48)
dicta Adams)
Carlineae Cass. Atractylodes A. lancea DC.
(1349)
Furanoeudesm-4(15)-ene,3fl-
SESQUITERPENE LACTONES--ASTERACEAE
489
Table XXIII
Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
acetoxy-5a-H- 10/I-methyl
(=Atractylis ovata
Thunb.) (1350)
Furanoeudesm-4(15)-ene, 3fl-hydroxy-5a-H-10/3methyl
33
665
Xerantholide
3, 8a
815
(870)
Grosshemin
3, 6a
275
(870)
Grosshemin
3, 6a
275
(870) Grosshemin Grossheimia lactone (ClsHlsO4)
3, 6~
716
ND
716
la, 6a
157
Xeranthemum X. cylindraceum
(990)
Sibth et Smith Genera not assigned to subtribes:
Chartolepis C. intermedia Boiss.
Grossheimia G. macrocephala
(Muss.-Puschk.) D. Sosn. et Takht. G. ossica (C. Koch) Sosn. et Takht.
] 1. MUTIS1EAE
(1) Gochnatffnae & Mutisiinae
Cnicothamnus C. lorentzii Griseb.
(79)
la, 6a
157
(837)
Albicolide, 8t~-[2-methylbutyryloxy] Salonitenolide, 8-[2methylbutyryloxy] Zaluzanin C
3, 6a
157
(177) (178) (566) (648)
Dicomanolide, 14-acetoxy Dicomanolide, 14-oxo a-Cyclocostunolide O-Cyclocostunolide, dihydro
la, 8ct la, 8a 2, 6a 2, 6a
113 113 144 144
(706)
Alantolactone, 1/3-hydroxy
2, 8/~
169
(70)
Dicoma D. anomala Sond. D. zeyhed Sond.
Dinoseris D. salicifolia Griseb.
490
THE BOTANICAL REVIEW
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
Gochnatia G. discoidea (Less.)
Cabrera
(169) (170) (172) (173) (174) (175) (411)
G. rusbyana Cabrera
(837)
Artemisiifolin Artemisiifolin-15-acetate Artemisiifolin-15-O-acetylsarracinate Artemisiifolin-15-O-sarracinate Artemisiifolin-15-O-[4-hydroxytiglate] Artemisiifolin-6-O-[4-hydroxytiglate] Artemisiifolin-6-O-tiglate, 14-hydroxy-cis,cis Zaluzanin C
la, 8a la, 8a la, 8a
100 100 100
la, 8a
100
la, 8a
100
la, 8a
100
ld, 8a
100
3, 6a
157
Moquinia M. vetutina Bong.
(613) (566) (648)
Arbusculin A a-Cyclo costunolide /3-Cyclo costunolide, dihydro
2, 6a 2, 6a 2, 6a
501 900 900
(856)
Glucozaluzanin C
3, 6a
646
(161)
Costunolide, 9-oxo-11,13dihydro-7,11-dehydro (=Germacrone analog lac-
la, 6/3
921
20 20
159b 159b
20
169
Pertya P. robusta (Maxim.) Beauv.
Wunderlichia W. mirabilis Riedel
ex Baker
tone) (2) Naussauviineae
Trixis T. inula
(1307) (1308)
T. paradoxa Cass.
(1307)
Trixikingolide-isovalerate Trixikingolide-[2-methylbutyrate] Trixikingolide-isovalerate
SESQUITERPENE LACTONES--ASTERACEAE
491
Table XXIII
Continued.
Taxon
Structure number (Fig. 32) (1308) (1304)
(1305)
(1306) T. wrightii
(1307) (1308)
Compound Trixikingolide [2-methylbutyrate] Trixikingolide-[3 '-acetoxyisovalerate], 9c~-hydroxy13-[2-methylbutyryloxy] Trixikingolide-[3'-acetoxyisovalerate], 9a-hydroxy3//-isovaleryloxy Trixikingolide-[3'-acetoxyisovalerate],9a-hydroxy Trixikingolide-isovalerate Trixikingolide-[2-methylbutyrate]
Skeletal type a
Ref.
20
169
20
169
20
169
20
169
20 20
159b 159b
12. LACTUCEAE Cichorium C. intybus L.
(972) (973)
Lactucin Lactucopicrin
3,6a 3, 6a
236 479, 821
(883)
3,6a
65
3,6a
65
3, 6a
65
3, 6a 2, 6a
327 327
(962) (983) (903)
Hyporadiolide-8-O-cinnamate Hyporadiolide-8-O-[2methylacrylate] Hyporadiolide-8-O-[2methylacrylate], 11,13-dihydro Achillin Eudesm-4-en-6,12-olide, 1-hydroxy-6fl, 7a, 110-HHypochaerin Jacquinelin Matricarin, desacetoxy
3, 6a 3, 6 3, 6a
327 327 327
(972) (973)
Lactucin Lactucopicrin
3, 6a 3, 6ct
312 312
Hypochoeris H. radicata L.
(884) (884.5)
H. setosus Wedd.
(912) (639)
Lactuca L. canadensis L.
492
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon L. serriola L.
L. virosa Habl.
Structure number (Fig. 32)
Compound
Skeletal type a
Ref.
(972) (763) (973) (972) (973)
Lactucin Lactucin, 8-deoxy Lactucopicrin Lactucin Lactucopicrin
3, 3, 3, 3, 3,
6~ 6a 6a 6a 6~
785,860b 860b 860b 236, 821 821
(905) (777) (936) (936) (905)
Matricarin, desacetyl Picridin Picridin, dihydro Picridin, dihydro Matricarin, desacetyl
3, 3, 3, 3, 3,
6a 6a 6ct 6a 6~
329 329 329 329 329
(635)
Santamarin, dihydro
2, 6a
55
(983) (635)
Jacquinelin Santamarin, dihydro
3, 6 2, 6a
55 55
(983) (983) (983) (608)
Jacquinelin Jacquinelin Jacquinelin Tuberiferin
3, 3, 3, 2,
53 53 53 54
(973) (661)
Lactucopicrin Ridentin B, 4a,15,11fl,13tetrahydro Taraxacolide-[l'-O-/3-Dglucopyranoside] Taraxin acid-[l'-O-fl-Dglucopyranoside] Taraxin acid-[l'-O-fl-Dglucopyranoside], 11,13dihydro
3, 6a 2, 6a
369 359
2, 6t~
359
la, 6a
359
la, 6a
353
Urospermal A
la, 6a
51
Picridium P. cristallinum Sch.
Bip. P. ligulatum Vent.
(=P. tingitanum Desf.) Sonehus S. hierrensis (Pit.)
Svent. S. hierrensis (Pit.) Svent. var. Benehoavensis Svent. S. jacquini DC. S. pinnatus Ait. S. radicatus Ait. S. tuberifer Svent.
6 6 6 6c~
Taraxaeum T. officinale Wigg.
(660) (98) (147)
Urospermum U. dalechampii F.
W. Schmidt
(90)
SESQUITERPENE LACTONES---ASTERACEAE
493
Table XXHI Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
la, 6a
51
Rupicolin A Rupicolin B Rupicolin A, l-desoxy-l-aperoxy Rupicolin B, l-desoxy-l-aperoxy Rupicolin A-8-(O)-acetate, l-desoxy-la-peroxy Rupicolin B-8-(O)-acetate, 1-desoxy- la-peroxy Zuurbergenin, desacetyl
3, 6a 3, 6~ 3, 6c~
109 109 109
3, 6c~
109
3, 6c~
109
3, 6a
109
3, 6a
109
(979)
Ferreyanthus lactone
3, 6
89
(200)
Glechomanolide
la, 8
858
Costunolide
la, 6a
Bohlmann,
(91)
Compound Urospermal B 14. LIABEAE
Cacosmia C. rugosa HBK.
(778) (790) (788) (793) (788.5) (793.5) (753.5)
Ferreyanthus F. verbascifolius (HBK.) R. et B. Glechoma G. hederacea Liabum L. bourgeani Hieron.
(1)
F., (834)
Costus lactone, dehydro
3, 6a
UP. Bohlmann,
F., UP. L. floribundum Less. L. cf. stipulatum
Rusby
(386) (1)
Liabinolide Costunolide
lc, 8a la, 6~
(834)
Costuslactone, dehydro
3, 6a
185 185 185
(834) (436)
Costustactone, dehydro Maroniolide
3, 6a 1, 8~
87 87
Munnozia M. gigantea Rusby M. maronii (Andre) H. Robins.
494
THE BOTANICAL REVIEW Table XXIII Continued.
Taxon
Structure number (Fig. 32)
Skeletal type a
Ref.
Arnifolin Carabrone Carabrone Helenalin Helenalin acetate (=Angustibalin) Helenalin acetate, dihydro (=Arnicolide A) Xanthalongin
5, 8/3 10, 8/3 10, 813 5, 8/3 5, 8/3
264 478 935 935 936
5, 8/3
936
10, 8/3
936
Arnicolide A Arnicolide B Arnicolide C Arnicolide D Arnifolin Helenalin, dihydro (=Plenolin) Helenalin, tetrahydro
5, 5, 5, 5, 5, 5,
8/3 8/3 8/3 8/3 8fl 8fl
715 715 715 715 264 476,715
5,813
476, 715
Eupatoriopicrin Eupatoriopicrin
la, 6a Ia, 6a
286 286
Confertiphyllide Eriofertin Eriofertopin Eriofertopin, 2-O-acetyl Erioflorin Eriolin Eriolin, hydroxy Eriophyllin Eriphyllin B Eriophyllin C
7, 6a la, 6c~ la, 6a la, 6a lc, 6a 1, 8 1, 8 lc, 6a I c, 6a lc, 6a
555,801 801 555 555 904 904 904 904 904 904
Compound 15. ARNICEAE
Arnica A. foliosa Nutt. A. longifolia Eat.
(1190) (1049) (1049) (1195) (1197) (1207) (1049.5)
A. montana L.
(1207) (1211) (1209) (1208) (1190) (1206) (1215)
Chaenactis C. carphoclinia Gray C. douglassii
(11) (11)
(Hook.) H. and A. Eriophyllum E. confertiflorum
Gray
(1061) (81) (80) (83) (306) (524) (525) (305) (304) (315)
SESQUITERPENE LACTONES--ASTERACEAE
~5
Table XXIll Continued.
Taxon E. lanatum Forbes (=E. caespitosum
Structure number (Fig. 32) (741) (740)
Compound
Skeletal type a
Ref.
Eriolangin Eriolanin
9, 8/3 9, 8/3
557 557
Eupatoriopicrin
la, 6ct
286
Chrysostomalide acetate
3, 8t~
156
Eremophilenic acid
6, Acid
156
Chrysostomalide acetate
3, 8a
156
Chrysostomalide isobutyrate Eremophilenic acid
3, 8a 6, Acid
156 156
Peucephyllin
lc, 6a
45
Dougl. ex Lindl.) E. stachaedifolium Lag. var. artemisiaefolium (Less.) Macbr.
(11)
Lasthenia L. chrysostoma Fisch. et Mey. L. coronaria A. Gray
(985) (1261.7) (985) (986) (1261.7)
Peucephyilum P. schottii Gray
(285)
a The first number corresponds to the skeletal type code which is explained and illustrated in Figure 2. The second number indicates the position and orientation of the carbon-oxygen lactone bond. b ND = Structure not determined. c These structures were revised by Herz et al. (400), who determined that they were cislactones. They found that the last two Montanoa pteropoda compounds were identical tc M. hibiscifolia compounds 4a and 2b, respectively. d T = Tentative identification. e The relative positions of the C-8 and C-9 ester sidechains are uncertain. f UP = Unpublished.
VIII. Literature Cited 1. Abbasov, R. M., N. M. Ismaiiov and K. S. Rybalko. 1965. The lactone constituents of Artemisia spicigera. The dynamics of accumulation of lactones, essential oils and "phenols" and their inter-relationships. Vopr. Eksperim. Botan. Sb. 5; Chem. Abstr. 65: 12563c (1966). 2. Abe, N., T. Harukawa, H. Ishikawa, T. Miki, M. Sumi and T. Toga. 1953. Santonin. I. The synthesis of two optically inactive stereoisomerides of santonin. J. Amer. Chem. Soc. 75: 2567. 3. , R. Onoda, K. Shirahata, T. Kato, M. C. Woods and Y. Kitahara. 1968. The structure of bakkenolide A. Tetrahedron Lett. 369.
496
THE BOTANICAL REVIEW
4. AbdeI-Baset, Z. H., L. Southwick, W. Padolina, H. Yoshioka, T. J. Mabry and S. B. Jones, Jr. 1971. Sesquiterpene lactones: A survey of 21 United States taxa from the genus Vernonia (Compositae). Phytochemistry 10: 2201. 5. Abraham, E. P., D. M. Crowfoot, A. E. Joseph and E. M. Osborn. 1946. An antibacterial substance from Arctium minus and Onopordon tauricum. Nature 158: 744. 6. Abu-Shady, H. and T. O. Soine. 1953. The chemistry of Ambrosia maritima L. The isolation and preliminary characterization of ambrosin and damsin. J. Amer. Pharm. Assoc. 42: 387. 7. Adams, R. and W. Herz. 1949. Helenalin. I. Isolation and properties. J. Amer. Chem. Soc. 71: 2546. 8. and - - . 1949. Helenalin, 11I. Reduction and dehydrogenation. J. Amer. Chem. Soc. 71: 2554. 9. Agafonova, N. V., L. E. Kushnir, A. D. Kuzovkov, A. I. Shreter and M. G. Pimenov. 1966. Chemical study of Saussurea pulchella Fisch. Aptechn. Delo. 15: 36; Chem. Abstr. 65: 3681d (1966). 10. Akyev, B. 1976. Artemin from Artemisia kemrudica. Isv. Akad. Nauk. Turkmensk. SSR. Ser. Biol. Nauk. 6: 85; Chem. Abstr. 87: 19053n (1977). 1 I. - - . , S. Z. Kasymov and G. P. Sidyaldn. 1971. Sesquiterpene lactones of Artemisia santolina. Khim. Prir. Soedin. 7: 531; English ed. p. 514; Chem. Abstr. 75: 148501h (1971). 12. - - , - and . 1972. Arsanin---a new sesquiterpene lactone from Artemisia santolina. Khim. Prir. Soedin. 8: 461; English ed. p. 458; Chem. Abstr. 78: 13748K (1973). 13. - - , - and--. 1972. Structure and configuration of arsanin. Khim. Prir. Soedin. 8: 730; English ed. p. 713; Chem. Abstr. 78: 84565j (1973). 14. - - , - and . 1972. Artesin---a new sesquiterpene lactone from Artemisia santolina. Khim. Prir. Soedin. 8: 733; English ed. p. 715; Chem. Abstr. 78: 84563g (1973). 15. Akhmedov, I. S., S. Z. Kasymov and G. P. Sidyakin. 1970. Structure of artabin. Khim. Prir. Soedin. 6: 691; English ed. p. 703; Chem. Abstr. 74: 112239u (1971). 16. - - and - - . 1970. Artabin--a new lactone from Artemisia absinthium. 'Khim. Prir. Soedin. 6: 622; English ed. p. 634. 17. - - and - - . 1972. Arabsin---a new lactone from Artemisia absinthium. Khim. Pilr. Soedin. 8: 245; English ed. p. 245; Chem. Abstr. 77: 85567c (1972). 18. Alem~in, R., A. Rosado, M. Rodriguez and J. F. Bertrfin. 1977. Composition of Wedelia rugosa Greenm. Rev. Cubana Farm. 11: 47; Chem. Abstr. 88: 3076g (1978). 19. Ali, E., P. P. Ghosh Dastidar, S. C. Pakrashi, L. J. Durham and A. M. Duffield. 1972. Sesquiterpene lactones of Enhydrafluctuans Lour. Structures of enhydiln, fluctuanin and fluctuadin. Tetrahedron 28: 2285. 20. Alvarado, S., J. F. Ciccio, J. Calzada, V. Zabel and W. H. Watson. 1979. Thieleanine, a new guaianolide from Decachaeta thieleana. Phytochemistry 18: 330. 21. Anderson, L. A. P., W. T. de Kock, K. G. R. Pachler and C. V. D. M. Brink. 1967. The structure of vermeerin. A sesquiterpenoid dilactone from Geigeria africana Gries. Tetrahedron 23: 4153. 22. - - , - - , W. Nel, K. G. R. Pachler and G. Van Tonder. 1969. Gafrinin, a sesquiterpenoid lactone from Geigeria africana Giles. I. Revised structure. Tetrahedron 24: 1687. 23. Anthonson, T. and S. Cbantharasaknl. 1971. Isolation of ent-16-kauren-19-oic-acid and ent-16-kauren-19-01 from Abrotanella nivigena. Acta Chem. Scand. 25: 1925; Chem. Abstr. 75: 137488h (1971). 24. Aparecida, M., H. Cagnin, C. M. R. G6mes, O. R. Gottlieb, A. I. Marx, M. F. de Rocha, G. F. da Silva and J. A. Temperini. 1977. Biochemical systematics: Methods and principles. Plant Syst. Evol. Suppl. 1: 53. 25. Arkhipova, L. I., S. Z. Kasymov and G. P. Sidyakin. 1970. Sesquiterpenoid lactones from Artemisia halophila. Khim. Prir. Soedin. 6: 480; Chem. Abstr. 74: 10349n (1971). 26. Asahina, Y. and T. Momose. 1937. IJber das c~-oxysantonin. Ber. Dtsch. Chm. Ges. 70: 812.
SESQUITERPENE LACTONES--ASTERACEAE
497
27. Asaka, Y., T. Kubota and A. B. Kulkarni. 1977. Studies on a bitter principle from Vernonia anthelmintica. Phytochemistry 16: 1838; Chem. Abstr. 88: 47467q (1978). 28. Asakawa, Y., N. Tokunaga, T. Takemoto, S. Hattori, M. Mizutani and C. Suire. 1980. Chemosystematics of bryophytes. IV. The distribution of terpenoids and aromatic compounds in Hepaticae and Anthocerotae. J. Hattori Bot. Lab. 47: 153. 29. Asplund, R. O., M. McKee and P. Balasubramaniyan. 1972. Artevasin: A new sesquiterpene lactone from Artemisia tridentata. Phytochemistry 11: 3542. 30. Babakhodzhaev, A., S. Z. Kasymov and G. P. Sidyakin. 1973. Xanthatin from Xanthium spinosum. Khim. Prir. Soedin. 9: 559; Chem. Abstr. 80: 45621w (1974). 31. Bacon, J. D., E. L. Urbatsch, L. H. Bragg, T. J. Mabry, P. Neuman and D. W. Jackson. 1978. The flavonoids of Tetragonotheca (Compositae). Phytochemistry 17: 1939. 32. Baker, P. M., C. C. Fortes, E. G. Fortes, G. Cazzinelli, B. Gilbert, J. N. C. Lopes, J. Peilegrino, T. C. B. Tomassini and W. Vichnewski. 1972. Chemoprophylactic agents in schistosomiasis: Eremanthin, costunolide, ~-cyclocostunolide, and bisabolol. J. Pharm. Pharmacol. 24: 853. 33. Banh-Nhu, C., E. Gacs-Baitz, L. Radics, J. Tamas, K. Ujszaszy and G. Verzar-Petri. 1979. Achillicin, the first proazulene from Achillea millefolium. Phytochemistry 18: 331. 34. Barton, D. H. R. and P. de Mayo. 1957. The constitution of pyrethrosin. J. Chem. Soc. (London) 150. 35. - - , G. P. Moss and J. A. Whittle. 1968. Biosynthesis of santonin. J. Chem. Soc. C. 1813. 36. - and C. R. Navayanan. 1958. The constitution of lactucin. J. Chem. Soc. (London) 963. 37. - - a n d J. T. Pinhey. 1960. The stereochemical correlation of artemisin and geigerin. Proc. Chem. Soc. 279. 38. - - and R. J. Wells. 1964. Synthetic studies on geigerin and its derivatives. J. Chem. Soc. (London) 2518. 39. Barua, N. C., R. P. Sharma, K. P. Madhysudanan, G. Thyagarayan, W. Herz and R. Murani. 1979. The sesquiterpene lactones of Tithonia diversifolia: Stereochemistry of the tagitinins and related compounds. J. Organ. Chem. (USA) 44: 1831. 40. Barua, R. N., R. P. Sharma, G. Thyagarajan, W. Herz and S. V. Govindan. 1980. New melampolides and darutigenol from Sigesbeckia orientalis. Phytochemistry 19: 323.
41. - - , , , , and J. F. Blount. 1980. Unusual germacranolides from lnula eupatorioides. J. Organ. Chem. (USA) 45: 4838. 42. Batterham, T. J., N. K. Hart and J. A. Lamberton. 1966. Guaianolides from the wax of Calocephalus brownii F. Muell. (Compositae). Austral. J. Chem. 19: 143. 43. Beauhaire, J., J. L. Fourrey, M. Vuilhorgne and J. Y. Lallemand. 1980. Dimeric sesquiterpene lactones: Structure of absinthin. Tetrahedron Lett. 3191. 44. Beetle, A. A. and A. Young. 1965. A third subspecies in the Artemisia tridentata complex. Rhodora 67: 405. 45. Begley, M. J., G. Pattenden, T. J. Mabry, M. Miyakado and H. Yoshioka. 1975. Constitution of peucephyllin, a new type of germacranolide from Peucephyllum schottii. Tetrahedron. Lett. 1105. 46. Benesova, V. and V. Herout. 1961. Neutral substances from Telekia speciosa (Schreb) Baumg. Collect. Czech. Chem. Comm. 26: 2916. 47. - - , and F. S6rm. 1961. Structure of telekin and isotelekin new sesquiterpenic lactones from Telekia speciosa (Schreb) Baumg. Collect. Czech. Chem. Comm. 26: 1350. 48. - - , and . 1964. Isolation and structure of nobilin, a sesquiterpene lactone with a ten-membered ring. Collect. Czech. Chem. Comm. 29: 3097. 49. , M. V. Nazarenko and L. V. Sleptsova. 1970. Sesquiterpenic 7-1actones from Artemisia jacutica. Khim. Prir. Soedin. 5: 186; Chem. Abstr. 72: 39763n (1970). 50. , Z. Samek, V. Herout and F. S6rm. 1970. The structure of nobilin. Tetrahedron Lett. 5017. 51. Bentley, R. K. T., G. S. C. Buchanan, T. G. Halsall and V. Thailer. 1970. Urospermal
498
THE BOTANICAL REVIEW
A and urospermal B, conformers of a germacranolide aldehyde from Urospermum dalechampii F. W. Schmidt. Chem. Commun. 435. 52. Bermejo Barrera, J., C. Betaneov, J. L. Bret6n-Funes and A. G. Gonz,'ilez. 1969. Lactonas sesquiterp6nicas de la Amberboa lippii D.C. Anales Real Soc. Esp. Fis. Quim. 65: 285. 53. - - , J. L. Bret6n-Funes and A. G. Gonzalez. 1966. Terpenoids of the Sonchus. Part III. Sesquiterpene lactones of S. Jacquini D.C., S. pinnatus Ait. and S. radicatus Ait. J. Chem. Soc. (London) 1298. 54. ,- - , M. Fajarflo and A. G. Gonzalez. 1967. Terpenoids from the Sonchus. VI. Tuberiferine from Sonchus tuberifer Svent. Tetrahedron Lett. 3475. 55. --, A. G. Goaz~lez and A. ViUar Del Fresno. 1968. Lactonas sesquiterp6nicas de Sonchus hierrensis (Pit) Svent. stat. nov. var~ benehoavensis Svent. var nova. Anales Real Soc. Esp. Ffs. Quim. 893. 56. Betkonski, M., T. J. Mabry, I. F. Taylor and W. H. Watson. 1975. Glaucolide-D and -E, two new germacranolides from Vernonia uniflora Sch.-Bip. (Compositae). Rev. Latinoamer. Quim. 6: 191. 57. - - , --., T. W. Adams, W. H. Watson and S. B. Jones, Jr. 1976. Glaucolide G, a new germacranolide sesquiterpene lactone from Vernonia leiocarpa (Compositae). Rev. Latinoamer. Quim. 111; Chem. Abstr. 86: 13822v (1977). 58. Bhaeea, N. S., R. A. Wiley, N. H. Fischer and F. W. Webrli. 1973. Carbon-13 and proton magnetic resonance study of the structure and conformation of a new germacranolide sesquiterpene dilactone. Chem. Commun. 614. 59. Bbadane, N. R., R. G. Kelsey and F. Shalizadeh. 1975. Sesquiterpene lactones of Artemisia tridentata ssp. vaseyana. Phytochemistry 14: 2084. 60. and F. Shatizadeh. 1975. Sesquiterpene lactones of sagebrush: The structure of artecanin. Phytochemistry 14: 2651. 61. Biddulph, S. F. 1944. A revision of the genus Gaillardia. Res. Stud. State Coll. Wash. 12" 195. 62. Bierner, M. W. 1973. Sesquiterpene lactones and the systematics ofHelenium quadridentaturn and H. elegans. Biochem. System. 1: 95; Chem. Abstr. 79. 102768c (1973). 63. Bjeldanes, L. F. and T. A. Geissman. 1971. Constituents of an F1 hybrid Encelia farinosa • Encelia californica. Phytochemistry 10: 1079. 64a. Bloszyk, E., B. Drozdz, Z. Samek, J. Toman and M. Holub. 1975. Linifolin A and helenalin from Helenium aromaticum. Phytochemistry 14: 1444. 64b. Bohlmann, F. and W. R. Abraham. 1981. Aplotaxene epoxide from Cirsium hypoleucum. Phytochemistry 20: 855. 65. - and R. Bohlmann. 1980. Three guaianolides from Hypochoeris radicata. Phytochemistry 19: 2045. 66. - - , G. Brindopke and R. C. Rastogi. 1978. A new type of germacranolide from Vernonia species. Phytochemistry 17: 475. 67. - and H. Czerson. 1978. A new glaucolide derivative from Erlangea remifolia. Phytochemistry 17:1190. 68. - and - - . 1978. Neue Guajanolid-derivate aus Erlangea inyangana (N. E. Br.) B. L. Burtt. Phytochemistry 17: 568. 69. - - and S. Sehiineweil3. 1977. Neue Inhaltsstoffe aus lnula viscosa Ait. Chem. Ber. 110: 1330. 70. - - , A. K. Dhar, J. Jakupovic, R. M. King and H. Robinson. 1981. Eudesmanolides from Dimerostemma lippioides. Phytochemistry 20: 838. 71. , , , - - a n d - - . 1981. Two sesquiterpene lactones with an additional propiolactone ring from Disynaphia halimifolia. Phytochemistry 20: 1077. 72. - - , - - , R. M. King and H. Robinson. 1981. A guaianolide from Guevaria sodiroi. Phytochemistry 20: 1144. 73. - - , L. N. Dutta, W. Knanf, H. Robinson and R. M. King. 1980. Neue Sesquiterpentactone aus Aster urnbellatus. Phytochemistry 19: 433.
SESQUITERPENE LACTONES--ASTERACEAE
4~
74. - and . 1979. N e u e Germacranolide a u s Liatris cylindracea. P h y t o c h e m istry 18: 847. 75. - and . 1979. Ein n e u e s Heliangolid aus Helianthus lehmannii. Phytoc h e m i s t r y 18: 679. 76. - - , , W. Dorner, R. M. King and H. Robinson. 1979. Zwei neue Guajanolide sowie Weitere Longipinenester aus Stevia-arten. P h y t o c h e m i s t r y 18: 673. 77. , - and K. Kerr. 1980. Sesquiterpenlactone a u s Oxylobus oaxacanus. P h y t o c h e m i s t r y 19: 691. 78. , - - , H. Robinson and R. M. King. 1979. N e u e Sesquiterpenlactone a u s Eupatorium sessilifolium. P h y t o c h e m i s t r y 18: 1401. 79. - and D. Ehlers. 1977. Ein n e u e s cis, cis-germacranolid aus Chrysanthemum poteriifolium. Phytochemistry 16: 137. 80. - - , and C. Zdero. 1978. Einige neue F u r a n o e r e m o p h i l a n e a u s Senecioarten. P h y t o c h e m i s t r y 17: 467. 81. - - , ,- and M. Grenz. 1977. U b e r Inhaltsstoffe der Gattung Ligularia. C h e m . Ber. 110: 2640. 82. - and L. Fiedler. 1978. Notiz fiber ein n e u e s Germacrolid a u s Chromolaena glaberrima (DC.) K. et R. C h e m . Bet. 111: 408. 83. - - , U. Fritz and L. Dutta. 1980. N e u e A c e t y l e n v e r b i n d u n g e n a u s Leucanthemum-arten und Revision der Strucktur eines Germacranolids. P h y t o c h e m i s t r y 19: 841. 84. - - , - - , R. M. King a n d H. Robinson. 1981. Fourteen heliangolides from Calea species. Phytochemistry.. 20: 743. 85. - and M. Grenz. 1969. U b e r ein n e u e s Sesquiterpenlacton aus Pluchea dioscorides DC. Tetrahedron Lett. 511 I. 86. - and . 1979. Ein n e u e s Furanoeremophilan-derivat aus Ligularia macrophylla. P h y t o c h e m i s t r y 18: 491. 87. - and . 1979. Ein n e u e s Germacranolid a u s Munnozia maronii. Phytoc h e m i s t r y 18: 334. 88. , - and A. Suwita. 1977. Inhaltsstoffe aus Gynoxys und Pseudogynoxysarten. P h y t o c h e m i s t r y 16: 774. 89. , - and C. Zdero. 1977. Naturally-occurring terpene derivatives. Constituents of the Liabum group. P h y t o c h e m i s t r y 16: 285. 90. - - , R. K. Gupta, J. Jakupovic, R. M. King and H. Robinson. 1981. Secoeremophilanolides from Senecio macrotis. P h y t o c h e m i s t r y 20: 1155. 91. - and J. Jakupovic. 1979. N e u e Germacranolide aus Calea urticifolia. Phytoc h e m i s t r y 18:119. 92. - and - - . 1979. Zwei neue Sesquiterpenlactone und eine neue Sesquiterpens~iure aus Helenium puberulum. P h y t o c h e m i s t r y 18:13 I. 93. - and . 1979. N e u e Labdan-derivat und Sesquiterpene a u s Silphiumarten. P h y t o c h e m i s t r y 18: 1987. 94. - - - , --~, M. Ahmed, M. Grenz, H. Suding, H. Robinson and R. M. King. 1981. G e r m a c r a n o l i d e s and diterpenes from Viguiera species. P h y t o c h e m i s t r y 20:113. 95a. ,- - , A. K. Dhar, R. M. King and H. Robinson. 1981. Heliangolides and diterpenes from Hartwrightia floridana. P h y t o c h e m i s t r y 20: 843. 95b. - - , - - , L. Dutta and M. Goodman. 1980. N e u e , Abgewandelte Pseudoguajanolide a u s Psilostrophe villosa. P h y t o c h e m i s t r y 19: 1491. 96. ,- - , A. K. Dhar, R. M. King and H. Robinson. 1981. T w o sesquiterpene and three diterpene lactones from Acanthospermum australe. P h y t o c h e m i s t r y 20: 108 I. 97. - - , - - , R. K. Gupta, R. M. King and H. Robinson. 1981. Allenic germacranolides, b o u r b o n e n e - d e r i v e d lactones and other c o n s t i t u e n t s from Vernonia species. Phytochemistry 20: 473. 98. , , R. M. King and H. Robinson. 1980. N e u e Ent-atisiren- und Ent-kaurens~ure-derivat aus Helianthus-arten. P h y t o c h e m i s t r y 19: 863. 99. - - , - and M. Lonitz. 1977. U b e r Inhaltsstoffe der Eupatorium Gruppe. C h e m . Ber. 110: 301.
500
THE BOTANICAL REVIEW
100. - - ,
- - ,
H. Robinson and R. M. King. 1981. Five germacranolides from
Gochnatia discoidea. P h y t o c h e m i s t r y 20: 109. 101. - - , - and C. Zdero. 1978. N e u e N o r s e s q u i t e r p e n e aus Rudbeckia laciniata und Senecio paludaffinis. P h y t o c h e m i s t r y 17: 2034. 102. , ,~ , R. M. King a n d It. Robinson. 1979. N e u e Melampolide und cis, cis-germacranolide a u s Vertretern der Subtfibus Melampodiinae. P h y t o c h e m i s t r y 18: 625. 103. - and K. H. Knoll. 1978. Weitere F u r a n o e r e m o p h i l a n e aus Othonna-arten. P h y t o c h e m i s t r y 17: 461. 104. - and . 1979. Eine n e u e s N o r s e s q u i t e r p e n und A n d e r e lnhaltsstoffe a u s Ligularia-arten. P h y t o c h e m i s t r y 18: 877. 105. - and - - . 1979. Neuartige Sesquiterpenlactone und neue Acetylenvergingen a u s Athanasia-arten. P h y t o c h e m i s t r y 18: 995. 106. - - , - and N. A. EI.Emary. 1981. Neurartige Sesquiterpenelactone a u s Pulicaria crispa. P h y t o c h e m i s t r y 18: 1231. 107. - - , - - , H. Robinson a n d R. M. King. 1980. N e u e E u d e s m a n o l i d e aus Steiractinia mollis. P h y t o c h e m i s t r y 19: 971. 108. , , - and - - . 1980. N e u e K a u r e n d e r i v a t e u n d Melampolide a u s Smallanthus uvedalia. P h y t o c h e m i s t r y 19: 107. 109. - - , - - , - and - - . 1980. N e u e Guaianolide aus Cacosmia rugosa. P h y t o c h e m i s t r y 19: 599. 110. - - , --, C. Zdero, P. K. Mahanta, M. Grenz, A. Suwita, D. Ehlers, N. LeVan, W. R. A b r a h a m and A. A. Natu. 1977. Terpen-derivat a u s Senecio-arten. Phytoc h e m i s t r y 16: 965. I 11. - and N. LeVan. 1977. N e u e Guajanolide a u s Podachaenium eminens. Phyt o c h e m i s t r y 16: 1304. 112. and . 1977. Sesquiterpenlactone und Polyine a u s der Gattung Arctotis. P h y t o c h e m i s t r y 16: 487. 113. and . 1978. N e w germacranolides from Dicoma anomala. P h y t o c h e m istry 17: 570. 114. - and . 1978. N e u e Sesqui- u n d Diterpene a u s Bedfordia salicina. Phytochemistry 17: 1173. 115. - and . 1978. N e u e Kaurens~iure-derivat u n d Germacranolide a u s Montanoa pteropoda. P h y t o c h e m i s t r y 17: 1957. 116. , - - , T. V. Cuong Pham, J. Jakupovic, A. Schuster, V. Zable and W. H. Watson. 1979. /3-Isocomen, ein n e u e s Sesquiterpen a u s Berkheya-arten. P h y t o c h e m istry 18: 1831. 117. - and M. Lonitz. 1978. N e u e Sandaracopimardien-derivat, Sesquiterpene und Sesquiterpenlactone a u s Zexmenia-arten. C h e m . Ber. 111: 843. 118. - and . 1980. Naturlich v o r k o m m e n d e Terpenderivate, 272. U b e r die Inhaltsstoffe von Zexmenia gnaphatoides und die S y n t h e s e y o n Valerenan-derivaten. C h e m . Ber. 113: 2410. 119. and P. K. M a h a n t a . 1979. Zwei neue Pseudoguajanolide aus Telekia speciosa. P h y t o c h e m i s t r y 18: 887. 120. - and L. N. Dutta. 1979. Weitere Hirsutinolide aus Vernonia-arten. P h y t o c h e m i s t r y 18: 289. 121. ,--, J. Jakupovic, R. C. Rastogi and A. A. Natu. 1978. N e w sesquiterpene lactones from lnula species. P h y t o c h e m i s t r y 17:1165. 122. , - - , A. Suwita, A. Suwita, A. A. Natu, C. Zdero, W. Dorner, D. Ehlers and M. Grenz. 1977. N e u e Sesquiterpenlactone u n d andere Inhaltsstoffe aus Vertretern der Eupatorium-gruppe. P h y t o c h e m i s t r y 16: 1973. 123. , --, A. A. Natu, R. M. King and H. Robinson. 1978. N e w germacranolides from Isocarpha species. P h y t o c h e m i s t r y 17: 471. 124. - - , L. Miiiler, R. M. King and H. Robinson. 1981. A guaianolide and other constituents from Lychnophora species. P h y t o c h e m i s t r y 20:1149. 125. - - , A. A. Natu and P. K. M a h a n t a . 1978. Naturally-occurring terpene deriva-
SESQUITERPENE LACTONES--ASTERACEAE
501
tives. Part 122. New diterpenes and germacranolides from Mikania species. Phytochemistry 17: 483. 126. - - , E. Rasenberg, H. Robinson and R. M. King. 1980. Pseudoguaianolides from Wedelia grandiflora. Phytochemistry 19: 2047. 127. and A. Suwita. 1976. Weitere Furanoeremophilane aus Othonna-arten. Chem. Ber. 109: 1230. 128. - - and P. Mahanta. 1976. Weitere Inhaltsstoffe aus Senecio-arten. Chem. Ber. 109: 3570. 129. - and - - . 1979. Ein neues Guajanolid und ein Secoguajanolid aus Helichrysum splendidum. Phytochemistry 18: 885. 130. - - , , R. M. King and H. Robinson. 1980. Neue Guajanolide aus Eupatorium rotundifolium. Phytochemistry 19: 1233. 131. , - - , H. Robinson and R. M. King. 1979. Ein neues Toxol-derivat aus Austrobrickellia patens. Phytochemistry 18: 2055. 132. , - - , A. A. Natu, H. Czerson and A. Suwita. 1977. l~lber Weitere a-Longipinen Derivat aus Compositen. Chem. Ber. 110: 3572. 133. - and C. Zdero. 1970. N e w benzofuran derivatives from Doronicum austriaeum Jacq. Tetrahedron Lett. 3575. 134. and . 1971. Prutenin, 4-angeloyloxy-pruteninon sowie 4-Acetoxy--pruteninon und Isopruteninon. Vier neue Sesquiterpenlactone aus Laserpitium prutenicum L. Chem. Ber. 104: 1611. 135. and - - . 1972. Zwei neue Sesquiterpenlactone aus Lidbeckia pectinata Berg und Pentzia elegans DC. Tetrahedron Lett. 621. 136. - and - - . 1974. Naturally-occurring terpene derivatives XXXII. N e w sesquiterpene lactones from Osmitopsis asteriscoides. Chem. Ber. 107: 1409. 137. and . 1974. Uber neue Sesquiterpene der Gattung Senecio. Chem. Ber. 107: 2912. 138. - and . 1975. Ein neues Sesquiterpenlactone aus Matricaria suffructicosa var. leptoloba. Chem. Ber. 108: 437. 139. - and 1975. l~lber neue Inhaltsstoffe der Gattung Anthemis. Chem. Ber. 108: 1902. 140. - - a n d 1976. Ein neues Sesquiterpenlacton aus Dugesia mexicana Gray. Chem. Ber. 109: 2651. 141. - and - (3ber ein neues Diterpen aus Melampodium perfoliatum (Cav.). A. Gray. Chem. Ber. 109: 1670. 142. - and - 1976. Neue Furanoeremophilane aus Mexikanischen Senecioarten. Chem. Ber. 109: 819. 143. - and - 1977. Ein neues Guajanolid aus Matricaria zuurbergensis. Phytochemistry 16: 136. 144. - and 1977. U b e r Inhaltsstoffe der Tribus Mutisieae. Phytochemistry 16: 239. 145. - and 1977. Ein neues Germacranolid aus Simsia dombeyana. Phytochemistry 16: 776. 146. - and 1977. Inhaltsstoffe aus Vernonia-arten. Phytochemistry 16: 778. 147. - and - - . 1977. N e w germacrolides from Calea zacatechichi. Phytochemistry 16: 1065. 148. - and . 1977. Neue Sesquiterpenlactone und Thymol-derivat aus lnulaarten. Phytochemistry 16: 1243. 149. - and . 1977. Ein neues Clerodan-derivat sowie Weitere Inhaltsstoffe aus der Gattung Macowania. Phytochemistry 16: 1583. 150. - and - - - . 1977. Neue Germacranolide aus Platycarpha glomerata. Phytochemistry 16: 1832. 151. - and - - . 1978. Inhaltsstoffe Sudamerikanischer Senecio-arten. Phytochemistry 17: 134. 152. - and . 1978. N e w norsesquiterpenes from Senecio digitalifolius. Phytochemistry 17: 759.
502
THE BOTANICAL REVIEW
153. - and . 1978. Neue Furanoeremophilane und andere Sesquiterpene aus Vertreten der Gattung Euryops. Phytochemistry 17:1135. 154. - and . 1978. N e w furanoeremophilanes from South African Senecio species. Phytochemistry 17: 1161. 155. - and . 1978. N e w sesquiterpenes and acetylenes from Athanasia and Pentzia species. Phytochemistry 17: 1595. 156. - and - - . 1978. Neue Guajanolide aus Lasthenia-arten. Phytochemistry 17: 2032. 157. and . 1979. Neue Germacranolide und andere Inhaltsstoffe aus vertretern der Subtribus Gochnatiinae. Phytochemistry 18: 9.5. 158a. - and---. 1979. Neue Sesquiterpene mit anomalen Kohlenstoffgerfist aus der Tribus Mutisieae. Chem. Ber. 112: 427. 158b. - and . 1979. U b e r eine neue Gruppe von Sesquiterpenlactonen aus der Gattung Trixis. Chem. Ber. 112: 435. 158c. - and - - . . 1979. Neue Clo-s~iureamide, Furanoeremophilane und andere Inhaltsstoffe aus Bolivianischen Senecio-arten. Phytochemistry 18: 125. 159. and . 1979. Ein neues Germacren-derivat aus Iva xanthifolia. Phytochemistry 18: 1892. 160. and . 1979. Neue Eudesmanolide aus Gazania krebsiana. Phytochemistry 18: 332. 161. and . 1979. Ein neues Furanoeremophilan-derivat aus Gynoxys psilophylla. Phytochemistry 18: 339. 162a. and . 1979. 3fl-isovaleryloxycostunolid, ein neues Germacranolid aus Cotula hispida. Phytochemistry 18: 336. 162b. and . 1979. Zwei neue Eudesman-derivat aus Iva annua. Phytochemistry 18: 2034. 163. and . 1980. Neue Sesquiterpenlactone und Nerolidol-derivat aus Ursinia-arten. Phytochemistry 19" 587. 164. , , D. B e r g e r , A. S u w i t a , P. Mahanta and C. Jeffrey. 1979. N e u e Furanoeremophilane und Weitere Inhaltsstoffe aus Siidafrikanischen Senecio-arten. Phytochemistry 18: 79. 165. , - and M. Grenz. 1974. Neue Sesquiterpene der Gattung Othonna. Chem. Ber. 107: 3928. 166. - and . 1974. U b e r die Inhaltsstoffe der Gattung Euryops. Chem. Ber. 107: 2730. 167. and . 1977. Weitere Inhaltsstoffe aus Sudafrikanischen Senecio-arten. Chem. Ber. 110: 474. 168. , R. M. King and H. Robinson. 1979. Neue Elemanolide und Guajanolide aus Zinnia-arten. Phytochemistry 18: 1343. 169. - - , - and . 1979. Weitere Isocedren-derivat aus Trixis paradoxa. Phytochemistry 18: 855. 170. , - and--. 1979. Neue Sesquiterpenlactone aus Stokesia laevis. Phytochemistry 18: 987. 171. , and . 1980. Ein neues Germacran-8, 12-olid und neue Diterpene aus Polymnia canadensis. Phytochemistry 19: 115. , and - - . 1980. New heliangolides from Conocliniopsis 172. prasiifolia. Phytochemistry 19: 1547. 173. - , and - - - . 1980. N e w sesquiterpene lactones and other constituents from Fitchia speciosa. Phytochemistry 19:1141. 174. - , and - - . 1980. Seven guaianolides from the tribe Vernonieae. Phytochemistry 19: 2669. 175. , and . 1980. Sesquiterpene lactones from Eremanthus species. Phytochemistry 19: 2663. 176. ,- and - - . 1981. Two hirsutinolides and a germacranolide from Chresta sphaerocephala. Phytochemistry 20: 518. 177. - - , - and . 1981. Germacranolides, a l~uaianolide with a
SESQUITERPENE LACTONES---ASTERACEAE
178.
179. 180.
181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191.
192. 193. 194. 195. 196.
503
fl-lactone ring and further constituents from Grazielia species. Phytochemistry 20: 1069. - - , and M. Lonitz. 1977. Neue Guajen-derivat aus Parthenium hysterophorus und ein Weiteres Pseudoguajanolid aus Ambrosia cumanensis. Phytochemistry 16: 575. , - and P. K. Mahanta. 1977. Neue Eremophilan-derivat aus Lopholaena-arten. Phytochemistry 16: 1769. , - J. Piekard, H. Robinson and R. M. King. 1981. New types of sesquiterpene lactones and other constituents from Trichogonia species. Phytochemistry 20: t323. ~ , --., H. Robinson and R. M. King. 1980. Caryophyllene derivatives and a heliangolide from Lychnophora species. Phytochemistry 19: 2381. - - , ,- and . 1980. Guaianolides from Agrianthus pungens. Phytochemistry 19: 1873. - - , - - , - and . 1980. A germacranolide from Mattfeldanthus nobilis. Phytochemistry 19: 2473. - - , - - , and . 1981. Germacranolides from Piptolepis ericoides and Vanillosmopsis species. Phytochemistry 20" 731. - - , , R. Bohlmann, R. M. King and H. Robinson. 1980. Neue Sesquiterpene aus Liabum-arten. Phytochemistry 19: 579. and J. Ziesehe. 1980. Neue Guajanolide und Acetylenverbindungen aus PtiIostemon-arten. Phytochemistry 19: 692. and . 1980. New sesquiterpenes from Senecio species. Phytochemistry 19: 1851. - and . 1980. Eremophilane derivatives from Senecio species. Phytochemistry 19: 2681. , , R. M. King and H. Robinson. 1980. Neue Melampolide aus Smallanthusfructicosus. Phytochemistry 19: 973. , ,- and - - . 1981. Melampolides and other germacranolides from Blainvillea dichotoma. Phytochemistry 20: 263. - - , , and . 1981. Eudesmanolides and diterpenes from Wedelia trilobata and an ent-kaurenic acid derivative from Aspilia parvifolia. Phytochemistry 20:751. , , - and . 1981. Eudesmanolides and other constituents from Dimerostemma asperatum. Phytochemistry 20: 1335. - - , - - , H. Robinson and R. M. King. 1981. Seven germacranolides and four eudesmanolides from Tithonia rotundifolia. Phytochemistry 20: 267. ~ , ,- and . 1981. A pseudoguaianolide and a hydroxygeranylnerol from Kingianthus paradoxus. Phytochemistry 20:1146. - - , P. Zitzkowski, A. Suwita and L. Fiedler. 1978. Cis-kolavenins~ture und Weitere Inhaltsstoffe aus Vertretern der Tribus Eupatorieae. Phytochemistry 17: 2101. Borges, J. M., T. Manresa, J. L. Martin, C. Paseual and P. Vfizquez. 1978, Altamisin. A new sesquiterpene lactone from Ambrosia cumanensis HBK. Tetrahedron Lett. 17: 1513.
197. Borges del Castillo, J., M. T. M. Ferrero, J. L. M. Ramrn, C. P. Rigau and P. Vfisquez Bueno. 1979. Paulitin and isopaulitin, two new sesquiterpene lactones from Ambrosia cumanensis HBK. Bol. Soc. Quire. Peril 45: 53. 198. ~ , , F. Rodrlquez Luis and P. Vfisquez Bueno. 1981. Salvadorean Compositae. II. Juanislamin and 2,3-epoxy-juanislamin, two new sesquiterpenic lactones from Calea urticifolia. J. Nat. Prod. 44: 348. 199. Bohm, B. A. 1978. Helenieae (sensu Bentham)---chemical review. Page 739 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 200. Borsutzki, L. H. 1955. Chemistry of Artemisia maritima. Arch. Pharm. 288: 336; Chem. Abstr. 51: 6941h (1957). 201. Breinlich, J. 1970. Active ene-yne substances in some pharmaceutically useful Corn-
504
202. 203. 204.
205. 206. 207.
208.
209.
210. 211.
212. 213. 214. 215.
216. 217. 218. 219. 220.
221. 222.
THE BOTANICAL REVIEW positae drugs, with special consideration to Achillea millefolium [Yarrow]. Pharm. Ztg. 115: 1699, 1713; Chem. Abstr. 74: 115833u (1971). Biiehi, G. and D. Rosenthal. 1956. The structures of helenalin and isohelenalin. J. Amer. Chem. Soc. 78: 3860. Burnett, W. C., S. B. Jones, T. J. Mabry and W. G. Padolina. 1974. Sesquiterpene lactones---insect feeding deterrents in Vernonia. Biochem. System. Ecol. 2: 25. Cabrera, A. L. 1970. Mustisieae---Systematic review. Page 1039 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. Caizada, J. G. and J. F. Ciccio. 1978. Aislamiento de tirotundina a partir de Tithonia diversifotia (Hemsl.) Gray. Rev. Latinoamer. Qufm. 9: 202. Castille, A. 1966. Pyrethol. An. Real Acad. Farm. 32: 121; Chem. Abstr. 66: 65658c (1967). Cekan, Z., V. Herout and F. Sbrm. 1957. Die Struktur von Matricin, ein Guajanolid aus der Kamille (Matricaria chamomilla L.). Collect. Czech. Chem. Commun. 22: 1921. - - and - - . 1954. Isolation and properties of the prochamazulene from Matricaria chamomilla L., a further compound of the guaianolide group. Collect. Czech. Chem. Comm. 19: 798. - - , V. Prochazka, V. Herout and F. S6rm. 1959. Isolation and constitution of matricarin, another guaianolide from camomile (Matricaria chamomilla L.). Collect. Czech. Chem. Comm. 24: 1554. , , - and - - . 1960. Isolation of globicin, a guaianolide from Matricaria globifera (Thunb.) Druce. Collect. Czech. Chem. Comm. 25: 2553. Chien, M. K., C. H. Chen and K. F. Tseng. 1963. The constituents of Yejuhua, the flower of Chrysanthemum indicum. Yao Hsueh Pan 10: 129; Chem. Abstr. 59: 15326b (1963). Chikamatsu, H. and W. Herz. 1973. Ivalbatin, a new xanthanolide from lva dealbata. J. Organ. Chem. (USA) 38: 585. Chugunov, P. V., D. A. Pakaln and A. M. Shreter. 1970. Lactone from lnula germanica. Khim. Prir. Soedin. 6: 478; English ed. p. 495; Chem. Abstr. 74: 1052h (1971). - - , K. S. Rybalko and A. I. Shreter. 1971. The structure of the sesquiterpene lactone saupirin. Khim. Prir. Soedin. 7: 727; English ed. p. 706; Chem. Abstr. 76: 127168k (1972). - - , V. I. Sheiehenkn, A. I. Ban'kovskii and K. S. Rybalko. 1971. The structure of britannin. A sesquiterpene lactone from Inula britannica. Khim. Prir. Soedin. 7: 276; Chem. Abstr. 75: 110438e (1971). Cieein, J. F. and J. G. Calzada. 1978. Glabberin, a new heliangolide from Eupatorium gtaberrimum. Abstract, Book V. International symposium for the chemistry of natural products. Monterrey, Mexico, April 26-29. and . 1981. Haagenolide, the major sesquiterpene lactone of Baltimora recta. Phytochemistry 20" 517. Clemo, G. R. and W. Cocker. 1946. The constitution of ~b-santonin. J. Chem. Soc. (London) 30. Corbella, A., P. Gariboldi, G. Jommi, Z. Samek, M. Holub and B. Drozdz. 1972. Absolute stereochemistry of cynaropicrin and related guaianolides. Chem. Commun. 386. -, ., and G. Ferrari. 1974. Structure and absolute stereochemistry of vanillosmin, a guaianolide from Vanillosmopsis erythropappa. Phytochemistry 13: 459. Correa, J. and J. Romo. 1966. The constituents of Cacalia decomposita A. Gray. Tetrahedron 22: 685. Cowall, P. L., J. M. Cassady, C. Chang and J. F. Koziowski. 1981. Isolation and structure determination of piptocarphins A-F, cytotoxic germacranolide lactones from Piptocarpha chontalensis. J. Organ. Chem. (USA) 46: t108.
SESQUITERPENE LACTONES--ASTERACEAE
505
223. Cronquist, A. 1955. Phylogeny and taxonomy of the Compositae. Amer. Midl. Naturalist 53: 478. 224a. 9 1977. The Compositae revisited. Brittonia 29: 137. 224b. 9 1980. Chemistry in plant taxonomy: an assessment of where we stand. Page 1 in F. A. Bisby, J. G. Vaughn and C. A. Wright (eds.). Chemosystematics: Principles and practice. Academic Press, London and New York. 225. Danben, W. G., W. K. Hayes, J. S. P. Sehwarz and J. W. MeFarland. 1960. The stereochemistry of @-santonin. J. Amer. Chem. Soc. 82: 2232. 226. - - , J. S. P. Schwarz, W. K. Hayes and P. D. Hance. 1960. The structures of two new sesquiterpene lactones from Artemisia. J. Amer. Chem. Soc. 82: 2239. 227. Davis, P. H. and V. H. Heywood. 1963. Principles of angiosperm taxonomy. D. Van Nostrand Company, Inc., Princeton and New York. 228. De Kock, W. T., K. G. R. Pachler, W. F. Ross, P. L. Wessels and I. C. duPreez. 1968. Griesenin and dihydrogriesenin, two new sesquiterpenoid lactones from Geigeria africana Giles. I. Structures. Tetrahedron 24: 6037. 229. - and . 1968. Gafrinin, a sesquiterpenoid lactone from Geigeria africana Giles. II. Conformation. Tetrahedron 24: 1701. 230. - - , - and P. L. Wessels. 1968. Griesenin and dihydrogriesenin, two new sesquiterpenoid lactones from Geigeria africana Giles. III. Nuclear magnetic resonance studies and conformation. Tetrahedron 24: 6045. Chem. Abstr. 69: 96888u (1968). 231. DeSilva, L. B. and T. A. Geissman. 1969. Sesquiterpene lactone, psilotropin from Psilostrophe cooperi. Phytochemistry 9: 59. 232. Deuel, P. G. and T. A. Geissman. 1959. Xanthinin. II. The structures of xanthinin and xanthatin. J. Amer. Chem. Soc. 79: 3778. 233. De Villiers, J. 1961. The isolation and structure of gafrinin, a sesquiterpenoid lactone from Geigeria africana. J. Chem. Soc. (London) 2049. 234. Dittrich, M. 1978. Cynareae---systematic review. Page 999 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 235. Dolejs, L. and V. Herout. 1962. Constitution of eupatoriopicrin, a germacranolide from Eupatorium cannabinum L. Collect. Czech. Chem. Comm 27: 2654. 236. - - , M. Soucek, M. Horak, V. Herout and F. Sbrm. 1958. The structure of lactucin. Collect. Czech. Chem. Comm. 23: 2195. 237. Dominguez, X. A. 1978. Eupatorieae--Chemical review. Page 487 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 1. Academic Press, London. 238. - - , D. Butruille et Aquilino and Y. Aubad. 1970. La neoleonine: un nouveau pseudoguaianolide. Rev. Latinoamer. Quim. 1: 136. 239. - and E. Cfirdenas. 1975. Achillin and deacetylmatricarin from two Artemisia species. Phytochemistry 14: 2511. 240. - - , R. Franco, F. Bohlmann and R. Bohlmann. 1980. A pseudoguaianolide from Hymenoxys linearifolia. Phytochemistry 19: 2204. 241. - - , M. Guti~rrez and R. Aragrn. 1976. Isolation of baileyolin, a tumor-inhibitory and antibiotic sesquiterpene lactone from Baileya multiradiata. P1. Med. 356; Chem. Abstr. 86: 86150j (1977). 242. - - , F. M. P~rez and L. Leyter. 1971. Xanthinin and/3-sitosterol from Xanthium orientale. Phytochemistry 10: 2828. 243. - - , R. Villarreal, R. Franco and F. Bohlmann. 1981. A melampolide from Melampodium heterophyllum. Phytochemistry 20:1431. 244. Domfnguez, E. and J. Romo. 1963. Mexicanin I. A new sesquiterpene lactone related to tenulin. Tetrahedron 19: 1415. 245. Doskotch, R. W. and F. S. EI-Feraly. 1970. The structure of tulipinolide and epitulipinolide, cytotoxic sesquiterpenes from Liriodendron tulipifera L. J. Organ. Chem. (USA) 35: 1928. 246. - and . 1969. Isolation and characterization of (+)-sesamin and/3-cyclopyrethrosin from pyrethrum flowers. Canad. J. Chem. 47:1139.
506
THE BOTANICAL REVIEW
247. - - , , - and C. D Hufford. 1971. Sesquiterpene lactones from pyrethrum flowers. Canad. J. Chem. 49: 2103. 248. Drozdz, B. 1966. Isolation of cnicin from the herbs of Centaurea diffusa Lam. Dissertation Pharm. et Pharmacol. (Poland) 18: 281. 249. - - . . 1967. The occurrence of cnicin in the herbs of Centaurea calcitrapa L., C. iberica Trev., and C. ovina Pal. Dissertation Pharm. et Pharmacol. (Poland) 19: 223. 250. . 1968. Bitter sesquiterpene lactones in species of the tribe Cynareae. Dissertation Pharm. et Pharmacol. (Poland) 20: 93. 251. , H. Graharczyk, Z. Samek, M. Holuh, V. Herant and F. S6rm. 1972. Sesquiterpenic lactones from Eupatorium cannabinum L. Revision of the structure of eupatoriopicrin. Collect. Czech. Chem. Comm. 37: 1546. 252. , M. Holub, Z. Samek, V. Herout and F. S6rm. 1968. The constitution and absolute configuration of onopordopicrine, a sesquiterpenic lactone from Onopordon acanthium L. Collect. Czech. Chem. Comm. 33: 1730. 253. , Z. Samek, M. Holub and V. Herout. 1973. The structure of alatolide, a sesquiterpenic lactone from Jurinea alata Cass. Collect. Czech. Chem. Comm. 38: 727. 254. See Reference No. 232, Literature Cited. 255. Dullforce, T. A., G. A. Sire, D. N. J. White, J. E. Kelsey and S. M. Kupchan. 1969. The stereochemistry of gaillardin. Tetrahedron Lett. 973. 256a. Ehrendorfer, F. 1964. Notizen zur Cytotaxonomie und Evolution der Gattung Artemisia. Oesterr. Bot. ~. 3: 84. 256b. EI-Emary, N. A. and F. Bnhlmann. 1980. Zwei neue Germacranolide aus Artemisia argentea. Phytochemistry 19: 845. 257. EIlison, W. L. 1964. A systematic study of the genus Bahia (Compositae). Rhodora 66: 177; 281. 258. Eisohly, M. A., J. C. Craig, C. E. Turner and A. S. Sharma. 1977. Constituents of Helenium amarum. II. Isolation and characterization of heleniamarin and other constituents. Lloydia 40: 609. 259. Erdtman, H. 1968. The assessment of biochemical techniques in plant taxonomy, in J. G. Hawkes (ed.). Chemotaxonomy and serotaxonomy. Academic Press, London. 260. . 1973. Molecular taxonomy. Page 327 in L. P. Miller (ed.). Phytochemistry. Vol. 3. Van Nostrand, Reinhold Co., New York. 261. Evstratova, R. I., E. Y. Kiseleva, V. I. Sheichenko and K. S. Rybaiko. 1971. The structure of acroptilirv--a sesquiterpene lactone from Acroptilon repens. Khim. Prir. Soedin. 7: 272; English ed. p. 262; Chem. Abstr. 75: 110451d (1971). 262. ~ , K. S. Rybaiko and R. Y. Rzazade. 1967. Acroptilirr---a new sesquiterpene lactone fromAcroptilon repens. Khim. Prir. Soedin. 3: 284; English ed. p. 239; Chem. Abstr. 68: 3005v (1968). 263. , V. I. Sheichenko and K. S. Rybalko. 1974. Sesquiterpene lactones from Inula japonica. Khim. Prir. Soedin. 10: 730; English ed. p. 752. 264. , , and A. I. Ban'kovsldi. 1969. Structure of arnifoline, a sesquiterpene lactone from Arnicafoliosa and Arnica montana. Khim. Farm. Zh. 3: 39; Chem. Abstr. 72: 32047y. (1970). 265. ,- - , A. I. Ban'kovskii and K. S. Rybalko. 1969. Structure of erivanin. Khim. Prir. Soedin. 5: 239; Chem. Abstr. 72: 32051v (1970). 266. - - , - and K. S. Rybaiko. 1973. The structure of acroptilin, a sesquiterpene lactone fromAcroptilon repens. Khim. Prir. Soedin. 9: 161; English ed. p. 156; Chem. Abstr. 79: 5466x (1973). 267. - and A. M. Sinyukhin. 1971. Ketopelenolide B from Artemisia anethifolia. Khim. Prir. Soedin. 7: 839; English ed. p. 819. 268. Farkas, L., M. Nogradi, V. Sudarsanam and W. Herz. 1967. Isolation, structure proof and synthesis of acerosin from lva acerosa (Nutt.) Jackson. Tetrahedron 23: 3557. 269. - - - , - - , - and - - . 1966. Constituents of lva species. V. Isolation, structure and synthesis of nevadensin, a new flavone from lva nevadensis M. E. Jones and lva acerosa (Nutt.) Jackson. J. Organ. Chem. (USA) 31: 3228.
SESQUITERPENE LACTONES--ASTERACEAE
5~
270. Ferreira, Z. S., N. F. Rogue, O. R. Gottlieb, F. Oliveira and H. E. Gottlieb. 19809 Structural clarification of germacranolides from Calea species. Phytochemistry 19: 1481. 271. Fischer, N. H. 1978. On the biogenesis of pseudoguaianolides. Rev. Latinoamer. Quim. 9: 41. 272. - and T. J. Mabry. 1967. The structure of tamaulipin-B, a new germacranolide and the thermal conversion of a trans-l,2-divinylcyclohexane derivative into a cyclodeca-l,5-diene system. Chem. Commun. 1235. 273. - and . 1967. New pseudoguaianolides from Ambrosia confertiflora DC. (Compositae). Tetrahedron 23: 2529. 274. - - , - and H. B. Kagan. 1968. The structure of tamaulipin A. A new germacranolide from Ambrosia confertiflora DC. (Compositae). Tetrahedron 24: 4091. 275. - - , E. J. OHvier and H. D. Fischer. 1979. The biogenesis and chemistry of sesquiterpene lactones. Page 48 in W. Herz, H. Grisebach and G. W. Kirby (eds.). Progress in the chemistry of organic natural products. Springer-Verlag, New York. 276. - - , F. C. Seaman, R. A. Wiley and K. D. Haegele. 1978. Melcanthin A, B and C, three new cis- I(10), cis- 4,5-germacranolides from Melampodium leucanthum (Heliantheae, Compositae). J. Organ. Chem. (USA) 43: 4984. 277. - - , R. A. Wiley, D. L. Perry and K. D. Haegele. 1976. Melampodinin, leucanthinin and melampolidin, three new melampolides from Melampodium (Compositae). J. Organ9 Chem. (USA) 41: 3956. 278. - - , , H. N. Lin, K. Karimian and S. M. Politz. 1975. New melampolide sesqulterpene lactones from Melampodium leucanthum. Phytochemistry 14: 2241. 279. , - and J. D. Wander. 1972. Melampodin, a new germacranolide from Melampodium leucanthum Torr. and Gray var. leucanthum (Compositae). Chem. Commun. 137. 280. Funk, V. A. t981. The systematics of Montanoa Cerv. (Asteraceae, Heliantheae). Doctoral Thesis. Ohio State Univ. 281. Furukawa, H., K. H. Lee, T. Shingu, R. Meek and C. Piantadosi. 1973. Carolenin and carolenalin, two new guaianolides in Helenium autumnale L. from North Carolina. J. Organ. Chem. (USA) 38: 1722. 282. Gabe, E. J., S. Neidle, D. Rogers and C. E. Nordman. 1971. X-ray determination of the molecular structure of a 3-O-chloro-phenylisoxazoline derivative of pyrethrosin. Chem. Commun. 559. 283. Geissman, T. A. 1970. Sesquiterpene lactones of Artemisia--A. verlotorum and A. vulgaris. Phytochemistry 9: 2377. 284. - - . 1966. Sesquiterpenoid lactones of Artemisia species. I. Artemisia princeps Pamp. J. Organ. Chem. (USA) 31: 2523. 285. . 1973. The biogenesis of sesquiterpene lactones of the Compositae. Page 65 in V. C. Runeckles and T. J. Mabry (eds.). Terpenoids: Structure, biogenesis and distribution. Recent advances in phytochemistry. Vol. 6. Academic Press, New York. 286. - and S. Atala. 1971. Distribution of eupatoriopicrin in Compositae. Phytochemistry 10: 1075. 287. - and D. H. G. Crout. 1969. Organic chemistry of secondary plant metabolism. Freeman, Cooper & Co., San Francisco 9 288. - and G. A. Ellestad. 1962. Vulgarin, a sesquiterpene lactone from Artemisia vulgaris L. J. Organ. Chem. (USA) 27: 1855. 289. - and T. S. Griffin. 1972. Sesquiterpene lactones of Artemisia carruthii. Phytochemistry 11: 833. 290. - and . 1971. Sesquiterpene lactones. Tomentosin from Montanoa tomentosa Cerv. Rev. Latinoamer. Quim. 2: 81. 291. - - and M. A. Irwin. 1969. Sesquiterpene lactones ofArtemisia. Artecalin from A'. californica and A. tripartita ssp. rupicola. Phytochemistry 8: 1297. 292. - - , --., T. G. Waddell and H. H. Chen. 1969. Some new constituents of Ambrosia species. A. psilostachya and A. acanthicarpa. Phytochemistry 8: 145.
508
THE BOTANICAL REVIEW
293. - and M. A. Irwin. 1970. Chemical contributions to taxonomy and phylogeny in the genus Artemisia. Pure Appl. Chem. 21: 167. 294. - and - - . 1973. Chemical constitution and botanical affinity in Artemisia. Page 135 in G. Bendz and J. Santesson (eds.). Chemistry in botanical classification. Nobel Symp. 25. Academic Press, New York. 295. - and K. H. Lee. 1971. Sesquiterpene lactones of Artemisia: Artemorin and dehydroartemorin (anhydroverlotorin). Phytochemistry 10: 419. 296. - and . 1971. Sesquiterpene lactones of Artemisia verlotorum. Phytochemistry 10: 663. 297. - and J. Levy. 1967. Chamissonin from Ambrosia acanthicarpa Hook. Phytochemistry 6: 899. 298. - - , A. J. Lucas, T. Saitoh and W. W. Payne. 1973. Sesquiterpene lactones of Ambrosia chamissonis. Biochem. Syst. 1: 13; Chem. Abstr. 78: 145204q (1973). 299. - and S. Matsneda. 1%8. Constituents of diploid and polyploid Ambrosia dumosa Gray. Phytochemistry 7" 1613. 300. - and R. Mnrldaerjee. 1968. Sesquiterpene lactones of Encelia farinosa Gray. J. Organ. Chem. (USA) 33: 656. 301. - and T. Saitoh. 1972. Ludalbin, a new lactone from Artemisia ludoviciana. Phytochemistry 11: 1157. 302. - - , T. Stewart and M. A. Irwin. 1%7. Sesquiterpene lactones of Artemisia species II. Artemisia tridentata Nutt. ssp. tridentata. Phytochemistry 6: 901. 303. - and F. P. Toribio. 1%7. Constituents ofHymenoclea salsola T. and G. Phytochemistry 6: 1563. 300. - - , R. J. Turley and S. Murayama. 1966. Chamissonin, a germacranolide from an Ambrosia species. J. Organ. Chem. (USA) 31: 2269. 305. - and T. E. Winters. 1%8. The structure of artabsin. Tetrahedron Lett. 3145. 306. Giannasi, D. E. 1979. Systematic aspects of flavonoid biosynthesis and evolution. Bot. Rev. 44. 399. 307. Gill, S., W. Dembinska-Migas, E. Sliwinska, W. M. Daniewski and F. Bohlmann. 1980. Pseudoguaianolides from Gaillardia grandiflora. Phytochemistry 19: 2009. 308. Giordano, O. S., E. Guerreiro, J. Romo and M. Jim6nez. 1975. Tessaric acid, a component of Tessaria absinthioides. Rev. Latinoam. Quim. 6:131. 309. Gneceo, S., J. P. Poyser, M. Silva, P. G. Sammes and T. W. Tyler. 1973. Sesquiterpene lactones from Podanthus ovatifolius. Phytochemistry 12: 2469. 310. G6mes, C. M. R. and O. R. Gottlieb. 1980. Alkaloid evolution and angiosperm systematics. Biochem. System. Ecol. 8: 81. 311. Gonzfilez, M. P., P. J. Nathan and J. Romo. 1971. Chemistry and spectrometry of cacalone. Rev. Latinoamer. Quim. 2: 5; Chem. Abstr. 76: 43984k (1972). 312. Gonzalez Gonzfilez, A. 1978. Lactuceae---chemical review. Page 1081 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 313. - - , J. M. Arteaga, J. Bermejo Barrera and J. L. Bret6n Furies. 1971. Melitensin, a new sesquiterpene lactone from Centaurea melitensis. An. Quim. 67: 1243; Chem. Abstr. 77: 34722s (1972). 314. and J. L. Breton Funes. 1973. Germacranolides from Centaurea seridis. Phytochemistry 12: 2997. 315. - and . 1974. Structure and partial synthesis of melitensin. An. Quim. 70: 158; Chem. Abstr. 81: 78104d (1974). 316. , --and . 1975. Constituents of the Compositae. 27. Elemanolides from Centaurea melitensis. Phytochemistry 14: 2039. 317. - - , J. Bermejo, J. M. Amaro, G. M. Massanet, A. Galindo and I. Cabrera. 1978. Sesquiterpene lactones from Centaurea linifolia Vahl. Canad. J. Chem. 56: 491. 318. - - , - - , J. L. Bret6n Funes and M. Fajardo. 1973. Compounds from plants of the Canary Islands. Sesquiterpene lactones of Artemisia canariensis. An. Quim. 69: 667; Chem. Abstr. 79: 92415w (1973). 319. - - , --, - - , M. Massanet, B. Dominguez and J. M. Amaro. 1976. Ab-
SESQUITERPENE LACTONES--ASTERACEAE
509
solute configuration of the sesquiterpene lactones centaurepensin (chlorohyssopifolin A), acroptilin (chlorohyssopifolin C) and repin. J. Chem. Soc. Perkin Trans. h 1663. 320. - - - , - - , - - , G. M. Massanet and J. Triana. 1974. Chlorohyssopifolin C, D, E and vahlenin, four new sesquiterpene lactones from Centaurea hyssopifolia. Phytochemistry 13: 1193. 321. , , and J. Triana. 1972. Chlorohyssopifolin A and B, two new sesquiterpene lactones isolated from Centaurea hyssopifolia Vahl. Tetrahedron Lett. 2017. 322. - - , , I. Cabrera, A. Galindo and G. M. Massanet. 1977. Principios activos de la Centaureajaneri Graells. An. Qufm. 73: 86. 323. --and G. M. Massanet. 1974. ll,13-Dehydromelitensin and chlorohyssopifolin A, sesquiterpene lactones isolated from Centaurea pullata and nigra. An. Quire. 70: 74; Chem Abstr. 80: 130489d (1974). 324. - - , ,- - , , H. Mansilla and A. Galindo. 1978. Two sesquiterpene lactones from Centaurea canariensis. Phytochemistry 17: 955. 325. - - , - - , A. D. Dela Rosa and G. M. Massanet. 1976. Sesquiterpene lactones from Artemisia lanata Willd. An. Quim. 695; Chem. Abstr. 86: 72910v (1977). 326. ., - - , H. Mansilla, A. Galindo, J. M. Amaro and G. M. Massanet. 1978. Structure and absolute configuration of gallicin, a new germacranolide from Artemisia. J. Chem. Soc. Perkin Trans. 1: 1243. 327. - - , - - , G. M. Massanet, J. M. Amaro, B. Domfnguez and A. Morales. 1976. Hypochaerin: A new sesquiterpene lactone from Hypochaeris setosus. Phytochemistry 15: 991. 328. - - . , --, - and J. Prrez. 1973. Muricatin, a new sesquiterpene lactone isolated from Amberboa muricata. An. Quim. 69: 1333; Chem. Abstr. 81: 4086c (1974). , 329. - - and J. Triana. 1974. Picridin and dihydropicridin, revised structures. Phytochemistry 13: 611. 330. - - , - and R. M. Rodrfquez. 1972. Dihydroestafietone isolated from Centaurea webbiana. An. Quim. 68: 333; Chem. Abstr. 77: 123813q (1972). 331. - - . , J. L. Bret6n Funes and B. Garc/a Marrero. 1973. Lipidiol. Page 341 in ref. 947. 332. ,- and J. Stockel. 1974. Sesquiterpenic lactones from Artemisia granatensis. An. Quim. 70: 231; Chem. Abstr. 81:117045h (1974). 333. - - . , R. Estrvez Reyes and J. Herrera Velfizquez. 1975. Sesquiterpene lactones and coumarins of Artemisia ramosa. An. Quim. 71" 437; Chem. Abstr. 83: 128692h ( 1975). 334. - - - , B. Garcfa Marrero and J. L. Breton Funes. 1970. Structure of grosshemin, lipidiol and isolipidiol. Lactones of Amberboa lipii and their stereochemistry. An. Quire. 66: 799; Chem. Abstr. 74: 64315s (1971). 335. See Reference No. 55, Literature Cited. 336. Govindachari, T. R., B. S. Joshi and V. N. Kamat. 1965. Structure of parthenolide. Tetrahedron 21: 1509. 337. , A. R. Sidhaye and N. Viswanathan. 1970. Deoxyelephantopin, a new sesquiterpene from Elephantopus scaber. Indian J. Chem. 8: 762. 338. , , - and H. Fuehrer. 1972. Isodeoxyelephantopin, a new germacranediolide from Elephantopus scaber. Indian J. Chem. 10: 272. 339. Grabarezyk, H. 1973. The search for sesquiterpene lactones in the species of genera Ursinia, Venidium and Arctotis. Pol. J. Pharmacol. Pharm. 25: 469; Chem. Abstr. 80: 45661j (1974). 340. - - - , B. Drozdz and A. Mozdzanowska. 1973. Lactones in aerial parts of Tanacetum vulgare L. Pol. J. Pharmacol. Pharm. 25: 95; Chem. Abstr. 78: 156612x (1973). 341. - and B. Makowska. 1975. New sesquiterpene lactones from the herb of Venidium hirsutum. Pol. J. Pharmacol. Pharm. 27: 107; Chem. Abstr. 83: 4995q (1975). 342. - and M. Makowska. 1973. Isolation of grosheimin from the herb of Venidium decurrens Less. Pol. J. Pharmacol. Pharm. 25: 477; Chem. Abstr. 80: 45662k (1974).
510
THE BOTANICAL REVIEW
343. Grant, V. 1957. The plant species in theory and practice. In E. Mayr (ed.). The species problem. Amer. Assoc. Adv. Sci., Washington, D.C. 344. . 1971. Plant speciation. Columbia University Press, New York and London. 345. Greger, H. 1978. Anthemideae---chemical review. Page 899 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 346. Grieeo, P. A., T. Oguri, S. Burke, E. Rodriquez, G. T. DeTitta and S. Fortier. 1978. Structure, absolute configuration and synthesis of stramonin-B, a new cytotoxic pseudoguaianolide. J. Organ. Chem. (USA) 43: 4552. 347. Guerrero, C., E. Dfaz, M. Martinez, J. Taboada, S. Miranda Plata, M. Gonzfilez Diddi and J. T6llez. 1977. Determination of the structure of euparhombin and its cytotoxic activity in two cellular lines. Rev. Latinoamer. Quim. 8: 123. 348. ~ , A. Iriarte, E. Diaz, J. Taboada, M. Gonzalez Diddi and J. T~ilez. 1975. Determinaci6n de la estructura y estereoquimica de la elemenolida verafinina C, aislamiento de ta verafinina B, dos substancias citot6xicas aisladas de Verbesina aft. coahuilensis. Rev. Latinoamer. Quim. 6: 119. 349. ~ , M. Martinez, E. Dfaz and A. Romo de Vivar. 1975. Estructura y esteroquimica de la verafinina, una nueva elemenolida aislada de Verbesina aft. coahuilensis Gray. Rev. Latinoamer. Quim. 6: 53. 350. - - , A. Ortega, E. D~az and A. Romo de Vivar. 1973. Estructura de la viguiestenina y de la desacetil viguiestenina. Rev. Latinoamer. Quim. 4:118. 351. - - , M. Santana and J. Romo. 1976. Estudio quimico de la Viguiera augustifolia (HBK.) Blake. Rev. Latinoamer...Quim. 7: 41. 352. Giiren, K. C., A. Ulnbelen and S. Oksiiz. 1972. Compositae. Santonin from Artemisia fragrans. Phytochemistry 11: 3542. 353. Habih, A. A. M. and A. M. Metwally. 1973. New sesquiterpene keto lactones from Senecio. PI. Med. 23: 88; Chem. Abstr. 78: 156620y 1973. 354. Haddad, D. Y. and S. M. Khafagy. 1962. A study ofAchillea santolina. Isolation of two crystalline principles: Santolin and santolinol. Bull. Chem. Farm. 101: 606. 355. - - , - and L. EI-Fatatry. 1960. Achillea santolina. Isolation of two crystalline principles, santolin and santolinol. J. Pharm. Sci. U.A.R. 1: 1, 75; Chem. Abstr. 56: 10277g (1962). 356. Halim, A. F., A. M. Zaghloul and F. Bohlmann. 1980. A further guaianolide from Arctotis grandis. Phytochemistry 19: 2767. 357. Hall, H. M. and F. E. Clements. 1923. The phylogenetic method in taxonomy. The North American species of Artemisia, Chrysothamnus and Atriplex. Publ. Carnegie Inst. Wash. 326. 358. Hall, I. H., K. H. Lee, E. C. Mar, C. O. Starnes and T. G. Waddeil. 1977. A proposed mechanism for inhibition of cancer growth by tenulin and helenalin and related cyclopentenones. J. Medicin. Chem. 20: 333. 359. H~insel, R., M. Kartarahardja, J-T. Huang and F. Bohlmann. 1980. Sesquiterpenlacton-/3-D-glucopyranoside sowie ein neues Eudesmanolid aus Taraxacum officinale. Phytochemistry 19: 857. 360. Harborne, J. B. 1978. Inuleae--chemical review. Page 603 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. I. Academic Press, London. 361. . 1979. Flavonoid pigments. Page 619 in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their interaction with secondary plant metabolites. Academic Press, New York. 362. - and C. A. Williams. 1978. Vernonieae--chemical review. Page 523 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. I. Academic Press, London. 363. Harley-Mason, J., A. T. Hewson, O. Kennard and R. C. Pettersen. 1972. Isolation of centaurepensin, a guaianolide sesquiterpene lactone ester containing two chlorine atoms; determination of structure and absolute configuration by X-ray crystallography. Chem. Commun. 460.
SESQUITERPENE LACTONES----ASTERACEAE
511
364. Harmatha, J., Z. Samek, L. Novotny, V. Herout and F. Sbrm. 1969. Terpenes CXC. The structure of adenostylone, isoadenostylone, and neoadenostylone, components of Adenostyles alliariae rhizomes. Coll. Czech. Chem. Comm. 34: 1739; Chem. Abstr. 71: 39210j (1969). 365. - - , , M. Synackova, L. Novotny, V. Herout and F. S6rm. 1976. Neutral components of the extract from Homogyne alpina (L.) Cass. Collect. Czech. Chem. Comm. 41: 2047. 366. Hausen, B. M., K. H. Schulz, O. Jarchow, K. H. Klaska and H. Schmalle. 1975. First allergenic sesquiterpene lactone from Chrysanthemum indicum. Arteglasin-A. Naturwissenschaften 62: 585; Chem. Abstr. 84: 57278k (1976). 367. Hayashi, K., H. Nakamura and H. Mitsuhashi. 1973. Sesquiterpenes from Cacalia hastata. Phytochemistry 12: 2931. 368. Hegnauer, R. 1963. The taxonomic significance of alkaloids. Page 389 in J. B. Hatborne (ed.). Chemical plant taxonomy. Academic Press, New York. 369. . 1969. Chemotaxonomie der Pflanzen. Band 1-5. Birkhaliser Verlag, Basel. 370. Hernfindez, R., A. Sandoval, A. Setzer and J. Romo. 1968. Chemical study of Helenium quadridentata. Bol. Inst. Quire. Univ. Nac. Aut6n. M6xico 20: 81. 371. Herout, V. 1970. Chemotaxonomy of the family Compositae (Asteraceae). In H. Wagner and L. H6rhammer (eds.). Pharmacognosy and phytochemistry. Wien. Springer. 1971. Pharmacogn. Phytochem. Int. Congr. lst., 93 (Publ. 1971). 372. - and F. Sbrm. 1953. On the components of wormwood (Artemisia absinthium L.) and the isolation of a crystalline pro-chamazulenogen. Collect. Czech. Chem. Comm. 18: 854. 373. - and . 1954. Contribution to the constitution of pro-chamazulenogen, the natural precursor of chamazulene in Artemisia absinthium L. Collect. Czech. Chem. Comm. 19: 792. 374. - - , M. Suchy and F. Sbrm. 1961. Isolation and structure of costunolide, balchanolide, isobalchanolide and hydroxybalchanolide, sesquiterpenic lactones of germacrane type from Artemisia balchanorum H. Krasch. Collect. Czech. Chem. Comm. 26: 2612. 375. Herz, W. 1968. Pseudoguaianolides in Compositae. Page 229 in T. J. Mabry, R. E. Alston and V. C. Runeckles (eds.). Recent advances in phytochemistry, Vol. 1. Appleton-Century-Crofts, New York. 376. - - . 1973. Pseudoguaianolides in Compositae. Page 153 in Chemistry in botanical classification (Nobel Foundation, Stockholm). Nobel Symposium 25, Academic Press, New York. 377. - - . 1962. Constituents of Helenium species XII. Sesquiterpene lactones of some southwestern species. J. Organ. Chem. (USA) 27: 4043. 378. . 1977. Biogenetic aspects of sesquiterpene lactone chemistry. Israel J. Chem. 16: 32. 379. - - . 1978. Astereae--chemical review. Page 567 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 1. Academic Press, London. 380. . 1978. Sesquiterpene lactones in the Compositae. Page 337 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 1. Academic Press, London. 381. - - . , G. Anderson, S. Gibaja and D. Ranlais. 1969. Sesquiterpene lactones of some Ambrosia species. Phytochemistry 8: 877. 382. - - . , K. Aota and A. Hall. 1970. New pseudoguaianolides from Hymenoxys species. A new type of lactone closure. J. Organ. Chem. (USA) 35: 4117. 383. - - . , --, A. L. Hall and A. Srinivasan. 1974. Antileukemic pseudoguaianolides from Hymenoxys grandiflora (T. & G.) Parker. Application of lanthanide-induced shifts to structure determination. J. Organ. Chem. (USA) 39: 2013. 384. ,- - , M. Holub and Z. Samek. 1970. Sesquiterpene lactones and lactone glycosides from Hymenoxys species. J. Organ. Chem. (USA) 35:2611. 385. and S. V. Bhat. 1972. Woodhousin, a new germacranolide from Bahia woodhousei (Gray) Gray. J. Organ. Chem. (USA) 37: 906.
512
THE BOTANICAL REVIEW
386. - -
and
. 1970. Isolation and structure of two new germacranolides from
Polymnia uvedalia (L.) L. J. Organ. Chem. (USA) 35: 2605. 387.
and
. 1973. Maculatin: An isomer of uvedalin epoxide from Polymnia
maculata. Phytochemistry 12: 1737. 388.
, ---, H. Crawford, H. Wagner, G. Manrer and L. Farkas. 1972. Bahifolin, a new sesquiterpene lactone, and 5,7-dihydroxy-3,3',4',6-tetramethoxyflavone,a new flavone from Bahia oppositifolia. Phytochemistry 11: 371. 389. - - - , ~ and A. L. Hall. 1970. Parthemollin, a new xanthanolide from Parthenice mollis Gray. J. Organ. Chem. (USA) 35: I110. 390. - - and S. Poondi Sanlhanam. 1970. Coumarins ofArtemisia dracunculoides and 3',6-dimethoxy-4',5,7-trihydroxyflavonein A. arctica. Phytochemistry 9: 891. 391. ,- and A. Srinivasan. 1972. Berlandin and subacaulin, two new guaianolides from Berlandiera subacaulis. J. Organ. Chem. (USA) 37: 2532. 392. , - and V. Sudarsanam. 1972. Sesquiterpene lactones and flavones of lva frutescens. Phytochemistry 11: 1829. 393. , H. Chikamatsu, N. Viswanthan and V. Sudarsanam. 1967. Structure of ivalbin, a modified guaianolide from Ira dealbata Gray. J. Organ. Chem. (USA) 32: 682. 394. - and R. DeGroote. 1977. Desacetyleupaserrin and nevadensin from Helianthus pumilus. Phytochemistry 16: 1307. 395. - - , , R. Murari, N. Kumar and J. F. Blount. 1979. Sesquiterpene lactones of Eupatorium serotinum. J. Organ. Chem. (USA) 44: 2784. 3%. ,- - , - and J. F. BIount. 1978. Sesquiterpene lactones of Eupatorium recurvans. J. Organ. Chem. (USA) 43: 3559. 397. , C. M. Gast and P. S. Subramaniam. 1968. Sesquiterpene lactones of Hetenium alternifolium (Spreng.) Cabrera. Structures of brevilin A, linifolin A, and alternilin. J. Organ. Chem. (USA) 33: 2780. 398.and S. V. Govindan. 1980. Eucannabinolide and other constituents of Schkuhria virgata. Phytochemistry 19: 1234. 399. ., - - , M. W. Bierner and J. F. Blount. 1980. Sesquiterpene lactones of Hymenoxys insignis. X-ray analyses of hymenograndin and hymenosignin. J. Organ. Chem. (USA) 45: 493. 400. - - , - and J. F. BIount. 1980. trans, trans-Germacra- l(l 0),4-dien-cis-6,12olides from Montanoa hibiscifolia. J. Organ. Chem. (USA) 45:1113. 401. - , and . 1980. Glycosidic disecoeudesmanolides and other secosesquiterpene lactones from Picradeniopsis species. X-ray analysis of bahia I, J. Organ. Chem. (USA) 45: 3163. 402. - - and . 1981. Structures of the rolandrolides and isorolandrolides, unusual germacradienolides from Rolandra fruticosa. J. Organ. Chem. (USA) 46: 761. 403. - - , - and N. Kumar. 1981. Sesquiterpene lactones and other constituents of Eupatorium lancifolium and E. semiserratum. Phytochemistry 20: 1343. 404. and G. Hiignaner. 1962. Ivalin, a new sesquiterpene lactone. J. Organ. Chem. (USA) 27: 905. 405. and . 1961. Isolation and structure of coronopilin, a new sesquiterpene lactone. J. Organ. Chem. (USA) 26: 5011. 406. , and A. Romo de Vivar. 1964. Constituents oflva species. III. Structure of microcephalin, a new sesquiterpene lactone. J. Organ. Chem. (USA) 29: 1700. 407. - and S. Inayama. 1964. Constituents of Gaillardia species. II. Structures of pulchellin B and pulchellin C. Tetrahedron 20: 341. 408. and P. S. Kalyanaraman. 1975. Mikanokryptin in Melampodium divaricatum. Phytochemistry 14: 1664. 409. ~ and . 1975. Acanthospermal A and acanthospermal B, two new melampolides from Acanthospermum species. J. Organ. Chem. (USA) 40: 3486. 410. - - - , --7 G. Ramakrishnan and J. F, Blount, 1977. Sesquiterpene lactones of Eupatorium perfoliatum. J. Organ. Chem. (USA) 42: 2264.
SESQUITERPENE LACTONES---ASTERACEAE
513
411. - - , Y. Kishida and M. V. Lakshlnikantham. 1964. Constituents of Helenium species. XVI. Structures of flexuosin A and flexuosin B. Tetrahedron 20: 979. 412. - and N. Kumar. 1979. Sesquiterpene lactones of Baltimora recta. Phytochemistry 18: 1743. 413. and . 1980. Guaianolides from Liatris squarrosa. Phytochemistry 19: 2387. 414. and . 1980. Sesquiterpene lactones of Calea zacatechichi and C. urticifolia. Phytochemistry 19: 593. 415. and . 1981. Heliangolides from Helianthus maximiliani. Phytochemistry 20: 93. 416. - and . 1981. Sesquiterpene lactones from Helianthus grosseserratus. Phytochemistry 20: 99. 417. - and . 1981. Minor sesquiterpene lactones ofHelianthus pumilus. Phytochemistry 20: 1339. 418. - - , - and J. F. BIount. 1980. A thiol-containing ester sidechain in a sesquiterpene lactone from Eupatorium mikanioides. Absolute configuration of desacetyleupasserin and its congeners. J. Organ. Chem. (USA) 45: 489. 419. - - - a n d - - . 1981. Antileukemic C-15 functionalized ambrosanolides from Rudbeckia mollis. J. Organ. Chem. (USA) 46: 1356. 420. - - , --, W. Viehnewsld and J. F. Blount. 1980. Cytotoxic sesquiterpene lactones of Eremanthus incanus and Heterocoma albida. Crystal structure and stereochemistry of eregoyazin. J. Organ. Chem. (USA) 45: 2503. 421. - and M. V. Lakshmikantham. 1965. Constituents of Helenium species XVII. Sesquiterpene lactones of Helenium thurberi Gray and the stereochemistry of bigelovin. Tetrahedron 21: 1711. 422. - - , R. B. Mitra, K. Rabindran and W. A. Rohde. 1959. Constituents of Helenium species VII. Bitter principles of H. pinnatifidum (Nutt.) Rydb., H. vernale Walt., H. brevifolium (Nutt.) A. Wood and H. flexuosum Raf. J. Amer. Chem. Soc. 81: 1481. 423. - - , , and N. Viswanathan. 1962. Constituents of Helenium species. XI. The structure of pinnatifidin. J. Organ. Chem. (USA) 27: 4041. 424. , M. Miyazaki and Y. Kishida. 1961. Structures of parthenin and ambrosin. Tetrahedron Lett. 82. 425. - - , R. Murari and S. V. Govindan. 1979. Sesquiterpene lactones of Eupatorium anomalum and Eupatorium mohrii. Phytochemistry 18" 1337. 426. , J. Poplawski and R. P. Sharma. 1975. New guaianolides from Liatris species. J. Organ. Chem. (USA) 40: 199. 427. - - , S. Rajappa, M. V. Lakshmikantham and J. J. Schmid. 1966. Constituents of Gaillardia species III. The structure of gaillardilin, a new pseudoguaianolide. Tetrahedron 22: 693. 428. ,- - , S. K. Roy, J. J. Schmid and R. N. Mirrington. 1966. Constituents of Gaillardia species. IV. The sesquiterpene lactones of Gaillardia fastigiata Greene. Tetrahedron 22: 1907. 429. ,- - , M. V. Lakshmikantham, D. Raulals and J. J. Schmid. 1967. Constituents of Gaillardia species. V. Isolation and structure of spathulin. J. Organ. Chem. (USA) 32: 1042. 430. - - , D. Raulais and G. D. Anderson. 1973. Sesquiterpene lactones of Ambrosia cordifolia. Phytochemistry 12: 1415. 431. , W. A. Rohde, K. Rabindran, P. Jayaraman and N. Viswanathan. 1962. Revised structure of tenulin. J. Amer. Chem. Soc. 84: 3857. 432. , A. Romo de Vivar and M. V. Lakshmikantham. 1965. Structure of pseudoivalin, a new guaianolide. J. Organ. Chem. (USA) 30:118. 433. - - . , , J. Romo and N. Viswanathan. 1963. Constituents of Helenium species. XV. The structure of mexicanin C, relative stereochemistry of its congeners. Tetrahedron 19: 1359. 434. - - , ,- and . 1963. Constituents of Helenium species XIII. The structure of helenalin and mexicanin A. J. Amer. Chem. Soc. 85: 19.
514
THE BOTANICAL REVIEW
435. - and S. K. Roy. 1969. New pseudoguaianolides from Gaillardia pulchella. Phytochemistry 8: 661. 436. - and P. S. Santhanam. 1967. Virginolide, a new guaianolide from Helenium virginicum Blake. J. Organ. Chem. (USA) 32: 507. 437. - and . 1965. Arbiglovin. A new guaianolide from Artemisia bigelovii Gray. J. Organ. Chem. (USA) 30: 4340. 438. - - , , H. Wagner, R. Hiier, L. Hiirhammer and L. Farkas. 1969. Isolation, structure and synthesis of 4',5,6,7-tetrahydroxy-3'-methoxyflavone (batatifolin), a new flavone from Mikania batatifolia DC. Tetrahedron Lett. 3419. 439. - and R. P. Sharma. 1975. A trans- 1,2-cis-4,5-germacradienolide and other new germacranolides from Tithonia species. J. Organ. Chem. (USA) 40:3118. 440. - and - - . 1975. Complete stereochemistry of tenulin. Carbon-13 nuclear magnetic resonance spectra of tenulin derivatives. J. Organ. Chem. (USA) 40: 2557. 441. and . 1975. New germaCranolides from Liatris species. Phytochemistry 14: 1561. 442. - and . 1975. Seco-germacradienolide from Liatris pycnostachya. J. Organ. Chem. (USA) 40: 392. 443. - and . 1976. Pycnolide, a seco-germacradienolide from Liatris pycnostachya and other antitumor constituents of Liatris species. J. Organ. Chem. (USA) 41: 1248. 444. - and . 1976. Sesquiterpene lactones of Eupatorium hyssopifolium. A germacranolide with an unusual lipid ester side chain. J. Organ. Chem. (USA) 41: 1015. 445. - and S. Srinivasan. 1974. Reexamination of Gaillardia amblyodon. Isolation of new pseudoguaianolides. Phytochemistry 13:1187. 446. - and . 1972. Pseudoguaianolides of Gaillardia amblyodon. Phytochemistry 11: 2093. 447. - and A. Srinivasan. 1974. Stereochemistry of spathulin. Phytochemistry 13: 1171. 448. - - , - and P. S. Kalyanaraman. 1975. Mikanokryptin, a new guaianolide from Mikania. Phytochemistry 14: 233. 449. - and P. S. Subramaniam. 1972. Pseudoguaianolides in Helenium autumnale from Pennsylvania. Phytochemistry 11:1101. 450. ,- and N. Dennis. 1969. Solvent shift studies on pseudoguaianolides of the helenalin series. J. Organ. Chem. (USA) 34: 3691. 451. - - , and T. A. Geissman. 1968. 3-epiisotelekin from Gaillardia aristata Pursh. and the structure of farinosin. J. Organ. Chem. (USA) 33: 3743. 452. - - , - and N. Dennis. 1969. Stereochemistry of flexuosin A and related compounds. J. Organ. Chem. (USA) 34: 2915. 453. - - . , - - , R. Murari, N. Dennis and J. F. Blount. 1977. Microdilin, a complex elemenolide from Mikania cordifolia. J. Organ. Chem. (USA) 42: 1720. 454. , --., P. S. Santhanam, K. Aota and A. L. Hall. 1970. Structure elucidation of sesquiterpene dilactones from Mikania scandens (L.) Willd. J. Organ. Chem. (USA) 35: 1453. Errata: J. Organ. Chem. (USA) 38:4217 (1973). 455. - and V. Sudarsanam. 1970. Flavones of Ira hayesiana. Phytochemistry 9: 895. 456. - - , - and J. J. Schmid. 1966. New guaianolides from Ira axillaris Pursh. ssp. robustior. J. Organ. Chem. (USA) 31: 3232. 457. - and Y. Sumi. 1964. Constituents of Ambrosia hispida Pursh. J. Organ. Chem. (USA) 29: 3438. 458. - - . , - - , V. Sudarsanam and D. Raulais. 1967. Constituents of Ira species. X. Ivangulin, a novel seco-eudesmanolide from Iva angustifolia Nutt. J. Organ. Chem. (USA) 32: 3658. 459. and K. Ueda. 1961. The sesquiterpene lactones ofArtemisia tilesii Ledeb. J. Amer. Chem. Soc. 83: 1139. 460. - - , and S. Inayama. 1963. Constituents of Gaillardia species I. The structure of pulchellin. Tetrahedron 19: 483.
SESQUITERPENE LACTONES---ASTERACEAE
515
461. - and N. Viswanathan. 1964. Constituents oflva species. II. The structures of asperilin and ivasperin, two new sesquiterpene lactones. J. Organ. Chem. (USA) 29: 1022. 462. and I. Wahlherg. 1973. Provincialin, a cytotoxic germacradienolide from Liatris provincialis Godfrey with an unusual ester side chain. J. Organ. Chem. (USA) 38: 2485. 463. and . 1973. Punctatin: A new germacradienolide from Liatris punctata. Phytochemistry 12: 1421. 464. - - , --, C. S. Stevens and P. S. Kalyanaraman. 1975. Three new 5,10-epoxygermacranolides from Liatris chapmanii and Liatris gracilis. Phytochemistry 14: 1803. 465. - - , H. Watanabe, M. Miyazaki and Y. Kishida. 1962. The structures of parthenin and ambrosin. J. Amer. Chem. Soc. 84: 2601. 466. Heywood, V. H. 1973. Role of chemistry in plant systematics. Pure Appl. Chem. 34: 355; Chem, Abstr. 79: 102687c (1973). 467. - and C. J. Humphries. 1978. Anthemideae--systematic review. Page 851 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 468. Higo, A., Z. Hammam, B. N. Timmermann, H. Yoshioka, J. Lee, T. J. Mabry and W. W. Payne. 1971. Sesquiterpene lactones from the genus Ambrosia. Phytochemistry 10: 2241. 469. Hikino, H., D. Kuwano and T. Takemoto. 1968. Structure of Helenium lactone. Chem. Pharm. Bull. Japan 16(8): 1601; Chem. Abstr. 70: 20233b (1969). 470. Ho, C. M. and R. Toubiana. 1970. Lactones sesquiterpeniques. Determination de la position du cycle lactonique dans le vernolide et l'hydroxyvernolide. Tetrahedron 26: 941. 471. Hochmannova, J., V. Herout and F. Sbrm. 1961. Isolation and structure of sesquiterpenic lactones from common yarrow (Achillea millefoliam L.). Collect. Czech. Chem. Comm. 26: 1826. 472. , L. Novotny and V. Herout. 1962. Sesquiterpenic hydrocarbons from coltsfoot rhizomes (Petasites officinalis Moench.). Collect. Czech. Chem. Comm. 27: 1870. 473. Hoeneisen, M., M. Sicva and F. Bohlmann. 1980. Sesquiterpene lactones of Podanthus mitiqui. Phytochemistry 19: 2765. 474. Hoffman, J. J., S. D. Jolad, S. J. Torrance, D. J. Luzbetak, R. M. Wiedhopf and J. R. Cole. 1978. Odoratin and paucin: Cytotoxic sesquiterpene lactones from Baileya pauciradiata (Compositae). J. Pharm. Sci. 67: 1633. 475. Holub, M. and V. Herout. 1962. Isolation of desacetoxymatricarin from Artemisia leucodes Schrenk. Collect. Czech. Chem. Comm. 27: 2980. 476. , M. J. Poplawski, P. Sedmera and V. Herout. 1977. N-ethoxycarbonyl-Lprolinamide, a new alkaloid from the leaves of Arnica montana L. Collect. Czech. Chem. Comm. 42: 151. 477. and Z. Samek. 1977. Isolation and structure of 3-epinobilin, 1,10-epoxynobilin and 3-dehydronobilirr---other sesquiterpenic lactones from the flowers of Anthemis nobilis L. Revision of the structure of nobilin and eucannabinolide. Collect. Czech. Chem. Comm. 42: 1053. 478. and J. Toman. 1972. Carabrone from Arnicafoliosa. Phytochemistry l h 262'7. 479. Holzer, K. and A. Zinke. 1953. Uber die Bitterstoffe der Zichorie (Cichorium intybus L.). Monatssch. Chem. 84: 901. 480. Hiirhammer, L., H. Wagner and B. Lay. 1963. New methods in pharmocognosy. VI. Chromatography of Tussilagofarfara and Petasites leaves. Deutsch. Apotheker-Zeitung 103: 429. 481. Huber, C. P. and K. J. Watson. 1968. The crystal and molecular structure of 2-bromolumisantonin. J. Chem. Soc. (London) 2441. 482. Imakura, Y., K. H. Lee, D. Sims, R..Y. Wu, I. H. Hall, H. Furukawa, M. Hoigawa and K. Yonaha. 1980. Antitumor agents. XXXVI: Structural elucidation of sesqui-
516
THE BOTANICAL REVIEW terpene lactones, microhelenins A, B, and C, microlenin acetate, and plenolin from
483. 484.
485. 486. 487. 488. 489. 490. 491. 492. 493. 494. 495. 496. 497. 498. 499. 500a. 500b. 501. 502. 503. 504. 505.
Helenium microcephalum. J. Pharm. Sci. 69: 1044. Inayama, S., T. Kawamata and M. Yanagita. 1973. Sesquiterpene lactones of Gaillardia pulcheUa. Phytochemistry 12- 1741. , T. Oldmra, T. Kawamata and M. Yanagita. 1974. Ambrosic acid. New irritant principle from Ambrosia artemisiifolia. Chem. Pharm. Bull. (Japan) 22: 1435; Chem. Abstr. 81: 132853n (1974). lrie, G. W., D. A. Witzel, W. Herz, R. Kannan, J. O. Norman, D. D. Rushing, J. H. Johnson, L. D. Rowe and J. A. Veech. 1975. Hymenovin. Major toxic constituents of western bitterweed (Hymenoxys odorata DC.). J. Agric. Food Chem. 23: 841. Irwin, M. A. 1971. Sesquiterpene lactones of Artemisia. Ph.D. Dissertation, Univ. of California, Los Angeles; Chem. Abstr. 75: 137459z (1971). and T. A. Geissman. 1969. Sesquiterpene lactones. Constituents of Artemisia nova Nels. and A. tripartita A. Gray ssp. rupicola. Phytochemistry 8: 305. and . 1969. Sesquiterpene lactones of Artemisia species. New lactones from A. arbuscula ssp. arbuscula and A. tripartita ssp. rupicola. Phytochemistry 8: 2411. - and - - . 1971. Sesquiterpene lactones from Artemisia: Arbusculin-C, rothin-A and rothin-B. Phytochemistry 10: 637. - and - - . 1973. Arbusculin-D from Artemisia arbuscula ssp. arbuscula. Phytochemistry 12: 853. - and . 1973. Ridentin-B: An eudesmanolide from Artemisia tripartita spp. rupicola. Phytochemistry 12" 871. - and - - - . 1973. Rupicolin-A, and -B, rupin-A and -B, cumambrin B oxide from Artemisia tripartita ssp. rupicota. Phytochemistry 12: 863. - and . 1973. Novanin: A germacranolide from Artemisia nova. Phytochemistry 12: 875. - - , K. H. Lee, R. F. Simpson and T. A. Geissman. 1969. Sesquiterpene lactones of Artemisia. Ridentin. Phytochemistry 8: 2009. Ishii, H., T. Tozyo and H. Minato. 1966. Components of the root of Ligulariafischeri Turcz. J. Chem. Soc. C (London) 17: 1545. Ishizaki, Y., Y. Tanahashi, Y. Moriyama, T. Takahashi, and H. Koyama. 1974. Sesquiterpenes from the roots of Ligularia hodgsonii. Phytochemistry 13: 674. , - and T. Takahashi. 1969. Furanoeremophilan-14/3,6a-olide, a new furanosesquiterpene lactone from Ligularia hodgsonii Hook. f. The structure and nuclear overhauser effects. Chem. Commun. 551. , , - and K. Tori. 1970. The structure of ligularenolide. A new sesquiterpene lactone of eremophilane type. Tetrahedron 26: 5387. lsobe, M., H. Ito, T. Kawai and T. Goto. 1978. Synthesis of sesquiterpene antitumor lactones. A new stereocontrolled total synthesis of (-+) vernolepin. J. Amer. Chem. Soc. 100: 1940. Ito, K. and T. Lida. 1981. Seven sesquiterpene lactones from lnula britannica var. chinensis. Phytochemistry 20" 271. Jackson, R. C. 1960. A revision of the genus lva L. Univ. Kansas Sci. Bull. 41: 793. Jain, T. C. and J. E. McCloskey. 1971. Bromotrifluoride catalyzed cyclization of costunolide. Synthesis of 4a-hydroxycyclocostulinolide. Tetrahedron Lett. 1415. Jamieson, G. R., E. H. Reid, B. P. Turner and A. T. Jamieson. 1976. BakkenolideA. Its distribution in Petasites species and cytotoxic properties. Phytochemistry 15: 1713. Jeffrey, C. 1979. Generic and sectional limits in Senecio (Compositae). II. Evaluation of some recent studies. Kew Bulletin 34: 49. - - , P. Halliday, M. Wilmot-Dear and S. W. Jones. 1977. Genetic and sectional limits in Senecio (Compositae): I. Progress Report. Kew Bull. 32: 47. Jennings, P., S. Reeder, J. Hurley, C. Caughlan, G. D. Smith. 1974. Isolation and structure determination of one of the toxic constituents from Tetrahymena glabrata. J. Organ. Chem. (USA) 39: 3392.
SESQUITERPENE LACTONES--ASTERACEAE
517
506. Jeremic, D., A. Joldc, A. Behhud and M. Stefanovic. 1973. A new type of sesquiterpene lactone isolated from Artemisia annua L. Tetrahedron Lett. 3039. 507a. Jizba, J., Z. Samek, L. Novotny, E. Najdenova and A. Boeva. 1978. Components of Senecio nemorensis var. bulgaricus (Vel. Pro. Sp.). Collect. Czech. Chem. Commun. 43: 1113. 507b. Jones, D. A. 1972. Cyanogenic glycosides and their function. Page 103 in J. B. Harborne (ed.). Phytochemical ecology. Academic Press, London and New York. 508. Jones, S. B. 1978. Veruonieae---systematic review. Page 503 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 1. Academic Press, London. 509. Joseph-Nathan, P. and J. Romo. 1966. Isolation and structure ofperuvin. Tetrahedron 22: 1723. 510. Joshi, B. S., A. S. Bawdekar, G. H. Kulkarni, A. S. Rao, G. R. Kelkar and S. C. Bhattacharyya. 1961. Examination of Costus root oil. Perfumery Essent. Oil Record 52: 773; Chem. Abstr. 56: 11727d (1962). 511. - and V. N. Kamat. 1972. Structure of enhydrin, a germacranolide from Enhydra fluctuans Lour. Ind. J. Chem. 10: 771. 512. , G. H. Kulkarni, G. R. Kelkar and S. C. Bhattacharyya. 1966. Transformation products of costunolide. Stereochemistry of ( - ) santonin and solid dihydrocostunolide at C-11. Tetrahedron 22:2331. 513. Kagan, H. B., H. E. Miller, W. Renold, M. V. Lakshmikantham, L. R. Tether, W. Herz and T. J. Mabry. 1966. The structure of psilostachyin C, a new sesquiterpene dilactone from Ambrosia psilostachya DC. J. Organ. Chem. (USA) 31: 1629. 514. Kallen, J. 1873. Uber Helenin und Alantkampher. Ber. Dtsch. Chem. Ges. 6: 1506. 515. Kaneko, H., S. Naruto and S. Takahashi. 1971. Sesquiterpenes of Achillea sibirica. Phytochemistry 10: 3305. 516a. Karawya, M. S., S. H. Hilal, M. S. Hifnawy and S. E. EI-Hawary. 1977. Isolation and preliminary pharmacological and microbiological screening of cnicin from Centaurea calitrapa L. growing in Egypt. Egypt. J. Pharm. Sci. 16: 445; Chem. Abstr. 89: 160096b (1978). 516b. Kariyone, T., T. Fukui, M. Ishikawa and T. Imawaki. 1949. Constituents of Artemisia monogyna. Structure of mibulactone. J. Pharmac. Soc. Japan 69: 310. 517. and S. Naito. 1955. Components of Carpesium abrotanoides. Chemical structure of Carpesia lactone. J. Pharm. Soc. Japan 75: 39; Chem. Abstr. 50: 890g (1956). 518. , and J. Chatani. 1954. Studies on the components of Carpesium abrotanoides. Chemical constitution of carpesia lactone. Pharm. Bull. (Japan) 2: 339; Chem. Abstr. 50: 7089g (1956). 519. Karrer, W. 1958. Konstitution und Vorkommen der Organischen Pflanzenstoffe. Birkhauser Verlag, Basel. 520. Kashman, Y., D. Lavie and E. Glotter. 1967. Sesquiterpene lactones from Inula helenium. Israel J. Chem. 5: 23. 521. Kasymov, Sh. Z. and G. P. Sidyakin. 1972. Lactones ofAchillea millefolium. Khim. Prir. Soedin. 8: 246; English ed. p. 246. 522. and . 1969. Lactones from Artemisia tenuisecta. Khim. Prir. Soedin. 5: 445; Chem. Abstr. 72: 75666s (1970). 523. - - . , M. I. Yusupov, S. Kh. Zakirov, G. P. Sidyakin and D. Tezisy. 1978. Structure of novel guaianolides of jurmolide and ayanin. Sov. Indiiskii Simp., Khim. Prir. Soedin. 5th 37 (Russ.) Izv. Biol. Nauki. SSR: Yerevan, USSR; Chem. Abstr. 93: 186586u (1980). 524. Kato, T., K. Shirahata and Y. Kitahara. 1969. Mass spectra of bakkenolides and their derivatives. Recent Develop. Mass. Spectrosc. Proc. Int. Conf. Mass. Spectrosc. 1259; Chem. Abstr. 75:110446f (1971). 525. Kawatani, T. and T. Takeuchi. 1954. Two crystalline compounds from Artemisia finita; further discovery of an Artemisia containing 1-/3-santonin. J. Pharm. Soc. Japan 74: 793; Chem. Abstr. 49:11607f (1955). 526. Kechatova, N. A., K. S. Rybalko, P. N. Smirnov and M. I. Kamnev. 1969. Tauremisin
518
527. 528. 529.
530. 531. 532.
533. 534. 535. 536. 537. 538.
539. 540.
541. 542.
543. 544. 545.
546.
547. 548.
549.
THE BOTANICAL REVIEW content of Artemisia taurica. Tauremisin distribution in the organs. Rast. Resur. 5: 444; Chem. Abstr. 72: 39786x (1970). - and M. I. Vlasov. 1966. Sesquiterpene lactone from Artemisia juncea. Khim. Prir. Soedin., Akad. Nauk, CK. SSR 2: 216; Chem. Abstr. 65: 17360e (1966). Keek, D. D. 1946. A revision of the Artemisia vulgaris complex in North America. Proc. Calif. Acad. Sci. IV Series 25(17): 421. Kelsey, R. G. 1974. The systematic usefulness of the sesquiterpene lactones in the genus Arternisia, section Tridentatae (sagebrush) of Montana. Doctoral thesis. Univ. of Montana. - - , M. S. Morris, N. R. Bhadane and F. Shaflzadeh. 1973. Sesquiterpene lactones of Artemisia: TLC analysis and taxonomic significance. Phytochemistry 12" 1345. and F. Shatizadeh. 1979. Sesquiterpene lactones and systematics of the genus Artemisia. Phytochemistry 18: 1591. - - , J. W. Thomas, T. J. Watson and F. Shatizadeh. 1975. Population studies in Artemisia tridentata ssp. vaseyana: Chromosome numbers and sesquiterpene lactone races. Biochem. System. Ecol. 3: 209. Kerimov, S. S. and O. S. Chizhov. 1974. Sesquiterpene lactones of lnula helenium. Khim. Prir. Soedin. 10: 254; Chem. Abstr. 81: 60894b (1974). Khafagy, S. M., S. A. Gharbo and T. M. Sarg. 1971. Phytochemical investigations of Artemisia herba-alba. PI. Med. 20: 90. - and A. Metwally. 1970. Isolation of a crystalline sesquiterpenic ketolactone from Xanthium occidentale. PI. Med. 18: 318; Chem. Abstr. 73: 95439u (1970). Khvorost, P. P. and N. F. Komissarenko. 1976. Lactones of Inula helenium. Khim. Prir. Soedin. 12: 820; Chem. Abstr. 86: 136307p (1978). Kiang, A. K., K. Y. Sim and S. W. Young. 1968. Constituents of Mikania cordata (Burm. F.) B. L. Robinson (Compositae) II. Phytochemistry 7: 1035. Kim, H. L., L. D. Rowe and B. J. Camp. 1975. Hymenoxon, a poisonous sesquiterpene lactone from Hymenoxys odorata (bitterweed). Res. Comm. Chem. Pathol. Pharmacol. l h 647; Chem. Abstr. 83: 160803f (1975). Kingston, D., M. Rao, T. Spittler, R. Pettersen and D. Cullen. 1975. Sesquiterpenes from Fluorensia cernua. Phytochemistry 14: 2033. Kiseleva, E. Y., V. I. Sheichenko, K. S. Rybalko, G. A. Kalabin and A. I. Ban'kovskii. 1971. The structure of inulicin---a new sesquiterpene lactone from lnula japonica. Khim. Prir. Soedin. 7: 263; English ed. p. 254; Chem. Abstr. 75: 110445e (1971). - - , - - , - - , A. I. Shretev and D. Pakaln. 1969. Separation of gaillardin from Inula oculus Christi. Khim. Prir. Soedin. 5: 444; Chem. Abstr. 72: 82893s (1970). Kisiel, W. 1975. Phytochemical investigation of Vernonia flexuosa. Vernoflexuoside and vernoflexin, new sesquiterpene lactones. Pol. J. Pharmacol. Pharm. 27: 461; Chem. Abstr. 84: 14634f (1976). - - . 1978. New germacranolide from Zinnia haageana. Phytochemistry 17: 1059. Klimash, J. W. and N. H. Fischer. 1981. Four new cis,cis-germacranolides from cytotoxic fractions of Melampodium cinereum. Phytochemistry 20: 840. Kondo, Y., F. Hamada and F. Yoshizaki. 1976. 2-methoxydihydrohelenalin from the rhizome of Sendal Helenium autumnale L. Heterocycles 373; Chem. Abstr. 86: 90060x (1977). - - , T. Tomimori, N. Hiraga and T. Takemoto. 1977. Picrohelenin, a new cytotoxic and bitter pseudoguaianolide from Sendai Helenium autumnale L. Heterocycles 19; Chem. Abstr. 86: 68371c (1977). - - , F. Yoshizaki, F. Hamada, J. Imai and G. Kusano. 1977. Sulferalin, a novel sulfonyl pseudoguaianolide sesquiterpene lactone from Sendal Helenium autumnale L. Tetrahedron Lett. 2155. Konovalova, O. A., K. S. Rybalko and V. S. Kabanov. 1972. Sesquiterpene lactones from Carpesium eximium. Khim. Prir. Soedin. 8: 72l; English ed. p. 705; Chem. Abstr. 78: 94805b (1973). ~ , - and M. G. Pimenov. 1979. Sesquiterpene lactone from Saussurea amara. Khim. Prir. Soedin. 865; Chem. Abstr. 93: 22593t (1980).
SESQUITERPENE LACTONES--ASTERACEAE 550.
551. 552.
553. 554.
555.
556.
557. 558.
559.
560. 561. 562. 563. 564.
565.
566.
567. 568.
519
, - and V. I. Sheiehenko. 1974. Structure of new sesquiterpene lactones from lnula germanica. Khim. Prir. Soedin. 10: 578; English ed. p. 591; Chem. Abstr. 82: 73219f (1975). - - , ,- and D. A. Pakaln. 1971. Sesquiterpene lactones from Artemisia caucasica. Khim. Prir. Soedin. 7: 741; English ed. p. 719; Chem. Abstr. 76: 141061b .~1972). Kovacs, O., V. Herout, M. Horak and F. Sbrm. 1956. On terpenes. LXVII. Hydrogenation products of santonin and alantolactone. Collect. Czech. Chem. Comm. 21: 225. Kozuka, M., K. H. Lee, A. T. MePhail and K. D. Onan. 1975. Structure and absolute stereochemistry of dihydroflorilenalin, a new sesquiterpene lactone from Florida Helenium autumnale. Chem. Pharm. Bull. 23: 1895. Kupchan, S. M. 1975. Advances in the chemistry of tumor-inhibitory natural products. Page 167 in V. C. Runeckles (ed.). Recent advances in phytochemistry. Vol. 9. Plenum Press, New York. - - , J. W. Ashmore and A. T. Sneden. 1977. Eriofertopin and 2-O-acetyleriofertopin, a new tumor inhibitory germacradienolide from Eriophyllum confertiflorum. Phytochemistry 16: 1834. l , y. Aynechi, J. M. Cassady, H. K. Sdmoes and A. L. Burlingame. 1969. Tumor inhibitors XL. The isolation and structural elucidation of elephantin and elephantopin, two novel sesquiterpenoid tumor inhibitors from Elephantopus elatus. J. Organ, Chem. (USA) 34: 3867. - - , R. L. Baxter, C-K. Chiang, C. J. Gilmore and R. F. Bryan. 1973. Eriolangin and eriolanin, novel antileukemic secoeudesmanolides from Eriophyllum lanatum. Chem. Commun. 842. ~ , J. M. Cassady, J. E. Kelsey, H. K. Schones, D. H. Smith and A. L. BurUngame. 1966. Structural elucidation and high resolution mass spectrometry of gaillardin, a new cytotoxic sesquiterpene lactone. J. Amer. Chem. Soc. 88: 5292. - - , V. H. Davies, T. Fujita, M. R. Cox and R. F. Bryan. 1971. Liatrin, a novel antileukemic sesquiterpene lactone from Liatris chapmanii. J. Amer. Chem. Soc. 93: 4916. - - - , , , R. J. Restivo and R. F. Bryan. 1973. The isolation and structural elucidation of liatrin, a novel antileukemic sesquiterpene lactone from Liatris chapmanii. J. Organ. Chem. (USA) 38: 1853. - T. Fujita, M. Maruyama and R. W. Britton. 1973. The isolation and structure elucidation of eupaserrin and desacetyleupaserrin, new antileukemic sesquiterpene lactones from Eupatorium semiserratum. J. Organ. Chem. (USA) 38: 1260. - R. J. Hemingway, A. Karim and D. Werner. 1969. Vernodalin and vernomygdin, two new cytotoxic sesquiterpene lactones from Vernonia amygdafina Del. J. Organ. Chem. (USA) 34: 3908. - - - , D. Werner and A. Karim. 1969. Vernolepin, a novel sesquiterpene dilactone tumor inhibitor from Vernonia hymenolepis A. Rich. J. Organ. Chem. (USA) 34: 3903. - , ---, - - , A. T. McPhail and G. A. Sim. 1968. Vernolepin, a novel elemanolide dilactone tumor inhibitor from Vernonia hymenolepis. J. Amer. Chem. Soc. 90: 3596. - - , J. E. Kelsey, M. Maruyama, J. M. Cassady, J. C. Hemingway and J. R. Knox. 1969. Tumor inhibitors XLI. Structural elucidation of tumor-inhibitory sesquiterpene lactones from Eupatorium rotundifolium. J. Organ. Chem. (USA) 34: 3876. - - , M. Maruyama, R. J. Hemingway, J. C. Hemingway, S. Shibuya and T. Fujita. 1973. Structural elucidation of novel tumor-inhibitory sesquiterpene lactones from Eupatorium cuneifolium. J. Organ. Chem. (USA) 38: 2189. , - - , - - , - - , - - , --, P. D. Cradwick, A. D. Hardy and G. A. Sim. 1971. Eupacunin, a novel antileukemic sesquiterpene lactone from Eupatorium cuneifolium. J. Amer. Chem. Soc. 93: 4914. Kurokawa, T., K. Nakanishi, W. Wu, H. Y. Hsu, M. Maruyama and S. M. Kupchan.
520
569.
570. 571. 572. 573.
574.
575.
576. 577.
578. 579.
580. 581. 582.
583.
584. 585.
586. 587. 588a. 588b.
THE BOTANICAL REVIEW 1970. Deoxyelephantopin and its interrelation with elephantopin. Tetrahedron Lett. 2863. Lee, K. H., D. C. Anuforo, E. S. Huang and C. Piantadosi. 1972. Angustibalin, a new cytotoxic sesquiterpene from Balduina angustifolia. J. Pharm. Sci. 61: 626; Chem. Abstr. 77: 28809j (1972). - - , H. Furukawa, M. Kozuka, H. C. Huang, P. A. Luhan and A. T. MePhail. 1973. Molephantin, a novel cytotoxic germacranolide from Elephantopus mollis. Xray crystal structure. Chem. Commun. 476. and T. A. Geissman. 1970. Sesquiterpene lactones of Artemisia. Constituents of A. ludoviciana ssp. mexicana. Phytochemistry 9: 403. - and . 1971. Sesquiterpene lactones of Arternisia species. Artefransin from A. franserioides. Phytochemistry 10: 205. --., M. Haruna, H. C. Huang, B. S. Wu and I. H. Hall. 1977. Helenalin, an antitumor principle from Anaphalis morrisonicola Hay. J. Pharm. Sci. 66: 1194; Chem. Abstr. 87: 145893s. - - , H. C. Hnang, E. S. Huang and H. Furukawa. 1972. Eupatolide, a new cytotoxic principle from Eupatoriumformosanum. J. Pharm. Sci. 61: 629; Chem. Abstr. 77: 28810c (1972). - - , T. Ibuka, H. Furukawa, M. Kozuka, R-Y. Wu, I. H. Hall and H-C. Huang. 1980. Antitumor agents. XXXVIII. Isolation and structural elucidation of novel germacranolides and triterpenes from Elephantopus mollis. J. Pharm. Sci. 69: 1050. ,- - , H-C. Huang and D. L. Harris. 1975. Molephantinin, a new potent antitumor sesquiterpene lactone from Elephantopus mollis. J. Pharm. Sci. 64: 1077; Chem. Abstr. 83:172545 (1975). -, -, M. Kozuka, A. T. McPhail and K. D. Onan. 1974. The structure and absolute configuration of florilenalin, a new cytotoxic guaianolide from Florida Helenium autumnale L. Tetrahedron Lett. 2287. , --., A. T. McPhail, K. D. Onan, T. A. Geissman and T. G. WaddeR. 1974. The structure and absolute configuration of ptenolin, a cytotoxic sesquiterpene lactone. Tetrahedron Lett. 1149. ---, Y. Imakura and D. Sims. 1976. Structure and stereochemistry of microhelenin-A, a new antitumor sesquiterpene lactone from Helenium microcephalum. X Pharm. Sci. 65: 1410. -, , , A. T. McPhali and K. D. Onan. 1976. Structure and stereochemistry of microlenin, a novel antitumor dimeric sesquiterpene lactone from Helenium microcephalum; X-ray crystal structure. Chem. Commun. 341. , , , and--. 1977. Antitumor sesquiterpene lactones from Helenium microcephalum: Isolation of mexicanin-E and structural characterization of microhelenin-B and -C. Phytochemistry 16: 393. , T. Kimura, M. Haruna, A. T. McPhail, K. D. Onan and H-C. Huang. 1977. Structure and stereochemistry of eupaformosanin, a new antileukemic and antisarcoma germacranolide from Eupatorium formosanum. Phytochemistry 16: 1068. - - , - - , M. Okamoto, C. M. Cowherd, A. T. MePhail and K. D. Onan. 1976. The structure and stereochemistry of eupahyssopin, a new antitumor germacranolide from Eupatorium hyssopifolium. Tetrahedron Lett. 1051. ---, S. Matsueda and T. A. Geissman. 1971. Sesquiterpene lactones of Artemisia. New guaianolides from fall growth of A. douglasiana. Phytochemistry 10: 405. , R. F. Simpson and T. A. Geissman. 1969. Sesquiterpenoid lactones of Artemisia. Constituents of Artemisia cana ssp. cana. The structure of canin. Phytochemistry 8: 1515. Lessing, C. F. 1832. "Synopsis generum Compositarum." Berolini (1832). LeVan, N. and N. H. Fischer. 1979. Three new melampolide sesquiterpenes. Polymatin A, B and C, from Polymnia maculata Cav. var. maculata. Phytochemistry 18: 851. Levin, D. C. 1979. The nature of plant species. Science 204: 381. Levy, M. 1977. Minimum biosynthetic step indices as measures of comparative flavonoid affinity. Sys. Bot. 2: 89.
SESQUITERPENE LACTONES--ASTERACEAE
521
589a. L'Homme, M. F., T. A. Geissman, H. Yoshioka, T. H. Porter, W. Renoid and T. J. Mabry. 1%9. The structure of chamissonin. Tetrahedron Lett. 3161. 589b. Lincoln, D. E. and J. H. Langenheim. 1979. Variation of Satureja douglasii monoterpenoids in relation to light intensity and herbivory. Biochem. System, Ecol. 7: 289. 590. Lucas, R. A., S. Rovinski, R. J. Kiesel, L. Dorfman and H. B. MacPhillamy. 1964. A new sesquiterpene lactone with analgesic activity from Helenium amarum. J. Organ. Chem. (USA) 29: 1549. 591. - - , R. G. Smith and L. Dorfman. 1964. The isolation of dihydromexicanin-E from Helenium autumnale L. J. Organ. Chem. (USA) 29: 2101. 592. Lugovskaya, S. A., N. V. Plekhanova, and K. Y. Orovbaev. 1976. Alantolactone from lnula grandis. Khim. Prir. Soedin 110. 593. and . 1976. Alantolactone and isoalantolactone from Inula grandis Schrenk. Izv. Akad. Nauk, Kirg. SSR. 54; Chem. Abstr. 86: 167866z (1977). 594. Mabry, T. J. 1972. Infraspecific variation of sesquiterpene lactones in Ambrosia (Compositae): Applications to evolutionary problems at the populational level. Phytochemical phylogeny. Proc. Phytochem. Sac. Symp. 1969: 269. 595. and F. Bohlmann. 1978. Summary of the chemistry of the Compositae. Page 1097 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 5%. , Z. AbdeI.Baset, W. G. Padolina and S. B. Jones. 1975. Systematic implications of flavonoids and sesquiterpene lactones in species of Vernonia. Biochem. System. Ecol. 2: 185. 597. See Reference No. 5%, Literature Cited. 598. and J. E. Gill. 1979. Sesquiterpene lactones and other terpenoids. Pages 601 in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their interaction with secondary plant metabolites. Academic Press, New York. 599. - - , H. B. Kagan and H. E. Miller. 1966. Psilostachyin B, a new sesquiterpene dilactone from Ambrosia psilostachya DC. Tetrahedron 22: 1943. 600. ~ , H. E. Miller, H. B. Kagan and W. Renold. 1966. The structure of psilostachyin, a new sesquiterpene dilactone from Ambrosia psilostachya. Tetrahedron 22: 1139. 601. - - , W. Renold, H. E. Miller and H. B. Kagan. 1966. The structure of ambrosial. A new sesquiterpene lactone from Ambrosia psilostachya. J. Organ. Chem. (USA) 31:681. 602. Mahmoud, Z., N. A. Abdel Salam, T. M. Sarg and F. Boldmann. 1981. A carotane derivative and a eudesmanolide from Inula crithmoides. Phytochemistry 20: 735. 603. Manchand, P. S. and J. F. Blount. 1978. Stereostructures of neurolensins A and B, novel germacranolide sesquiterpenes from Neurolaena lobata (L,) R. Br. J. Organ. Chem. (USA) 43: 4352. 604. Maruyama, M. and S. Omura. 1977. Carpesiolin from Carpesium abrotanoides, iahytochemistry 16: 782. 605. - - - and F. Shibata. 1975. Stereochemistry of granilin isolated from Carpesium abrotanoides. Phytochemistry 14: 2247. 606. Mathur, S. B. 1972. Composition of Punjab Costus root oil. Phytochemistry 11: 449. 607. - and C. M. Fermfn. 1973. Terpenes of Mikania mongenansis. Phytochemistry 12: 226. 608. - - , P. Garcfa Tello, C. Marcano Fermin and V. Mora-Arellano. 1975. Terpenoids of Mikania monagasensis and their biological activities. Rev. Latinoamer. Qufm. 6: 201. 609. - - , S. V. Hiremath, G. H. Kuikarni, G. R. Kelkar and S. C. Bhattacharyya. 1965. Terpenoids--LXX. Structure of dehydrocostus lactone. Tetrahedron 21: 3575. 610. Matsueda, S. and T. A. Geissman. 1967. Sesquiterpene lactones of Artemisia species. III. Arglanine from Artemisia douglasiana Bess. Tetrahedron Lett. 2013. 611. - and . 1967. Sesquiterpene lactones of Artemisia species. IV. Douglanine from Artemisia douglasiana Bess. Tetrahedron Lett. 2159. 612. , M. Nagaki, J. Ichita, Y. Masuchi and M. Koreeda. 1979. Structure of merid-
522
613.
614. 615. 616.
617.
618.
619.
620. 621.
622. 623. 624.
625. 626. 627.
628. 629. 630. 631. 632. 633.
THE BOTANICAL REVIEW ianone. Abstract Book, ACS-CSJ Chemical Congress, Honolulu. Organic Chemistry Paper 571. - - , S. Sato and Y. Satomi. 1973. Sesquiterpene lactones IX. Seasonal variation of chemical constitution of Artemisiafeddei collected in Kochi Prefecture. J. Pharm. Soc. Japan 93: 922; Chem. Abstr. 79: 75928y (1973). Mazur, Y. and A. Meisels. 1956. The structure of arborescine, a new sesquiterpene from Artemisia arborescens L. Chem. Ind. 492. McMillan, C., P. I. Chfivez and T. J. Mabry. 1975. Sesquiterpene lactones of Xanthium strumarium in a Texas population and in experimental hybrids. Biochem. Syst. Ecol. 3: 137; Chem. Abstr. 84: 56625j (1976). --, , S. G. Plettman and T. J. Mabry. 1975. Systematic implications of the sesquiterpene lactones in the "strumarium" morphological complex (Xanthium strumarium, Asteraceae) of Europe, Asia and Africa. Biochem. System. Ecol. 2: 181. McPhail, A. T., P. A. Luhan, K. H. Lee, H. Furukawa, R. Meck, C. Piantadosi and T. Shingu. 1973. Crystal structure of carolenalin monoacetate: Revision of the stereochemistry of carolenalin and carolenin. Tetrahedron Lett. 4087. , R. W. Miller, B. Mompon and R. Toubiana. 1975. Structure and stereochemistry of vernodesmine, a novel phenyl bearing sesquiterpene lactone from Vernonia pectoralis Baker. Tetrahedron Lett. 3675. - and K. D. Onan. 1976. Crystal and molecular structure of carolenalone, a cycloheptenone sesquiterpene lactone from North Carolina Helenium autumnale L. J. Chem. Soc. Perkin Trans. II: 332. --., - - , H. Furukawa and K. H. Lee. 1975. Structure and stereochemistry of carolenalone, a new sesquiterpene lactone from North Carolina Helenium autumnale L. Tetrahedron Lett. 1229. - - , --, K. H. Lee, T. lbuka, and H. Ch. Huang. 1974. Structure and stereochemistry of eupaformonin, a novel cytotoxic sesquiterpene lactone from Eupatoriumformosanum Hay. Tetrahedron Lett. 3203. , , , --, M. Kozuka, T. Shingu and H. C. Huang. 1974. Structure and stereochemistry of the epoxide of phantomolin, a novel cytotoxic sesquiterpene lactone from Elephantopus mollis. Tetrahedron Lett. 2739. - and G. Sire. 1972. Constitution and absolute stereochemistry of elephantol: X-ray analysis of elephantol p-bromobenzoate. J. Chem. Soc. Perkin Trans. 2:1313. Mears, J. A. 1980. Chemistry of polyploids. A summary with comments on Parthenium (Asteraceae-Ambrosiinae). Page 77 in W. H. Lewis (ed.). Polyploidy--biological relevance. Plenum Press, New York. Mehra, M. M., K. G. Deshpande, B. B. Ghatge and S. C. Bhattacharyya. 1967. Transformation products of alantolactones. Tetrahedron 23: 2469. Miller, H. E. and T. J. Mabry. 1%7. 3-hydroxydamsin, a new pseudoguaianolide from Ambrosia psilostachya (Compositae). J. Organ. Chem. 32: 2929. ---, --., B. L. Turner and W. W. Payne. 1968. Infraspecific variation of sesquiterpene lactones in Ambrosia psilostachya (Compositae). Amer. J. Bot. 55: 316. Minato, H. and I. Horibe. 1%5. Structure and stereochemistry of xanthumin, a stereoisomer of xanthinin. J. Chem. Soc. (London), 7009. , S. Nosaka and I. Horibe. 1964. The structure of carabrone, a new component of Carpesium abrotanoides. Linn. J. Chem. Soc. (London), 5503. Mitchell, D. R. and R. O. Asplund. 1973. Pulchellins C and E in Gaillardia aristata. Phytochemistry 12: 2541. Mnatsakanyan, V. A. and L. V. Revazova. 1974. Tamarine from Tanacetum chiliophyllum. Khim. Prir. Soedin. 3%: Chem. Abstr. 82: 13988w (1975). and . 1974. Phytochemical analysis of Tanacetum myriocophyllum. II. Structure of tanamyrin. Arm. Khim. Zh. 27: 208; Chem. Abstr. 81: 91747k (1974). - and . 1973. Phytochemical analysis of the plant Tanacetum myriophyllum. I. Sesquiterpenic lactones. Arm. Khim. Zh. 26: 914; Chem. Abstr. 80: 121134g (1974).
SESQUITERPENE LACTONES--ASTERACEAE
523
634. Moiseeva, G. P., B. Akyev, S. Z. Kasymov and G. P. Sidyakin. t973. The structure of the lactones arsanin and arsantin. Khim. Prir. Soedin. 9: 167; English ed. p. 162; Chem. Abstr. 79: 5470u (1973). 635. Mompon, B., C. M. Ho and R. Toubiana. 1973. Sur la structure du pectorolide, nouvelle lactone sesquiterpenique isol6e du Vernonia pectoralis Baker. Compt. Rend. Hebd. S~ances Acad. Sci. Series C. 276: 1799; Chem. Abstr. 79: 105430z (1973). 636. - - , G. Massiot and R. Tuubiana. 1974. Structure of subluteolide, a new guaianolide isolated from Vernonia sublutea (Compositae). Compt. Rend. Hebd. S~ances Acad. Sci. Ser. C. 279: 907; Chem. Abstr. 82: 171223x (1975). 637. - and R. Toubiana. 1976. Lactones sesquiterpeniques du Vernonia pectoralis Baker (Comp.). Stereochimie du pectorolide, et structure des vernopectolides-A et B. Tetrahedron 32: 2545. 638. Morimoto, H., Y. Sanno and H. Oshio. 1966. Chemical studies on heliangine. A new sesquiterpene lactone isolated from the leaves of Helianthus tuberosus L. Tetrahedron 22: 3173. 639. Morishita, H., S. Nakano, I. Satoda and T. Fukui. 1959. Extraction of santonin from a new plant [pentaploid hybrid: Artemisia maritima ssp. monogyna • A. lercheana vat. dahurica]. Japan 2296; Chem. Abstr. 53: 20707g. 640. - - , --, and . 1959. Extraction of santonin with bicarbonate. Japan 2646; Chem. Abstr. 53: 18981d (1959). 641. Moriyama, Y. and T. Takahashi. 1976. New sesquiterpene lactones of the eremophilane type from Ligulariafauriei (Fr.) Koidz. Bull. Chem. Soc. Japan, 3196; Chem. Abstr. 86: 140267t (1977). 642. - and . 1976. New eremophilane-type lactones from Ligularia fauriei (Fr.) Koidz. Chem. Pharm. Bull. 24: 360; Chem. Abstr. 84: 147721d (1976). 643. Mukhametzhanov, M. N., A. I. Shreter and D. Pakalns. 1969. Stizolycin from Centaurea solstitialis. Khim. Prir. Soedin. 5: 590; Chem. Abstr. 73: 73825q (1970). 644. Nagano, H., Y. Moriyama, Y. Tanahashi and T. Takahashi. 1974. New benzofuranosesquiterpenes from Farfugiumjaponicum. Farfugin A and farfugin B. Bull. Chem. Soc. Japan 47: 1994. 645. - - , Y. Tanahashi, Y. Moriyama and T. Takahashi. 1973. New furanoeremophilane derivatives from Farfugium japonicurn Kitamura. Bull. Chem. Soc. Japan 46: 2840. 646. Nagumo, S., K. Izawa, K. ltigashiyama and M. Nagai. 1980. A bitter principle of Pertya robusta (Maxim.) Beav. Yakugaku Zasshi 100: 427. 647. Naidenova, E. and E. Bloshik, 1978. Study of Bulgarian plants for sesquiterpene lactone content. I. Parthenolides in Inula aschersoniana Ika. var. aschersoniana Staj., Stef, and Kitan. Farmatsiya (Sofia) 28: 26; Chem. Abstr. 89: 193899u (1978). 648. Nakatani, N., C. Bohnstedt and T. J. Mabry. 1973. The origin of Ambrosia chamissonis in Chile. Biochem. System. 1: 129. 649a. Nano, G. M., A. Martelli and P. Sanein. 1966. Chemical investigations of Artemisia grown in Piedmont. Riv. Ital. Essenze-Profumi, Piante Offic., Aromi-Saponi, Costa. Aerosol 98" 409; Chem. Abstr. 66: 31930v (1967). 649b. Narain, N. K. 1978. Spectroscopic studies of fasciculide B, a new sesquiterpene lactone from the leaves of Vernoniafasciculata Misch. Spectrosc. Letters 11: 267. 650. Naya, K., M. Hayashi, I. Takagi, S. Nakamura and M. Kobayashi. 1972. The structural elucidation of sesquiterpene lactones from Petasites japonicus Maxim. Bull. Chem. Soc. Japan 45: 3673; Chem. Abstr. 78: 124744a (1973). 651. ~ , R. Kanazawa and M. Sawada. 1975. The photosensitized oxygenation of furanoeremophilanes. I. The isomeric hydroperoxides from petasalbin and their transformations to lactones. Bull. Chem. Soc. Japan 48: 3220; Chem. Abstr. 84: 90329a (1976). 652. , M. Kawai, M. Naitu and T. Kasai. 1972. Structures of eremofukinone, 9acetoxyfukinanolide and S-japonin from Petasites japonicas. Chem. Letters, 241. 653. - - . , Y. miyoshi, H. Mori, K. Takai and M. Nakanishi. 1976. The sesquiterpenes of Cacalia species. Chem. Lett. 73.
524
THE BOTANICAL REVIEW
654. - - , I. Takagi, M. Hayashi, S. Nakamura, M. Kobayashi and S. Katsumura. 1968. Structures of new skeletal sesquiterpenoids from Petasitesjaponicus Maxim. Chem. Ind. 318. 655. Nazarenko, M. V. 1965. Guaianolides of sievers wormwood, Artemisia sieversiana. Zh. Prikl. Khim. 38: 2372; Chem. Abstr. 64: 3608g (1966). 656. and L. I. Leont'eva. 1966. Sieversinin, a new sesquiterpenic-~/-lactone. Khim. Prir. Soedin. 2: 399; Chem. Abstr. 67: 32803p (1%7). 657. Neshta, I. D. and N. A. Kaloshina. 1972. Leucomisin from Achillea cartilaginae. Khim. Prir. Soedin. 8: 652; English ed. p. 625. 658. - - , K. S. Rybalko, O. A. Konovalova and O. F. lvanenko. 1976. Lactones of Achillea micrantha and A. vermicularis. Khim. Prir. Soedin. 395; Chem. Abstr. 85: 106653k (1976). 659. Nikonova, L. P. 1973. Lactones of Inula magnifica. Khim. Prir. Soedin. 9: 558; English ed. p. 528; Chem. Abstr. 80: 45620v (1974). 660. and G. K. Nikonov. 1972. Granilin---a new lactone from Inula grandis. Khim. Prir. Soedin. 8: 289; English ed. p. 286; Chem. Abstr. 78: 2009u (1973). 661. and . 1970. Grandulin and grandicin. New sesquiterpene lactones from Inula grandis. Khim. Prir. Soedin. 6: 133; Chem. Abstr. 73: 117175j (1970). 662. - and . 1970. Igalan, a new sesquiterpene lactone from Inula grandis. Khim. Prir. Soedin. 6: 508. 663. - and . 1976. Sesquiterpene lactones from Ligularia macrophylla and L. thomsonii. Khim. Prir. Soedin. 6: 742; Chem. Abstr. 86" 1030556 (1977). 664. - and . 1971. Sesquiterpenes of the i-oots of Inula grandis. Khim. Prir. Soedin. 7: 17; English ed. p. 14. 665. Nisikawa, Y., Y. Watanabe, I. Seto and L Yasuda. 1976. Studies on the components of Atractylodes. I. New sesquiterpenoids in the rhizomes ofAtractylodes lancea DC. J. Pharm, Soc. Japan 96: 1089; Chem. Abstr. 85" 192927g (1976). 666. Nordenstam, B. 1978. Senecioneae and Liabeae--systematic review. Page 799 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 667. Novikov, V. I., F. N. Forostyan and D. P. Popa. 1970. A sesquiterpene lactone of Cyclachaena xanthifolia, anhydrocoronopilin. Khim. Prir. Soedin. 6: 29; Chem. Abstr. 73: 45615c (1970). 668. , - and . 1969. Structure of the sesquiterpene lactone from Cyclachaena xanthifolia. Khim. Prir. Soedin 5: 487; Chem. Abstr. 73: 15019u (1970). 669. Novotny, L. and V. Herout. 1%2. The composition of Artemisia sieversiana Willd. Collect. Czech. Chem. Comm. 27: 1508. 670. , - and F. Sbrm. 1964. Constitution of petasalbine, albopetasine and hydroxyeremophilenolide, the components of Petasites albus L, rhizomes. Collect. Czech. Chem. Comm. 29: 2189. 671. , - and . 1961. Substances from Petasites officinalis Moench. and Petasites albus (L.). Gaertn. Tetrahedron Lett. 697. 672. - - , - and . 1960. A contribution to the structure of absinthin and anabsinthin. Collect. Czech. Chem. Comm. 25: 1492. 673. - and . 1960. A contribution to stereochemistry of absinthin and artabsin. Collect. Czech. Chem. Comm. 25: 1500. 674. ,- and . 1964. Constitution of petasitolides and S-petasitolides. Collect. Czech. Chem. Comm. 29: 2182. 675. - - , J. Jizba, V. Heront and F. Sbrm. 1962. The constituents of coltsfoot rhizomes (Petasites officinalis Moench.). Collect. Czech. Chem. Comm. 27: 1393. 676. - and - - . 1963. Constitution and absolute configuration of eremophilenolide. Tetrahedron 19: 1101. 677. - - , K. Kotva, J. Toman and V. Heruut. 1972. Sesquiterpenes from Petasites. Phytochemistry 11: 2795. 678. - - , J. Toman, F. Stary, A Marquez, V. Herout and F. Sbrm. 1966. Contribution to the chemotaxonomy of some European Petasites species. Phytochemistry 5: 1281. 679. - - , T. Toman and V. Herout. 1968. Terpenoids of the Petasites paradoxus and Petasites kablikianus in relation to their phylogeny. Phytochemistry 7: 1349.
SESQUITERPENE LACTONES--ASTERACEAE
525
680. Ohno, N., J. Gershenzon, C. Roane and T. J. Mabry. 1980. ll,13-dehydrodesacetylmatricarin and other sesquiterpene lactones from Artemisia ludoviciana vat. ludoviciana and the identity of artecanin and chrysartemin B. Phytochemistry 19: 103. 681. , H. Hirai, H. Yoshioka, X. A. Dominguez and T. J. Mabry. 1973. Cynaropictin, a sesquiterpene lactone from Centaurea americana. Phytochemistry 12: 221. 682. and T. J. Mahry. 1979. Germacranolides from Helianthas mollis Lam. Phytochemistry 18: 1003. 683. - and . 1980. Sesquiterpene lactones and diterpene carboxylic acids in Helianthus niveus subspecies canescens. Phytochemistry 19: 609. 684. , S. McCormick and T. J. Mahry. 1979. Centratherin, a new germacranolide from Centratherum punctatum. Pbytochemistry 18: 681. 685. Olivier, E. J., D. L. Perry and N. H. Fischer. 1980. Two new germacranolides from Melampodium leucanthum and their reductive and oxidative rearrangements. J. Organ. Chem. (USA) 45: 4028. 686. Ortega, A., C. Guerrero and J. Romo. 1973. Structure of zexbrevin D. Rev. Latinoamer. Quim. 4: 91; Chem. Abstr. 81: 142429g (1974). 687. , --., A. Romo de Vivar, J. Romo and A. Palafox. 1971. La orizabina y la zexbrevina B, nuevos germacran61idos furfinicos. Rev. Latinoamer. Quim. 2: 38. 688. , R. Lara, R. Martinez and E. Diaz. 1980. Sphaerocephalin, a germacranolide isolated from Viguiera sphaerocephala. Phytochemistry 19: 1545. 689. - - . , A. Romo de Vivar and J. Romo. 1968. Odoratin: A new pseudoguaianolide isolated from Hymenoxys odorata DC. Canad. J. Chem. 46: 1539. 690. ,- - , E. Diaz and J. Romo. 1970. Determinaci6n de las estructuras de la calaxina y de la ciliarina, nuevos germacran61idos furan6nicos. Rev. Latinoamer. Quim. 1: 81. 691. , C. Vargas, C. Guerrero and A. Romo de Vivar. 1973. Los componentes de Zexmenia brevifolia. III. Estructura de zexbrevina C. Rev. Latinoamer. Quire. 4: 1. 692. Osawa, T., A. Suzuki, S. Tamura, Y. Ohashi and Y. Sasada. 1973. Structure of chlorochrymorin, a novel sesquiterpene lactone from Chrysanthemum morifolium. Tetrahedron Lett. 5135, 693. , D. Taylor, A. Suzuki and S. Tamura. 1977. Revised structure and stereochemistry of chrysartemin B. Tetrahedron Lett. 1169. 694. Padolina, W. G., N. Nakatani, H. Yoshioka, T. J. Mabry and S. A. Monti. 1974. Marginatin, a new germacranolide from Vernonia species. Phytoehemistry 13: 2225. 695. , H. Yoshioka, N. Nakatani, T. J. Mabry, S. A. Monti, R. E. Davis, P. J. Cox, G. A. Sim, W. H. Watson and I. Beth Wu. 1974. Glaucolide-A and -B, new germacranolide-type sesquiterpene lactones from Vernonia (Compositae). Tetrahedron 30: 1161. 696. Pal, R., D. K. Kulshreshtha and R. P. Rastogi. 1976. Chemical constituents of Tithonia tagitiflora Desf. 1976. Constitution of tagitinin A. Indian J. Chem. Sect. B 14B: 259. 697. , and . 1976. Chemical constituents of Tithonia tagitiflora Desf. Structure of tagitinin-B by application of homonuclear indor spectroscopy. Indian J. Chem. Sect. B 14B: 77, 698. , - and . 1976. Antileukemic and other constituents of Tithonia tagitiflora Deft. J. Pharm. Sci. 65: 918; Chem. Abstr. 85: 72205y (1976). 699. , and . 1977. Chemical constituents of Tithonia tagitiflora Desf. Part IV. Tagitinins C, D and F, Indian J. Chem. Sect. B 15B: 208. 700. Papano, G. Y., P. Y. Malakov and F. Bohlmann. 1980. 8-fl-hydroxydihydroperemanthin--ein neues Guajanolide aus Inula aschersoniana. Phytochemistry 19: 152. 701. Parker, B. A. and T. A. Geissman. 1962. The sesquiterpenoid lactones of Helenium bigelovii Gray. J. Organ. Chem. (USA) 27: 4127. 702. Payne, W. W. 1962. Biosystematic studies of four wide-spread weedy species of ragweeds (Ambrosia: Compositae). Ph.D. Thesis. University of Michigan. 703. . 1964. A re-evaluation of the genus Ambrosia (Compositae). J. Arnold Arbor. 45: 401. 704. . 1976. Biochemistry and species problems in Ambrosia (Asteraceae-Ambrosieae). Plant Syst. Evol. 125: 169.
526
THE BOTANICAL REVIEW
705. - - , T. A. Geissman, A. J. Lucas and T. Saitoh. 1973. Chemosystematics and taxonomy of Ambrosia chamissonis. Biochem. System. 1: 21. 706. Pennuri, E. and C. Steelink. 1962. Chamazulene from Artemisia carruthii. J. Pharm. Sci. 51: 598; Chem. Abstr. 57: 6021. (1962). 707. Perry, D. L., D. M. Desiderio and N. H. Fischer. 1978. Mass spectra of germacranolide type sesquiterpene dilactones and derivatives. Org. Mass Spectr. 13: 325. 708. - and N. H. Fischer. 1975. New germacranolide sesquiterpene dilactones from the genus Melampodium (Compositae). J. Organ. Chem. (USA) 40: 3480. 709. Perssoa, K. 1974. Biosystematic studies in the Artemisia maritima complex in Europe. Opera Bot. 35: 188. 710. Pettersen, R. C. and H. L. Kim. 1976. X-ray structures of hymenoxon and hymenolane: Pseudoguaianolides isolated from Hymenoxys odorata DC. (bitterweed). J. Chem. Soc. Perkin Trans. II: 1399. 711. Pettit, G. R., C. L. Herald, D. Gust, D. L. Herald and L. D. Vaneli. 1978. Antineoplastic agents. 55. Isolation and structure of multigilin and multistatin. J. Organ. Chem. (USA) 43: 1092. 712. Pieman, A. K., R. H. EHiott and G. H. N. Towers. 1978. Insect feeding deterrent property of alantolactone. Biochem. System. Ecol. 6- 333. 713. - - , G. H. N. Towers and P. V. Subba Rao. 1980. Coronopilin--another major sesquiterpene lactone in Parthenium hysterophorus. Phytochemistry 19: 2206. 714. Poijakov, P. P. 1961. Systematic studies in the genus Artemisia L. Trudy Inst. Bot. Akad. Nauk. Kasakh., SSR Alma Ata 11: 134. 715. Poplawski, J., M. Holub, Z. Samek and V. Herout. 1971. Arnicolides--sesquiterpeneic lactones from the leaves of Arnica montana L. Collect. Czech. Chem. Comm. 36: 2189. 716. Popova, A. I., K. S. Rybalko and R. I. Evstratova. 1974. Sesquiterpene lactones from Artemisia lagocephala, Artemisia schrenkiana and Grossheimia ossica. Khim. Prir. Soedin. 528; Chem. Abstr. 82: 28594p (1975). 717. Porter, T. H. and T. J. Mabry. 1969. Sesquiterpene lactones. Constituents of Ambrosia artemisiifolia L. (Compositae). Phytochemistry 8: 793. 718. - - , ---, H. Yoshioka and N. H. Fisher. 1970. The isolation and structure determination of artemisiifolin, a new germacranolide from Ambrosia artemisiifolia L. (Compositae). Phytochemistry 9: 199. 719. Potter, J. 1970. Origin of the Texas Gulf Coast island populations of Ambrosia psilostachya DC. (Compositae): A biochemical and numerical systematic investigation. Ph.D. Thesis, University of Texas at Austin. 720. - and T. J. Mabry. 1972. Origin of the Texas Gulf Coast island populations of Ambrosia psilostachya: A numerical study using terpenoid data. Phytochemistry 11: 715. 721. Power, F. B. and H. Browning. 1914. The constituents of the flowers of Anthemis nobilis. J. Chem. Soc. (London) 1829. 722. Prochazka, V., Z. Cekan and R. B. Bates. 1963. Structure of globicin, a guaianolide from Matricaria globifera (Thunb.) Druce. Collect. Czech. Chem. Comm. 28: 1202. 723. Quijano, L., J. S. Calder6n, F. G6mez G. and T. Rios. 1979. Montafrusin, a new germacrolide from Montanoa frutescens. Phytochemistry 18: 843. 724. , , , J. T. Gardufio and T. Rfos C. 1980. Deltoidin A and B, two new germacrolides from Eupatorium deltoideum. Phytochemistry 19: 1975. 725. - - , D. Bloomenstiel and N. H. Fischer. 1979. Tetraludin A, B and C, three new melampolides from Tetragonotheca ludoviciana. Phytochemistry 18: 1529. 726. and N. H. Fischer. 1981. Melfusin, a new germacrolide from Melampodium diffusum (Compositae, Heliantheae). J. Nat. Prod. 44: 266. 727. - - , E. J. Olivier and N. H. Fischer. 1980. Tetraludin D to N, eleven new melampolides from Tetragonotheca ludoviciana. Phytochemistry 19: 1485. 728. - - , A. Romo de Vivar and T. Rios. 1978. Calea zacatechichi components. Structure of calein A and B. Rev. Latinoamer. Quire. 9: 86. 729. , - and . 1979. Revision of the structures of caleine A and B, germacranoline sesquiterpenes from Calea zacatechichi. Phytochemistry 18: 1745.
SESQUITERPENE LACTONES--ASTERACEAE
527
730. - - , A. Ortega, T. Rios and A. Romo de Vivar. 1975. Estructura de las zinaltorinas, nuevas lactonas sesquiterprnicas, aisladas de Zinnia paaciflora L. Rev. Latinoamer. Qulm. 6: 94. 731. Quirishi, M. A., K. L. Dhar and C. K. Atal. 1980. A new sesquiterpene lactone from lnula royleana roots. P1. Med. 38: 282. 732. Raghaven, R., K. R. Ravindranath, G. K. Trivedi, S. K. Pakmikar and S. C. Bhattacharyya. 1969. Inunolide---a new sesquiterpene lactone from lnula racemosa root. Indian J. Chem. 7: 310; Chem. Abstr, 70:115345 0969). 733. Raffauf, R. F., P. K. C. Huang, P. W. LeQuesne, S. B. Levery and T. F. Brennan. 1975. Eremantholide A, a novel tumor-inhibiting compound from Eremanthus elaeagas Schultz-Bip. (Compositae). J. Amer. Chem. Soc. 97: 6884. 734. Rao, A. S., G. R. Kelkar and S. C. Bhattacharyya. 1960. The structure of costunolide, a new sesquiterpene lactone from Costus-root oil. Tetrahedron 9" 275. 735a. , A. P. Sadgopal and S. C. Bhattacharyya. 1961. Structure of saussurea lactone. Tetrahedron 13" 319. 735b. Raszeja, W. and St. Gill. 1977. Isolation and identification of psilostachyin B from Ambrosia artemisiifolia L. P1. Med. 32:319. 736. Ravindranath, K. R., S. K. Paknikar, G. K. Trivedi and S. C. Bhattacharyya. 1978. Structure and stereochemistry of inunolide, dihydroinunolide and neoalantolactone. Ind. J. Chem. 10B: 27. 737. Renold, W. 1970. The chemistry and infraspecific variation of sesquiterpene lactones in Ambrosia confertiflora DC. (Compositae): A chemosystematic study at the populational level. Ph.D. Thesis, The University of Texas at Austin. 738. - - , H. Yoshioka and T. J. Mabry. 1970. Chihuahuin, a new germacranolide from Ambrosia confertiflora DC. (Compositae). J. Organ. Chem. (USA) 35: 4264. 739. Revazova, L. V., P. V. Chugunov and D. Pakaln. 1970. Deacetylmatricarin from Artemisia incana. Khim. Prir. Soedin. 6: 372; Chem. Abstr. 73:117180g (1970). 740. Rios, T., A. Romo de Vivar and J. Romo. 1967. Stevin, a new pseudoguaianolide isolated from Stevia rhombifolia HBK. Tetrahedron 23: 4265. 741. Robins, D. J. 1978. Senecioneaelchemicat review. Page 831 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 742. Robinson, H. 1978. Studies in the Heliantheae (Asteraceae). XII. Re-establishment of the genus Smallanthus. Phytologia 39: 47. 743. . 1981. A revision of the tribal and subtribal limits of the Heliantheae. Smith. Cont. to Bot. No. 51. 744. , F. Bohlmann and R. M. King. 1980. Chemosystematic notes on the Asteraceae III. Natural subdivisions of the Vernonieae. Phytologia 46: 421. 745. ~ and R. M. King. 1978. Eupatorieae--systematic review. Page 437 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 1. Academic Press, London. 746. Rodriguez, E. 1975. The chemistry and distribution of sesquiterpene lactones and flavonoids in Partheniam (Compositae): Systematic and ecological implications. Ph.D. Thesis, University of Texas at Austin. 747. and T. J. Mabry. 1978. Tageteae---chemical review. Page 786 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 748. - - , G. H. N. Towers and J. C. Mitchell. 1976. Biological activities of sesquiterpene lactones. Phytochemistry 15" 1573. 749. - - , H. Yoshioka and T. J. Mabry. 1972. Sesquiterpene lactone chemistry of Partheniumfruticosum and P. schottii. Rev. Latinoamer. Quim. 2: 184; Chem. Abstr. 76: 153956k (1972). 750. - - , - and . 1971. The sesquiterpene lactone chemistry of the genus Parthenium (Compositae). Phytochemistry 10:1145. 751. Rodriguez-Hahn, L., A. Guzmfin and J. Romo. t968. Constituents of Cacalia decomposita IV. Structure and decomposition Tetrahedron 24: 477.
528
THE BOTANICAL REVIEW
752. ~ and J. Rodrlguez. 1972. Resinone, a new triterpene from Flourensia resinosa. Rev. Latinoamer. Qufm. 4: 148; Chem. Abstr. 79: 15861m (1973). 753. Romanuk, M., V. Heruut and F. Sbrm. 1956. The constitution of dehydrocostuslactone. Collect. Czech. Chem. Comm. 21: 894. 754. Romo, J., P. Joseph-Nathan and F. Diaz. 1964. The constituents of Helenium aromaticum (Hook.) Bailey. The structures of aromatin and aromaticin. Tetrahedron 20: 79. 755. - - , ~ , A. Romo de Vivar and C. AIvarez. 1967. The structure of peruvinin, a pseudoguaianolide isolated from Ambrosia peruviana Willd. Tetrahedron 23: 529. 756. - - , - and G. Siade. 1966. The structure of cumanin, a constituent of Ambrosia cumanensis. Tetrahedron 22: 1499. 757. ~ , T. Rios and L. Quijano. 1968. Ligustrin, a guaianolide isolated from Eupatorium ligustrinum DC. Tetrahedron 24: 6087. 758. - and L. Rodriguez-Halm. 1970. Canambrin, a new sesquiterpene dilactone from Ambrosia canescens. Phytochemistry 9: 1611. 759. ~ , A. Romo de Vivar and E. Dfaz. 1%8. The guaianolides of Ambrosia cumanensis HBK. The structures of cumambrins A and B. Tetrahedron 24: 5625. 760. , - and M. Aguilar. 1969. Natural products from Compositae species. Neohelenalin. Bol. Inst. Qufm. Univ. Nac. Aut6n. M~xico 21: 66. 761. - - , - and P. Joseph-Nathan. 1%6. The structure of mexicanin H. Tetrahedron Lett. 1029. 762. , and . 1967. The constituents of Zaluzania augusta. The structures of zaluzanins A and B. Tetrahedron 23: 29. 763. , - and W. Herz. 1963. Constituents of Helenium species. XIV. The structure of mexicanin E. Tetrahedron 19:2317. 764. , , A. Ortega, E. Dfaz and M. A. Carino. 1971. Las estructuras de la zinarosina y de la dihydrozinarosina, componentes de la Zinnia acerosa (DC.) Gray. Rev. Latinoamer. Quim 2: 24. 765. , - - , R. Trevino, P. Joseph-Nathan and E. Diaz. 1970. Constituents of Artemisia and Chrysanthemum species. The structure of chrysartemins A and B. Phytochemistry 9: 1615. 766. , , A. V~iez and E. Urbina. 1%8. Franserin and confertin: New pseudoguaianolides isolated from Franseria and Ambrosia species. Canad. J. Chem. 146: 1535. 767. and H. Tello. 1972. Estudio de la Artemisia mexicana. Armexina, un nuevo santan61ido cuya lactona posee fusi6n cis. Rev. Latinoamer. Quim. 3: 122; Chem. Abstr. 78: 121339m (1973). 768. Romo de Vivar, A., M. Aguilar, H. Yoshioka, E. Rodriguez, A. Higo, J. A. Mears and T. J. Mabry. 1970. New pseudoguaianolides from Parthenium confertum Gray (Compositae). Tetrahedron 26: 2775. 769. - - , E. Bratoeff, E. Ontiveros, D. C. Lankin and N. S. Bhacca. 1980. Viguilenin, a germacranolide from Viguiera linearis. Phytochemistry 19: 1795. 770. - - , E. A. Bratoeff and T. Rfos. 1966. Structure of hysterin, a new sesquiterpene lactone. J. Organ. Chem. (USA) 31: 673. 771. - - , A. Cabrera, A. Ortega and J. Romo. 1%7. Constituents of Zaluzania species---II. Structures of zaluzanin C and zaluzanin D. Tetrahedron 23: 3903. 772. , G. Delgado, C. Guerrero, J. Resendiz and A. Ortega. 1978. Estudio de viguieras. Estructura de la viguiepinina y correci6n de la viguiestenina. Rev. Latinoamer. Quire. 9: 171. 773. and G. Gonzfilez. 1971. Aislarniento de la lactona dihydrocostus. Preparaci6n de espiroep6xidos de lactonas sesquiterp6nicas. Rev. Latinoamer. Qufm. 2: 142; Chem. Abstr. 76: 46326h (1972). 774. , C. Guerrero and G. Wittgreen. 1970. Los terpenoides de Parthenium incanum HBK. Rev. Latinoamer. Qufm. 1: 39; Chem. Abstr. 74: 88165u (1971). 775. - - , , E. Diaz, E. A. Bratoeff and L. Jim~nez. 1976. The germacranolides of Viguiera buddleiaeformis. Structures of budlein A and B. Phytochemistry 15: 525.
SESQUITERPENE LACTONES---ASTERACEAE
529
776. - - , ,- and A. Ortega. 1970. Structure and stereochemistry of zexbrevin A3 (2H) furanone germacranolide. Tetrahedron 26: 1657. 777. - - , - and G. Wittgreen. 1970. Terpenoids from Parthenium incanum HBK. Rev. Latinoamer. Qulm. 1: 39; Chem. Abstr. 74: 88165u (1971). 778. - and H. Jim~nez. 1%5. Structure of santamarine, a new sesquiterpene lactone. Tetrahedron 21: 1741. 779. and A. Ortega. 1969. Structures ofbahia-I and bahia-II, two new guaianolides. Canad. J. Chem. 47: 2849. 780. - - , A. L. P~rez, H. FIores, L. Rodriguez-Hahn and M. Jim~nez. 1978. Confertdiolide, a novel sesquiterpenoid lactone from Parthenium. Phytochemistry 17: 279. 781. , L. Rodriguez-Hahn, J. Romo, M. V. Lakshmikantharn, R. N. Mirrington, J. Kagan and W. Herz. 1966. Constituents of Helenium species---XIX. Further transformations of helenalin and its congeners. The 1-epihelanalin and 1-epiambrosin seties. Tetrahedron 22: 3279. 782. and J. Romo. 1959. Constituents ofHelenium mexicanum HBK. Chem. Ind. 882. 783. , F. V~quez and C. Zetina. 1977. Sesquiterpene lactones ofArtemisia mexicana var. angustifolia. Rev. Latinoamer. Qulm. 8: 127. 784. Rosenthal, G. A. and E. A. Bell. 1979. Naturally-occurring toxic non-protein amino acids. Page 353 in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their interaction with secondary plant metabolites. Academic Press, New York. 785. Ruban, G., V. Zabei, K. H. Gensch and H. Smalla. 1978. The crystal structure and absolute configuration of lactucin. Acta Crystall. B 34:1163. 786. Riiesch, H. and T. J. Mabry. 1969. The isolation and structure of tetraneurin A, a new pseudoguaianolide from Parthenium alpinum var. tetraneuris (Compositae). Tetrahedron 25: 805. 787. Rustaiyan, A. and L. Nazarians. 1977. Isolation of the sesquiterpene lactone deacetoxymatricarin from Achillea eriophora DC. Fitoterapia 48: 175. 788. , and F. Bohlmann. 1979. Two new germacranolides from Onopordon leptolepis DC. Phytochemistry 18: 883. 789. , and . 1979. Two new elemanolides from Onopordon leptolepis. Phytochemistry 18: 879. 790. - - and - 1980. Germacranolides from Erlangea cordifolia. Phytochemistry 19: 1230. 791. - - and . 1981. Guaianolides from Acroptilon repens. Phytochemistry 21~: 1152. 792. - - - , A. Niknejad, F. Bohlmann and A. Schuster. 1981. A guaianolide from Jurinea carduiformis. Phytochemistry 20: 1154. 793. - and L. Nazarians. 1978. Isolation and structure determination of naturally-occurring sesquiterpene lactone from Compositae. Pazhoohandeh (Tehran) 21: 183; Chem. Abstr. 92: 143262x (1980). 794. Ruzicka, L., P. Pieth, T. Reichstein and L. Ehinann. 1933. Zur Kenntnis der Alantolactone. Synthese des 1,4-dimethyl-6-isopropyl und des 1,5-dimethyl-7-isopropylnaphthalins. Helv. Chim. Acta 16: 268. 795. Rybalko, K. S. 1965. Isolation of mibulactone from Artemisia taurica. Khim. Prir. Soedin. 142; Chem. Abstr. 63: 6786f (1965). 796. - and L. Dolejs. 1961. Structure of tauremisin, a sesquiterpenic lactone of santonine type from Artemisia taurica Willd. Collect. Czech. Chem. Comm. 26: 2909. 797. - - - , O. A. Konovalova, N. D. Orishchenko and A. L. Shreter. 1976. Lactones of some species of the genus Saussurea DC. Rastit. Resur. 12: 387; Chem. Abstr. 85: 174252d (1976). 798. - - , - and E. F. Petrova. 1976. Orientin, a new sesquiterpene lactone from Sigesbeckia orientalis. Khim. Prir. Soedin. 394; Chem. Abstr. 85: 124182k (1976). 799. , P. S. Massagetov and R. I. Evstratova. 1963. Sesquiterpene lactones from some forms of wormwood. Med. Prom., SSSR 17: 41; Chem. Abstr. 59: 11888d (1963).
530
THE BOTANICAL REVIEW
800. Rydberg, P. A. 1927. Carduaceae (Carduales). Liabeae, Neurolaeneae, Senecioneae (Pars.). N. Amer. F1.34: 289. 801. Saitoh, T., T. A. Geissman, T. G. Waddell, W. Herz and S. V. Bhat. 1971. Sesquiterpene lactones of Eriophyllum confertiflorum (DC.) Gray. Rev. Latinoamer. Quim. 2: 69; Chem. Abstr. 75: 129952q 0 9 7 0 . 802. Saleh, A. A., G. A. Cordell and N. R. Farnsworth. 1977. Acanthamolide, a melampolide amide from Acanthospermum glabratum (Compositae). Chem. Commun. 376. 803. Salm6n, M., E. Diaz and A. Ortega. 1973. Chfistinine, a new epoxyguaianolide from Stevia serrata Cav. J. Organ. Chem. (USA) 38: 1759. 804. , A. Ortega and E. Diaz. 1975. Structure and stereochemistry of a new germacrane sesquiterpene lactone. Rev. Latinoamer. Quim. 6: 45; Chem. Abstr. 83: 193528y (1975). 805. Saio, D. P., M. M. Pashehenko, G. P. Pivenko, I. N. Matvienko and A. D. Avdenin. 1973. Medicinal forms from the plant ofXanthium riparium and preliminary data of their experimental study. Farm. Zh. (Kiev) 28: 68; Chem. Abstr. 79: 27209t (1973). 806. Samek, Z., M. Holub, B. Drozdz, G. Jommi, A. Corbeila and P. Gariboldi. 1971. Sesquiterpenic lactones of the Cynara scolymus L. species. Tetrahedron Lett. 4775. 807. ,- - , H. Grabarczyk, B. Drozdz and V. Herout. 1973. Structure of sesquiterpenic lactones from Tanacetum vulgare L. Collect. Czech. Chem. Comm. 38: 1971. 808. - - , , , - and . 1977. The structure of hydroxyisonobilin---a cytostatically active sesquiterpene lactone from the leaves ofAnthemis nobilis L. Collect. Czech. Chem. Comm. 42: 1065. 809. - - , --, V. Herout and F. S~rm. 1969. Revision of the structure of cnicin. Tetrahedron Lett. 2931. 810. ,- - , V. J. Novikov, J. N. Forostjan and D. P. Popa. 1970. The structure of ivoxanthin, a sesquiterpenic lactone from Cyclachaena xanthifolia Fresen. Collect. Czech. Chem. Comm. 35: 3818. 811. - - , - - , U. Ryehlewska, H. Grabarezyk and B. Drozdz. 1979. Germacral(10),4-diene-cis-6,12-olides: A novel stereochemical group of natural sesquiterpene lactones from Ursinia anthemoides (L.) Poiret. Tetrahedron Lett. 2691. 812. - - , J. Harmatha, L. Novotny and F. S6rm. 1969. Terpenes. CCII. Absolute configuration of adenostylone, neoadenostylone and isoadenostylone from Adenostyles alliarieae and of decomposistine from Cacalia decomposisita. Coll. Czech. Chem. Comm. 34: 2792; Chem. Abstr. 71: 91676e (1969). 813. , M. Holub, E. Bloszyk, B. Drozdz and V. Herout. 1975. Relative and absolute configuration of the sesquiterpenic lactone erivanin. Collect. Czech. Chem. Comm. 40: 2676. 814. - - , , B. Drozdz and H. Grabarczyk. 1977. Arctolide, a new sesquiterpenic lactone from Arctotis grandis Thunb. Collect. Czech. Chem. Comm. 42: 2217. 815. ,- - , - - , and B. Hladan. 1977. Xerantholide--a new cytotoxically active sesquiterpene lactone from Xeranthenum cylindraceum. Collect. Czech. Chem. Comm. 42: 2441. 816. - - , --, K. Vokae, B. Drozdz, G. Jommi, P. Gariboldi and A. Corbella. 1972. The structure of grosheimin. Collect. Czech. Chem. Comm. 37:2611. 817. S~nches Parareda, I., J. S~inches Parareda and J. M. Viguera. 1968. Stenophyllolide, a new sesquiterpene lactone. An. Chim. 64: 633; Chem. Abstr. 70: 37933c (1969). 818. Sanchez-Viesca, F. and J. Romo. 1963. Estafiatin, a new sesquiterpene lactone isolated from Artemisia mexicana (Willd.). Tetrahedron 19: 1285. 819. Satoda, I., N. Yoshida and E. Yoshii. 1960. Extraction of lumisantonin from Artemisia plants. Japan 4127; Chem. Abstr. 54: 23213b (1960). 820. - - and - - . 1959. Isolation of lumisantonin from Artemisia kurramensis. J. Pharm. Soc. Japan 79: 267; Chem. Abstr. 53: 11532h (1959). 821. Schenck, G., H. Graf and W. Sehreber. 1939. Bitter substances from the latex of Lactuca virosa. Isolation of lactucin and lactucopicrin. Arch. Pharm. Deutsch. 277: 137.
SESQUITERPENE LACTONE S---ASTERACEAE
531
822, Schneider, G. and K. Thiele. 1974. Properties and determination of the bitter principle cynaropicrin in Cynara. P1. Med. 25: 149; Chem. Abstr. 81: 35534b (1974)3 823. and . 1974. Distribution of the bitter principle cynaropicrin in Cynara. PI. Med. 26: 174; Chem. Abstr. 82: 54198g (1975). 824. Schulz, K. H., B. M. Hausen, L. Wallhoefer and P. Schmidt-Loeflier. 1975. Chrysanthemum allergy. Experimental studies on the causative agents. Arch. Dermatol. Forsch. 251: 235; Chem. Abstr. 82: 110222z (1975). 825. Seaman, F. C. 1976. A comparative phytochemical study of ten Sonoran Desert species of Ambrosia (Asteraceae). Doctoral Thesis. University of Texas at Austin. 826. - and N. H. Fischer. 1978. Longipilin, a new melampotide from Melampodium fongipilum (Heliantheae, Compositae). Phytochemistry 17: 2131. 827. and . 1979, Longipin, a new melampolide from Melampodium longipes (Heliantheae, Compositae), Phytochemistry 18: 1065. 828. and . 1980. Six new melampolides from Tetragonotheca helianthoides. Phytochemistry 19: 583. 829. - and . 1980. New germacrolide- and heliangolide-type sesquiterpene lactones from Melampodium linearilobum. Phytochemistry 19: 849. 830. - - , - and T. F. Stuessy. 1980. Systematic implication of sesquiterpene lactones in the subtribe Melampodiinae. Biochem. System. Ecol. 8: 263, 831. , G. P. Juneau, D. R. diFeo, S. Jungk and N. H. Fischer. 1979. Repandin A, B, C and D, four new germacranolides from Tetragonotheca repanda (Compositae). J. Organ. Chem. (USA) 44: 3400. 832. and T. J. Mabry. 1979. Sesquiterpene lactones of diploid and tetraploid Ambrosia camphorata. Biochem. System. Ecol. 7: 3. 833. - and . 1979. Sesquiterpene lactone patterns in diploid and polyploid Ambrosia dumosa. Biochem. System. Ecol. 7: 7. 834. - and . 1979. Dumosin, a new secoambrosanolide from Ambrosia dumosa (Gray) Payne (Compositae). Rev. Latinoamer. Quim. 10: 85. 835. - and . 1979. Sesquiterpene lactones and species relationships among the shrubby Ambrosia taxa. Biochem. System. Ecol. 7: 105. 836. Segal, R., S. Sokoioff, B. Haran, D. V. Zaitschek and D. Lichtenberg. 1977. New sesquiterpene lactones from Artemisia herba-alba. Phytochemistry 16: 1237. 837. Seigler, D. S., D. H. Wilken and J. J. Jakupeak. 1974. Chemical data related to the tribal affinities of Hulsea and Arnica. Biochem. System. Ecol. 2: 21. 838. Semmler, F. W. and J. Feldstein. 1914. Zur Kenntnis der Bestandteile der .~therischen ()le (Uber das Vorkommen einer S~iure C15H2202 und Zweier Lactone C15H2202 und C~LI2002 im Costuswurzel61). Ber. Dtsch. Chem. Ges. 47: 2433. 839. Serkerov, S. V. 1977. A study of badkhyzinin. Khim. Prir. Soedin. 13: 787; English ed. p. 663. 840. - - - , R. M. Abbasov and A. N. Aleskerova. 1976. Sesquiterpene lactones from Artemisia hanseniana. Khim. Prir. Soedin. 12: 661; Chem. Abstr. 86: 103081g (1977). 841. - and A. N. Aleskerova. 1978. The structure of a sesquiterpene lactone from Artemisiafragrans. Khim. Prir. Soedin. 14: 75; English ed. p. 59. 842. Shatizadeh, F. and N. R. Bhadane. 1972. Sesquiterpene lactones of sagebrush. New guaianolides from Artemisia cana ssp. viscidula. J. Organ. Chem. (USA)37: 3168. 843. and . 1972. Badgerin, a new germacranolide fromArtemisia arbuscula spp. arbuscula. J. Organ. Chem. (USA) 37: 274. 844. - and - - - . 1973. Sesquiterpene lactones of Artemisia arbuscula and A. tridentata. Phytochemistry 12: 857. 845. - - , - and R. G. Kelsey. 1974. Sesquiterpene lactones of sagebrush. Constituents of Artemisia tripartita. Phytochemistry 13: 669. 846. ,- - , M. S. Morris, R. G. Kelsey and S. N. Khanna. 1971. Sesquiterpene lactones of big sagebrush. Phytochemistry 10: 2745. 847. Sham'yanov, I. D., A. Mallabaev, V. Rakhmankulov and G. P. Sidyakin. 1976. Sesquiterpene lactones ofSaussurea elegans. Khim. Prir. Soedin. 12: 819; Chem. Abstr. 86: 136305m (1977).
532
THE BOTANICAL REVIEW
848. - - , - and G. P. Sidyakin. 1978. Structure of the sesquiterpene lactone elegin. Khim. Prir. Soedin. 14: 442; Chem. Abstr. 89: 197740h (1978). 849. Shibata, H. and S. Shimizu. 1978. Three chemovars of Petasites japonicus Maxim. Agric. Biol. Chem. 42: 1427; Chem. Abstr. 89: 193827u (1978). 850. Shirahata, K., T. Kato, Y. Kitahara and N. Abe. 1969. Constituents of genus Petasites. Bakkenolide-A, a sesquiterpene of novel carbon skeleton. Tetrahedron 25:3179. 851. Silva, M. 1967. Constituents of Helenium plantagineum. J. Pharm. Sci. 56: 922; Chem. Abstr. 67: 51040d (1967). 852. Sims, J. J. and K. A. Berryman. 1972. Virginin. A sesquiterpene lactone from Encelia virginensis. Phytochemistry 11: 444. 853. Simonovie, D. M., A. S. Rao and S. C. Bhattacharyya. 1963. The synthesis of tetrahydrosaussurea lactone. Tetrahedron 19" 1061. 854. Snatzke, G. 1968. Stereochemistry of sesquiterpenes and circular dichroism. Mezhdunar, Kongr. Efirnym. Maslam. [Mater.] 4" 316; Chem. Abstr. 78: 124746c (1973). 855. Soucek, M., V. Herout and F. S~rm. 1961. Constitution of parthenolide. Collect. Czech. Chem. Comm. 26: 803. 856. Spitzer, J. C. and C. Steelink. 1967. Isolation of matricin from Artemisia caruthii. J. Pharm. Sci. 56: 650; Chem. Abstr. 67: 22030v (1967). 857. Stagno d'Alcontres, G., M. Gattuso, M. C. Aversa and C. Caristi. 1973. The structure of graveolide, a new sesquiterpene lactone. Gazz. Chim. Ital. 239; Chem. Abstr. 79" 53614r (1973). 858. Stahl, E. and S. N. Datta. 1972. New sesquiterpenoids of the ground ivy (Glechoma bederacea Liebigs). Ann. Chem. 757; Chem. Abstr. 77: 98721y (1972). 859. Stefanovic, M., A. Jokic, A. Behbud and D. Jeremic. 1976. New sesquiterpenic lactones from Ambrosia artemisiifolia L. 8-acetoxy-3-pseudoguaian-6,12-olide and 4hydroxy-3-oxo-pseudoguaian-6,12-olide. Bull. Acad. Serbe. Sci. Arts C1. Sci. Math. Nat. Sci. Nat. 54; Chem. Abstr. 87: 35891q (1977). 860a. St. Pyrek, J. 1977. Isolation of gaillardin from flowers of Inula britannica L. Rocz. Chem. 51: 1277; Chem. Abstr. 87: 197230a (1977). 9 1977. Terpenes of Compositae plants. Part V. Sesquiterpene lactones of 860b. - Lactuca serriola L. The structure of 8-deoxylactucin and the site of esterification of lactupicrin. Rocz. Chem. 51: 2165. 861. Stoutamire, W. 1977. Chromosome races of GaiUardia pulchella (Asteraceae). Brittonia 29: 297. 862. Stuessy, T. F. 1971. Systematic relationships in the white-rayed species of Melampodium (Compositae). Brittonia 23: 177. 863. - - . 1978. Heliantheae--systematic review. Page 621 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 864. Suehy, M. 1962. The structure of balchanin, a sesquiterpenic lactone of santonin type from Artemisia balchanorum. H. Krash. Coll. Czech. Chem. Comm. 27" 2925. 865. - - , L. Dolejs, V. Herout, F. S~rm, G. Snatzke and J. Hinlmelreich. 1969. The constitution of jurineolide, a new germacranolide from Jurinea cyanoides (L.) Rchb. Collect. Czech. Chem. Comm. 34: 229. 866. - - , V. Herout and F. Sbrm. 1960. On hydrogenation products of cynaropicrin, the bitter principle of artichoke (Cynara scolymus L.). Collect. Czech. Chem. Comm. 25: 507. 867. - - , and . 1960. Structure of cynaropicrin. Collect. Czech. Chem. Comm. 25: 2777. 868. - - , - and - - . 1963. Lactones of the germacranolide group and their stereochemical relationship. Collect. Czech. Chem. Comm. 28: 1715. 869. ,- and . 1963. The proof of existence and structure of hydroxycostunolide, a sesquiterpenic lactone of germacrane type in Artemisia balchanorum H. Krash. Collect. Czech. Chem. Comm. 28: 1618. 870. , - and . 1963. On terpenes CLV. Structure of damsine, a sesquiterpenic lactone from Ambrosia maritima L. Collect. Czech. Chem. Comm. 28: 2257.
SESQUITERPENE LACTONES---ASTERACEAE
533
871. - - , and . 1%2. Isolation and structure of scabiolide. Further sesquiterpene lactone with a ten-membered ring in molecule. Collect. Czech. Chem. Comm. 27: 1905. 872. - - , - and - - . 1964. Proof of structure of guaianolides artabsin and arborescin. Collect. Czech. Chem. Comm. 29: 1829. 873. , - and - - . 1%5. The structure of salonitolide, a sesquiterpenic lactone of germacrane type from Centaurea salonitana Vis. Collect. Czech. Chem. Comm. 30: 2863. 874. - - , Z. Samek, V. Herout and F. S~rm. 1%7. The structure of salonitenolide, a sesquiterpenic lactone of germacrane type from Centaurea salonitana Vis. Collect. Czech. Chem. Comm. 32: 2016. 875. , ,- and - - . 1968. The structure and absolute configuration of scabiolide. Collect. Czech. Chem. Comm. 33: 2238. 876. - - , - - , - and--. 1%7. Constitution and configuration of albicolide, a new germacranolide from Jurinea albicaulis. Collect. Czech. Chem. Comm. 32: 3934. 877. - - , - - , - - , R. B. Bates, G. Snatzke and F. Sbrm. 1967. Constitution and configuration of pelenolides, a new group of sesquiterpene lactone germacranolides. Collect. Czech. Chem. Comm. 32: 3917. 878. Sumi, M. 1958. The constitution and stereochemistry of artemisin. J. Amer. Chem. Soc. 80: 4869. 879. Sundararaman, P., R. S. McEwen and W. Herz. 1973. Constituents of Iva species. Stereochemistry of parthemollin and related xanthanolides. Tetrahedron Lett. 3809. 880. Swain, T. and C. A. Williams. 1978. Heliantheae--chemical review. Page 673 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 881. Tada, M., Y. Moriyama, Y. Tanahashi and T. Takahashi. 1974. Furanoeremophilane6/3, 10/3-diol and its derivatives. New furanosesquiterpenes from Ligularia japonica Less. Bull. Chem. Soc. Japan 47: 1999. 882. - - , ,- and . 1971. New furanosesquiterpenes from Ligularia japonica Less. Tetrahedron Lett. 4007. 883. Takahashi, T., H. Eto, T. Ichimura and T. Murae. 1978. Hiyodorilactones A and B, new tumor inhibitory germacradienolides from Eupatorium sachalinense Makino. Chem. Lett. 1345. 884. Takeda, K., H. Tada and H. Minato. 1971. Components of the root of Lindera strychnifolia. Neosericenyl acetate and dehydrolindestrenolide. J. Chem. Soc. C: 1070. 885. Tanaka, N., T. Yazawa, K. Aoyama and T. Murakami. 1976. Chemical studies on the constituents of the Xanthiurn canadense Mill. Chem. Pharm. Bull. 24: 1419; Chem. Abstr. 85: 106647m (1976). 886. Tarasov, V. A., N. D. Abdullaev, S. Z. Kasymov and G. P. Sidyakin. 1976. Chrysartemin B, a sesquiterpene lactone from Handelia trichophylla. Khim. Prir. Soedin. 12: 667; Chem. Abstr. 86: 117598t (1977). 887. - - , - - , and - - . 1976. Hanphyllin, a new germacranolide from Handelia trichophylla. Khim. Prir. Soedin. 263; Chem. Abstr. 85: 143313v (1976). 888. - - , - - , - and - - . 1974. Cumambrin A a sesquiterpene lactone from Handelia trichophylla. Khim. Prir. Soedin. 10: 799; English ed. p. 826; Chem. Abstr. 82: 152142d (1975). 889. , ,- - , - and M. R. Yagudaev. 1976. Structure of handelin, a new diguaianolide from Handelia trichophylla. Khim. Prir. Soedin. 6: 745; Chem. Abstr. 88: 7079h (1978). 890. - - . , S. Z. Kasymov and G. P. Sidyakin. 1976. Sesquiterpene lactones from Handelia trichophylla. Khim. Prir. Soedin. 113; Chem. Abstr. 85: 59573x (1976). 891. - - , and . 1971. The structure of the sesquiterpene lactone arsubin. Khim. Prir. Soedin. 7: 745; English ed. p. 722; Chem. Abstr. 76: 127172g (1972). 892. - - , - and . 1973. Structure and configuration of arsubin. Khim. Prir. Soedin. 9: 676; English ed. p. 649.
534
THE BOTANICAL REVIEW
893. Taylor, R. L., L. Marchand and C. W. Crompton. 1964. Cytological observations on the Artemisia tridentata (Compositae) complex in British Columbia. Canad. J. Genet. Cytol. 6: 42. 894. Tettweiler, K., O. Engel and E. Wedekind. 1932. Uber die Konstitution des Artemisins. Ann. Chem. Deutsch. 492: 105. 895. Thiessen, W. E., H. Hope, N. Zarghami, D. E. Heinz, P. Deuel and E. A. Hahn. 1969. A new sesquiterpene lactone from Centaurea solstitialis L. (yellow star thistle). Chem. Ind. 460. 896. Thoms, H. 1891. Llber einige Chemische Bestandteile der Bliiten von Chrysanthemum cinerariaefolium. Ber. Deutsch. Pharm. Ges. 471; Chem. Zentralbl. 670, Band 2. 897. Tillyaev, K. S., K. K. Khalmatov, I. Primukhamedov and M. A. Talipova. 1973. Chemical characterization of Achillea millefolium growing in Uzbekistan. Rast. Resur. 9: 58; Chem. Abstr. 78: 121284q (1973). 898. Tira, S., C. Galetti and E. Mirande delle Monache. 1969. Nuclear magnetic resonance study of flavonoids. Flavones from Antennaria dioica. Ann. Chem. (Rome) 59: 284; Chem. Abstr. 71: 70882d (1969). 899. Tolstykh, L. P., V. I. Scheichenko, A. I. Ban'kovskii and K. S. Rybalko. 1968. Artemin--a new sesquiterpene lactone from Artemisia taurica. Khim. Prir. Soedin. 4: 384; English ed. p. 326. 900. Tomassini, T. C. B. and B. Gilbert. 1972. a-cyclocostunolide and dihydro-/3-cyclocostunolide from Moquinea velutina. Phytochemistry 11:1177. 901. Tomczyk, H. and W. Kisiel. 1975. Sesquiterpene lactones of Helenium tenuifolium. Pol. J. Pharmacol. Pharm. 27: 101; Chem. Abstr. 83: 4994p (1975). 902. Toribio, F. P. and T. A. Geissman. 1969. Sesquiterpene lactones of Hymenoclea monogyra. Phytochemistry 8:313. 903. - and - - . 1968. Sesquiterpene lactones. New lactone from Hymenoclea salsola T. and G. Phytochemistry 7: 1623. 904. Torrance, S. J., T. A. Geissman and M. R. Chedekel. 1969. Sesquiterpene lactones. The constituents of Eriophyllum confertiflorum. Phytochemistry 8: 2381. 905. and S. C. SteeUnk. 1974. New monoterpenes from Artemisia filifolia Torrey. Structure, synthesis, rearrangements and biosynthesis. J. Organ. Chem. (USA) 39: 1068. 906. Toubiana, R. 1969. Structure de l'hydroxyvernolide, nouvel ester sesquiterpenique isolre du Vernonia colorata Drake. Compt. Rend. Hebd. Srances Acad. Sci. Paris, Series C 268: 82. 907. - and A. Gaudemer. 1967. Structure du vernolide, nouvel ester sesquiterpenique isolre de Vernonia colorata. Tetrahedron Lett. 1333. 908. - - , B. Mompon, Chi Man Ho and M. J. Toubiana. 1975. Isolement du vernodalin et du vernolepin a partir de Vernonia guineensis: Authenticit6 du squelette elemane. Phytochemistry 14: 775. 909. - - , M. J. Toubiana and B. C. Das. 1972. Structure du confertolide, nouveau germacranolide isolre de Vernonia conferta (Composee). Tetrahedron Lett. 207. 910. - - , --, K. Tori and K. Kuriyama. 1974. Absolute configuration and conformation of confertolide, a germacranolide isolated from Vernonia conferta. Tetrahedron Lett. 1753. 911. Tsankova, E., U. J. Kempe, T. Norin and I. Ognyanov. 1981. Apressin, a guaianolide of the endoperoxide type from Achillea depressa. Phytochemistry 20: 1436. 912. Turner, B. L. 1977. Summary of the biology of the Compositae. Page 1105 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. 913. - - . 1981. New species and combinations in Vernonia sections Leiboldia and Lepidonia (Asteraceae), with a revisional conspectus of the groups. Brittonia 33: 401. 914. - and A. M. Powell. 1978. Helenieae--systematic review. Page 699 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London.
SESQUITERPENE LACTONES---ASTERACEAE 915. 916.
917. 918. 919. 920. 921. 922. 923. 924.
925.
926. 927. 928. 929. 930.
931. 932. 933. 934.
935.
936. 937. 938.
535
and M. Whalen. 1975. Taxonomic study ofGaillardiapulchella (Asteraceae--Heliantheae). Wrightia 5: 189. Turin, T. G., K. Persson and W. Gutermann. 1976. Artemisia. Page 178 in T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters and D. A. Webb (eds.). Flora Europaea. Vol. 4. Cambridge University Press, Cambridge. Usynina, R. V., L. I. Olishevets, V. V. Dudka and E. B. Martin. 1976. Lactones from Artemisia compacta. Khim. Prir. Soedin. 6: 809; Chem. Abstr. 86: 103058e (1977). Van Etten, C. H. and H. L. Tookey. 1979. Chemistry and biological effects of glucosinolates. Page 471 in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their interaction with secondary metabolites. Academic Press, New York. Vanhaelen-Fastre, R. and M. Vanhaelen. 1974. Presence of salonitenolide in Cnicus benedictus. PI. Med. 26: 375; Chem. Abstr. 82: 108835h (1975). Viehnewski, W. and B. Gilbert. 1972. Schistosomicidal sesquiterpene lactone from Eremanthus elaeagnus. Phytochemistry 11: 2563. --., W. Herz and N. Kumar. 1979. A lactone analogue of germacrone. J. Organ. Chem. (USA) 44: 2575. - - , J. N. C. Lopes, D. D. S. Filho and W. Herz. 1976. 15-deoxygoyazensolide, a new heliangolide from Vanillosmopsis erythropappa. Phytochemistry 15: 1775. , , - and . 1976. Goyazensolide, a schistosomicidal heliangolide from Eremanthus goyazensis. Phytochemistry 15: 191. , I. K. Shuhama, R. C. Rosanske and W. Herz. 1976. Granilin and ivasperin from Ambrosia polystachya, a3C-NMR spectra of hydroxylated isoalantones. Phytochemistry 15: 1531. ---, F. Welbaneida, L. Machado, J. A. Rabi, R. Murari and W. Herz. 1977. Eregoyazin and eregoyazidin, two new guaianolides from Eremanthus goyazensis. J. Organ. Chem. (USA) 42: 3910. Viehoever, A. and R. G. Capen. 1%3. New sources of santonin. J. Amer. Chem. Soc. 45: 1941. Vogelzang, M. E., N. M. J. Vermeulen, D. J. J. Potgieter and H. F. Strauss. 1978. Ivalin in Geigeria aspera. Phytochemistry 17: 2030. Waddeil, T. G. and T. A. Geissman. 1%9. Paucin, a sesquiterpene lactone glucoside. Tetrahedron Lett. 515. and - - - . 1969. Sesquiterpene lactones. Constituents of Baileya species. Phytochemistry 8: 2371. Wagner, H. 1978. Cynareae---chemical review. Page 1017 in V. H. Heywood, J. B. Harborne and B. L. Turner (eds.). The biology and chemistry of the Compositae. Vol. 2. Academic Press, London. , M. A. lyengar and W. Herz. 1972. Flavone C-glycosides in Helenium species. Phytochemistry 11: 446. Watklns, S. F., J. D. Korp, I. Bernal, D. L. Perry, N. S. Bhaeca and N. H. Fischer. 1978. Molecular structure of two derivatives of the germacranolide sesquiterpene lactone melnerin. J. Chem. Soc. Perkin Trans. l h 599. White, E. H. and R. E. K. Winter. 1%3. Natural products from Achillea lanulosa. Tetrahedron Lett. 137. Wiehmann, G. 1958. Biology of santonin in plants. I. The distribution of santonin and related compounds in the plant kingdom. Pharmazie Beih. Erganzungsband 13: 481. Willulm, G. and H. D. Herrmann. 1976. Studies on the constituents of Arnica species. Two sesquiterpene lactones from the flowers of Arnica longifolia. Arch. Pharm. 309: 333; Chem. Abstr. 85: 17073d (1976). - and . 1979. Untersuchungen fiber die Inhaltsstoffe von Arnica-arten. P1. Med. 37: 325. Winters, T. E., T. A. Geissman and D. Satire. 1969. Sesquiterpene lactones of Xanthium species. Xanthanol and isoxanthanol, and correlation of xanthinin with ivalbin. J. Organ. Chem. (USA) 34: 153. Witzel, D. A., G. W. Ivie and J. W. Doilahite. 1976. Mammalian toxicity of helenalin,
536
939. 940.
941. 942. 943.
944.
945. 946. 947. 948. 949.
950. 951. 952. 953. 954. 955. 956. 957. 958. 959. 960. 961.
THE BOTANICAL REVIEW the toxic principle of Helenium microcephalum DC. (smallhead sneezeweed). Am. J. Vet. Res. 37" 859; Chem. Abstr. 85: 117697d (1976). Yabuta, G., J. S. OIsen and T. J. Mabry. 1978. Sesquiterpene lactones from the genus Zaluzania (Compositae: Heliantheae). Rev. Latinoamer. Quim. 9: 83. Yamakawa, K., K. Nishitani and K. Azusawa. 1977. Chemical transformation of a-santonin into balchanin, colartin, and arbusculin A, B, C and E. Heterocycles 8: 103. Yanagita, M., S. Inayama and T. Kawamata. 1970. The stereostructures of pulchellidine and pulcheUin. Tetrahedron Lett. 13 I. - - , , - and T. Okana. 1969. Pulchellidine, a novel sesquiterpene alkaloid isolated from Gaillardia pulchella Foug. Tetrahedron Lett. 2073. Yoshioka, H., A. Higo, T. J. Mabry, W. Herz and G. D. Anderson. 1971. Apachin, a new sesquiterpene lactone and other xanthanolides from Iva ambrosiaefolia. Phytochemistry 10: 401. - and T. J. Mabry. 1969. The structure and chemistry of isabelin. A new germacranolide dilactone from Ambrosia psilostachya DC. (Compositae). Tetrahedron 25: 4767. , --, N. Dennis and W. Herz. 1970. Structure and stereochemistry of pulchellin B, C, E and F. J. Organ. Chem. (USA) 35: 627. - and H. E. Miller. 1968. Isabelin, a germacranolide dilactone from Ambrosia psilostachya. Chem. Commun. 1679. , - and B. N. Timmerman. 1973. Sesquiterpene lactones: Chemistry, NMR and plant distribution. University of Tokyo Press, Tokyo. - W. Renold, N. H. Fischer, A. Higo and T. J. Mabry. 1970. Sesquiterpene lactones from Ambrosia confertiflora (Compositae). Phytochemistry 9: 823. - - , and T. J. Mabry. 1970. The structure of salonitenolide and the preferential C-8 relactonization of germacranolides containing C-6 and C-8 lactonizable t~-oxygen groups. Chem. Commun. 148. - - , E. Rodriguez and T. J. Mabry. 1970. Tetraneurin-E and -F. New C-15 oxygenated pseudoguaianolides from Parthenium (Compositae). J. Organ. Chem. (USA) 35: 2888. - - , H. Riiesch, E. Rodrfguez, A. I-ligo, T. J. Mabry, J. G. Galzada Alan and X. A. Domfnguez. 1970. Tetraneurin-B, -C and -D, new C14-oxygenated pseudoguaianolides from Parthenium (Compositae). Tetrahedron 26: 2167. Yoshitake, A. and T. A. Geissman. 1969. Sesquiterpene lactones of Baileya species. Pleniradin and radiatin. Phytochemistry 8: 1753. Yunusov, A. I., N. D. Abdullaev, S. Z. Kasymov and G. P. Sidyakin. 1976. Tanachin, a new sesquiterpene lactone from Tanacetum pseudoachillea. Khim. Prir. Soedin. 263; Chem. Abstr. 85: 177643t (1976). , - - , --, - and M. R. Yagudaev. 1976. Structure of tanachin. Khim. Prir. Soedin. 462; Chem. Abstr. 85: 177660w (1976). - - , S. Z. Kasymov and G. P. Sidyakin. 1976. Tanapsin from Tanacetum pseudoachillea. Khim. Prir. Soedin. 261; Chem. Abstr. 85: 117642s (1976). - - , - and . 1973. Lactones of Tanacetum pseudoachillea. Khim. Prir. Soedin. 9: 276; English ed. p. 267; Chem. Abstr. 78: 159898f (1973). ,- and - - . 1975. Tanacin, a new germacranolide from Tanacetum pseudoachillea. Khim. Prir. Soedin. 11: 262; Chem. Abstr. 83: 59097d (1975). - - , G. P. Sidyakin and D. Kurbanov. 1978. Cumambrins A and B from Tanacetum santolina. Khim. Prir. Soedin. 5: 656; Chem. Abstr. 90: 51410z (1979). Yusupov, M. I., S. Z. Kasymov, N. D. Abdullaev, G. P. Sidyakin and M. R. Yagudaev. 1977. A new lactone, isoridentin, from Achillea biebersteinii. Khim. Prir. Soedin. 13: 800; English ed. p. 674. - - , A. Mallabaev and G. P. Sidyakin. 1976. Lactones of Achillea biebersteinii. Khim. Prir. Soedin. 396; Chem. Abstr. 85: 106654m (1976). Zakharov, P. I., P. B. Terent'ev, O. A. Konovalova and K. S. Rybalko. 1977. Mass spectrometric study of the sesquiterpene lactone grossmizin and its derivatives. Khim. Prir. Soedin. 3: 344; Chem. Abstr. 87: 184707m (1977).
SESQUITERPENE LACTONES--ASTERACEAE
537
962. Zakirov, S. K., S. Z. Kasymov, N. D. Abdullaev and G. P. Sidyakin. 1975. The structure of maximolide. Khim. Prir. Soedin. 11: 261; English ed. p. 273. 963. - - , ~ , V. Rakhmankulov and G. P. Sidyakin. 1976. Lactones o f Artemisia ashurbajevii. Khim. Prir. Soedin. 397; Chem. Abstr. 85: 106655n (1976). 964. - - , and G. P. Sidyakin. 1976. Sesquiterpene lactones from Jurinea maxima. Khim, Prir. Soedin. 11: 656; English ed. p. 690; Chem. Abstr. 84: 71430k (1976). 965. and . 1974. Lactones of Jurinea maxima. Khim. Prir. Soedin. 10: 255; Chem. Abstr. 81: 74890j (1974). 966. Zarghami, N. and D. E. Heinz. 1969. Solstitialin acetate. 1969. A sesquiterpene lactone from Centaurea solstitialis L. (yellow star thistle). Chem. Ind. 1556. 967. Zdero, C., F. Bohlmann, H. Robinson and R. M. King. 1980. Neue Furanoeremophilanes aus Gynoxys dielsiana. Phytochemistry 19: 975. 968. ,- - , - and . 1981. Germacranolides from Proteopsis argentea. Phytochemistry 20: 739. 969. Bohlmann, F. and A. Suwita. 1977. Neue furanoeremophilane aus Ligularia vorobierii Worosh. Chem. Ber. 110: 1759.
538
THE BOTANICAL REVIEW
APPENDIXA Asteraceae members from which sesquiterpene lactones and furanosesquiterpenes have been reported. TRIBES: lo Vernonieae; 2. Eupatorieae; 3. Astereae; 4. Inuleae; 5. Heliantheae; 6. Anthemideae; 7- Senecioneae; 8. Calenduleae; 9. Arctoteae; lO. Cynareae; II. Mutisieae; 12. Lactuceae; 13. Liabeae; 14. Arniceae. SUBTRIBES: I. Melampodiinae; 2. Zinninae; 3. Ecliptinae; 4. Verbesininae; 5. Helianthinae; 6. Gaillardiinae; 7- Coreopsidinae; 8. Fitchiinae; 9. Bahiinae; lO. Madiinae; II. Galinsoginae; 12. Neurolaeninae; 13. Engelmanniinae; 14. Ambrosiinae; 15. Milleriinae; 16. Carduinae; 17. Centaureinae; 18. Carlineae; 19. Gochnatiinae and Mutisiinae; 20. Naussauviinae. Numbers following generic names indicate the TRIBE and the SUBTRIBE. ABROTANELLA (6) A. nigrena F. Mue11.
A. petiolaris (Moc.& Sesse A. P. ex A. P. DC.) King et Robins.
ACANTHOSPERMUM (5; l)
A. australe (L.) Kuntze A. glabratum (DC.) Wild. A. hispidum DC. ACHILLEA (6) A. a s p l e n i f o l i a Vent. A. a t r a t a L. A. b i e b e r s t e e n i i Afanasiev A. c a r t i l a g i n e a Ledeb. A. c o l l i n a J. Becker (= A. millefolium) A. depressa L. A. eriophora DC. A. lanulosa Nutt. A. micrantha Willd. A. m i l l e f o l i u m L. A. m i l l e f o l i u m var. a s p l e n i f o I i u m Farwell A. s a n t o l i n a L. A. s i b i r i c a Ledeb. A. s t r i c t a Schleich ex Koch ACROPTILON (lO;
16)
A. repens DC. ADENOSTYLES (7)
A, alliarieae Kern AGERATINA (2)
A. glabrata (HBK) King et Robins.
AGRIANTHUS (2) A. pungens M a t t f .
AJANIA (lO, 17) A. fastigiata (C. Winkler) Poljak. A. muricata DC. AMBROSIA (5; 14) A. acanthicarpa Hook. A. ambrosioldes (Cav.) Payne A. arborescens Mill. A. artemisiifolia L. A. elatior Bess. var. artemisifolia Farwell A. camphorata (Greene) Payne A. canescens (Gray) Payne A. carduacea (Greene) Payne A. "castanens is" A. chamissonis (Less.) Greene A. cheiranthifolia A. Gray A. chenopodifolia (Benth.) Payne A. confert~flora DC. A. cordifolia (Gray) Payne A. cumanensis H. B. K. A. deltoidea (Torr.) Payne A. divaricata (Brandegee) Payne A. dumosa (Gray) Payne A. eriocentra (Gray) Payne A. Grayi (Nels.) Shinners
SESQUITERPENE LACTONES---ASTERACEAE
A. A. A. A. A. A. A. A. A. A. A.
hispida Pursh ilicifolia (Gray) Payne "Jamaicensis" linearis (Rydb.) Payne lippii DC. magdalenae (Brandegee) Payne maritima L. peruviana Willd. polystachya DC. psilostachya DC. psilostachya var. coronopifolia Farw. A. pumila (Nutt.) Gray A. tenuifolia Spreng. A. trifida L. A. tomentosa Nutt. ANAPHALIS (4) A. morrisonicola Hayata A. tomentosus Wendl. ANTENNARIA (4) A. dioica Gaertn. ANTHEMIS (6) A. aciphylla Boiss var. discoidea Boiss A. cretica L. ssp. Montana (Brique) Grierson A. cupaniana Tod. ex Nym. A. nobilis L.
ARCTIUM (lO; 16) A. A. A. A.
lappa L. minus Bernh. nemorosum Lej. et Court tomentosum Mill.
ARCTOTIS (9) A. aspera L. A. grandis Thunb. A. repens Jacq. A. revoluta Jacq. ARNICA (14) A. foliosa Nutt. A. longifolia Eat. A. montana L. ARTEMISIA (6) A. absinthium L. A. amoena Poljak. A. anethifolia Web.
A. A. A. A.
539
annua L. arborescens L. arbuscula Nutt. arbuscula Nutt. ssp. arbuscula A. arbuscula Nutt. ssp. thermopola Beetle A. argentea L'Her. A. ashurbajevii Winkl. A. austriaca Jacq. A. balchanorum H. Krash. A. bigelovii Gray A. brevifolia Wall A. caerulescens L. A. californica Less. A. camphorata Vill. A. cana Pursh. A. r Pursh. ssp. cana A. cana Pursh. ssp. viscidula (0sterhout) Beetle A. canariensis Less. A. carruthii Wood A. caucasica Willd. A. cina Berg. ex. Poljak. A. cina var. mogoltavica Poljak. A. compacta Fisch. ex DC. A. douglasiana Bess. A. dracunculoides Pursh A. feddei Lev. et Van. A. filifolia Torrey A. finita Kitigawa A. fragrans Willd. A. fragrans Willd. var. erivanlca Bess. A. franserioides Greene A. granatensis Bolss. A. halophyla Krasch. A. hanseniana Grossh. A. herba-alba Asso. A. hybrida Lag. A. incana Keller A. jacutica Drobov A. judaica L. A. juncea Kar. et Kir. A. juncea var. macrosciada Poljak. A. kemrudica Krasch. A. klotzchiana Besser A. kurramensis Quazilbash A. lagocephala Fisch. ex Bess. A. lanata Willd. A. lercheana Web. et Stechm. A. lercheana var. dahurica Web. et Stechm.
540
THE BOTANICAL REVIEW
A. leucoides Schrenk A. longiloba (Osterh.) A. A. Beetle A. ludoviciana Nutt. A. ludoviciana Nutt. ssp. albula (Woot) Keck A. ludoviciana var. ludoviciana Nutt. A. ludoviciana Nutt. ssp. mexicana (Willd.) Keck A. macrocephala Jacquem. ex Bess. A. maritima L. A. maritima L. var. boschniakiana Bess. A. maritima ssp. gallica Willd. A. maritima var. monogyra A. maritima var. salina Koch A. mexicana Willd. ex Spreng. A. mexicana var. angustifolia A. meyeriana Bess. var. divaricata Grossh. A. mogoltavica P. Poljak. A. monogyna Waldst. et Kit A. neomexicana Greene ex Rydb. A. nova Nels. A. princeps Pamp. A. ramosa C. Sm. ex Link A. rothrockii Gray A. rutifolia Steph. ex Spreng. A. salina Willd. A. santolina Schrenck A. schrenkiana Ldb. Fl. Ross. A. serotina Bunge A. sibirica Maxim A. sieversiana Ehr. ex Willd. A. spicata Wulf ex Jacq. A. spicigera C. Koch A. stellariana Besser A. szowitziana (Bess.) Grossh. A. sublessingiana (B. A. Keller) Krasch. ex Poljakov A. sublessingiana var. gorjaevii Poljak. A. taurica Willd. A. tenuisecta Nevski A. tenuisecta var. glaucina Poljak. A. tenuisecta var. karataviensls Poljak A. terrae-albae Krasch. ssp. massagetovii Krasch. A. terrae-albae Krasch. ssp. Kurdaica Poljak.
A. tilesii Ledeb. A. transiliensis P. Poljak. A. transiliensis var~ boamensis Poljak. A. tridentata Nutt. A. tridentata Nutt. ssp. Parishii (Gray) Hall et Gray A. tridentata Nutt. ssp. tridenta A. tridentata Nutt. var. vaseyana (Rydb.) Beetle A. tridentata Nutt. ssp. Wyomingensis Beetle et Young A. tridentata Nutt. ssp. vaseyana (Rydb.) Beetle f. spiciformis (Osterhout) Beetle A. tripartita Rydb. A. tripartita ssp. tripartita A. tripartita Gray ssp. rupicola Beetle A. turanica Krasch. var. diffusa Krasch. ex Poljak. A. vachanica Krasch. ex Poljak. A. verlotorum LaMotte A. vulgaris L, A. wrightii Gray ASTER (3) A. tataricus L. A. umbellatus Mill. ATHANASIA (6) A. coronopifolia Harv. A. oregeana (DC.) Harv. A. montana Wood ATRACTYLODES (lO; 18) A. lancea DC. AUSTROBRICKELLIA (2) A, patens (D. Don.) K. et R. BAHIA (5; 9) B. absinthifolia Benth. var. dealbata (Gray) Gray B. oppositifolia (Nutt.) DC. B, pringlei Green B. woodhousei (Gray) Gray BAILEYA (5; 6) B. multiradiata B. pauciradiata B. pleniradiata
Harv. et Gray Harv. et Gray Harv. et Gray
SESQUITERPENE LACTONES--ASTERACEAE
BALDUINA (5; 6) B. a n g u s t i f o I i a B. L. Robinson B. u n i f l o r a Nutt. BALTIMORA (5; 3) B. recta L. BEDFORDIA (7) B. s a I i c i n a DC. BERLANDIERA (5; 13) B. subacaulis (Nutt.) Nutt. BLAINVILLEA (5; 3) B. dichotoma (Murr.) Cass. CACALIA (7) C. ampullacea Greenm. C. d e l p h i n i i f o I i a Sieb. et Zucc. C. hastata L. ssp. o r i e n t a I i s C. hastata L. var. Tanakae CACOSMIA (13) C. rugosa H. B. K. CALEA (5; ll) C. axillaris DC. C. morii H. Robins. C. pilosa Baker C. pinnatifida Banks C. urticifol ia (Muller) DC. C. zacatechi chi Schlecht. CALENDULA (8) C. o f f i c i n a I i s Linn. CALOCEPHALUS (4) C. Brownii F. Muell. CARPESIUM (4) C. abrotanoides L. C. eximum C. Winkler CENTAUREA (IO; 17) C. americana Nutt. C. aspera Linn. C. c a l c l t r a p a L. C. canariensis Willd. C. canariensis var. subspinnata C. dlffusa Lam. C, hyrcanica Bornm. C. hyssopifolia Vahl. C. iberica Trev.
C C C C C C C C C C C C C C C C
541
janeri Graells kurdica Reichardt linifolia Linn. mellitensis L. micranthus. I. F. Gmel. nigra Linn. ovina Pal. pullata L. repens L. salonitana Vis. scabiola (L.) Presl. seridis Linn. solstitialis L. stoebe (L.) Sch. et Thel. sventenii webbiana Sch. Bip.
CENTRATHERUM (1) C. punctatum Cass. CHAENACTIS (i4) C. carphoclinia Gray C. douglasii (Hook.) H. & A. CHARTOLEPIS (IO) C. intermedia Boiss. CHRESTA (1) C. sphaerocephala DC. CHROMOLAENA (2) C. glaberima (DC.) K. et R. CHRYSANTHEMUM (6) C. a c h i l l e a e L. C. Balsamita L. C. c i n e r a r i a e f o l i u m Vis. C. coccineum Willd. C. ferulaceum (Webb. ex Sch. Bip.) Sund. C. indicum L. C. morifoIium Ramat C. Parthenium Bernh. C. p o t e r i i f o l i u m (Ledeb.) Borhm. C. punctatum Pers. CICHORIUM (]2) C. intybus L. CLIBADIUM (5; 15) C. surinamense CNICOTHAMNUS (ii, 19) C. lorentzii Grlsteb.
542
THE BOTANICAL REVIEW
CNICUS (10, 17) C. benedictus L. CONOCLINIOPSIS (2) C. prasiifolia (DC.) K. et R.
COSMOS (5; 7) C. hybridus Hort. C. sulphurus Cav.
E. E. E. E. E.
elatus Bertol hirtiflorus DC. mollis H. B. K. scaber L. tomentosus
ENCELIA (5; 5) E. farinosa Gray E. c a l i f o r n i c a Nutt. E. virginensis A. Nelson
COTULA (6) C. coronopifolia Linn. C. hispida (DC.)Harv.
ENHYDRA (5; 3)
CRITONIA (2) C. m o r i f o l i a ( M i l l . ) King et Rob. C. sexangularis ( K l a t t . ) King et Rob.
EREMANTHUS (I) E. bicolor (Sch. Bip.) Baker E. elaeagus Sch. Bip. E. goyazensis Sch. Bip. E. incanus Less.
CROPTILON (3) C. d i v a r i c a t u m vat. h i r t e l l u m Shinners
ERIOPHYLLUM (14) E. confertiflorum Gray E. lanatum Forbes E. stachaedifolium Lag. var. artemisiaefolium (Less.) Macbr.
CYNARA (10; 16) C. chardunculus L. C. scolymus L. DECHACHAETA (2) D. t h i e l e a n a ( K l a t t . ex Th. Dur. et Pitt.) R. M. King et H. Robinson DICOMA (11; 19) D. anomala Sond. D. Zeyheri Sond. DIMEROSTEMMA (5; 4) D. asperatum Blake D. lipploides (Baker) Blake DINOSERIS (11; 19) D. s a l i c i f o l i a Griseb. DIPLOPHYLLUM (11, 19) D. albicans (L.) Dum. DISYNAPHIA (2) D. halimifolia (DC.) K. et R. DUGESIA (5, 13) D. mexicana Gray ELEPHANTOPUS (1) E. carolinianus Willd.
E. fluctuans Lour.
ERLANGEA (I) E. c o r d i f o I i a S. Moore E. inyangana (N. E. Br.) B. L. Bart E. remifolia Willd. et Pope EUPATORIUM (2) E. anomalumNash E. cannabinum L. E. cuneifolium Wi11d. E. deltoideum Jacq. E. formosanum Hay E. glaberrimum DC. E. hyssopifoIium L. E. lancifolium (T. & G.) Small E. ligustrinum (DC.) Kinget Rob. E. mikanioides Chapm. E. Mohril Greene E. recurvans Small E. rhomboideumH. B. K. E. rotundifolium L. E. rotundifolium spp. ovatum (Bigel) Montg. et Fairbr. E. sachalinense Mak. E. semiserratum DC. E. serotinum Michx. E. s e s s i l i f o I i u m L.
SESQUITERPENE LACTONES--ASTERACEAE
EURYOPS (7) E. a b r o t a n i f o l i u s DC. E. acraeus M. D. Hend. E. annae P h i l ] . E. brevilobus Compt. E. brevipapposus M. D. Hend. E. chrysanthemoides E. e m p e t r i f o l i u s D. C. E. evansii Schltr. E. floribundus N. E, Br, E. g a l p i n i i Bol. E. hebecarpus (DC.) B. Nord E. imbricatus (Thunb.) DC. E. lateriflorus (L. F.) DC. E. linearis Harv. E. linifolius (L.) DC. E. microphyllus (Compt.) B. Nord E. multifidus (Thunb.) DC. E. oligoglossus DC. E. oligoglossus DCo ssp. oligogiossus E. othonnoides (DC.) B. Nord E. pectinatus (L.) Cass. E. peduncu]atus N. E. Br. E. rehmanii Compt. E. rupestris Sch]tr. var. rupestris E. spathaceus DC. E. subcarnosus D. C. ssp. vulgaris B. Nord E. sulcatus (Thunb.) Harv. E. tenuisissimus Less. E. thunbergii B. Nord E. t r a n s v a a l e n s i s K l a t t . ssp. setilobus (N. E. Br.) B. Nord E. trilobus Harv. E. Tysonii Phillips E. virgineus (L. F.) DC. E. wagneri Compt. FARFUGIUM (7) F. japonicum Kitamura
GAILLARDIA (5; 61 G. amblyodon J. Gay G. a r i s t a t a Pursh G. arizonica Gray G. f a s t i g i a t a Greene G. g r a n d i f l o r a Hort. (garden hybrid; G. spathu]ata x aristata) G. megapotamica (Spreng) Bakke G. mexicana Gray G. multiceps Greene G. parryi Greene G. pinnatifida Torr. G. pulche]la Foug. G. spathulata Gray G. suavis (Gray and Engelm.) Britton and Rusby
GAZANIA (9) G. Krebsiana Less. GEIGERIA (4) G. aspera Harv. G. a f r i c a n a G r i e s s e l . G, f i l i f o l i a Mattf. GOCHNATIA ( I ] ; 9) G. discoidea (Less.) Cabrera G. rusbyana Cabrera
GRAZIELIA (2) G. dimorpholepis Baker G. intermedia (DC.) K. et R. GROSSHEIMIA (lO) G. macrocephala (Muss. Pusch.) D. Sosn. et Takht. G. ossica (C. Koch) Sosn. et Takht. GYNOXYS (7) G. p s i l o p h y l l a K l a t t G. sancti A n t o n i i Hieron
FERREYANTHUS (13) F. verbascifolius (HBK) R. et B.
FITCHIA (5; 8) F. speciosa Cheesmann FLOURENSIA (5; 5) F. cernua DC. F. resinosa Blake
543
GUEVARIA (2) G. s o d i r o i (Hieron, in Sod.) K. et R. HANDELIA (6) H. t r i c h o p h y l ] a HARTWRIGHTIA (2) H. f l o r i d a n a Gray
544
THE BOTANICAL REVIEW
HELENIUM (5; 6) H. amarum (Raf.) H. Rock H. alternifoIium (Spreng.) Cabrera H. aromaticum (Hook) L. H. Bailey H9 amphibolum A. Gray H. arizonicum Blake H9 autumnale L. H. badium (Gray) Greene H, bigelovii Gray H. blombuistii Rock H. brevifolium (Nutt.) Wood. H9 campestre Small H. elegans DC. var. elegans H. flexuosum Raf. H9 laciniatum A. Gray H. linifolium Rydb. H, mexicanum H.B.K. H, microcephalum DC. H, montanum Nutt. H, ooclinium Gray H. pinnatifidum (Nutt.) Rydb. H. plantagineum (DC.) Macbride H. puberulum DC. H. quadridentatum Labill. H. scorzoneraefolia (DC.) Gray H. tenuifolium Nutt. H. thurberi Gray H. vernale Walt. H. virginicum Blake HELIANTHUS (5; 5) H annuus L. H ciliaris DC. H decapetalus L. H grosseserratus Martens H lehmannii Hieron H maximiliani Schrader H nieveus ssp. canescens (A. Gray) Heiser H. pumilus L. H. tuberosus L.
HELICHRYSUM (4) H. splendidum DC. HETEROCOMA (I) H. albida DC. HOMOGYNE (7) H. alpina
(L.) Cass.
HYMENOCLEA (5; 14) H. monogyra Torr. et Gray
H. salsola T. & G, H. platyspina Seaman
HYMENOXYS (5; 6) H. acaulis (Pursh) K. F. Parker H. anthemoides (Juss.) Cass. H. grandiflora (Torr. et Gray) K. F. Parker H. greenei (Ckll.) Rydb. H. insignis (Gray ex Wars.) Cockll. H. linearifolia Hook. H. odorata DC9 H. Richardsonnii (Hook.) Cockll. H. Rusbyi (Gray) Cockll. H9 subintegra Cockll. HYPOCHOERIS (12) H. radicata L9 H. setosus Wedd. INULA (4) . A s c h e r s o n i a n a Fanka v a r . Aschersoniana 9 brittannica L. 9 brittannica var. chinensis (Rupr.) Regel 9 c r i t h m o i d e s L. I. e u p a t o r i o i d e s DC. 9 germanica L. g r a n d i s Schrenk g r a v e o l u s Desf. h e l e n i u m L. j a p o n i c a Thunb. magnifica Lipsky o c u l u s Schrank racemosa Hook. f . r o y l e a n a DC. s a l i c i n a L. viscosa Ait.
ISOCARPHA (5; 11) I. a r t r i p l i c i f o l i a I. o p p o s i t i f o l i a
( L . ) R. Br. ( L . ) R. Br.
IVA (5; 14) I. acerosa (Nutt.) Jackson I. ambrosiaefolia Gray I. ambrosiaefolia Gray ssp. ambrosiaefolia Jackson 9 an9ustifolia Nutt. 9 asperifolia Less. 9 axillaris Pursch. 9 axillaris Pursh, ssp. robustior (Hook.) Bassett 9 cheiranthifolia H.B.K.
SESQUITERPENE LACTONES--ASTERACEAE
. dealbata Gray . frutescens L. ssp. frutescens hayesiana A. Gray imbricata Walt microcephala Nutt. nevadensis M. E. Jones texensis Jackson xanthifolia Nutt. JURINEA (IO; 16) J. alata Cass. J. albicaulis Bge. var. kilaea (Aznar.) Stoj. et Stef. J. carduiformis Boiss J. cyanoides (L.) Rchb. J. maxima C. Winkl. KINGIANTHUS (5) K. paradoxus H. Robins. LACTUCA (12) L. canadensis L. L. Serriola Linn. L. virosa Habl. LASTHENIA (14) L. chrysostoma Fisch. et Mey. L. coronaria A. Gray LIABUM (13) L. bourgeani Hieron. L. floribundum Less. L. cf. stipulatum Rusby LIATRIS (2) L. Chapmanii T. et G. L. cylindracea Michx. L. elegans (Walt.) Michx. L. g r a c i l i s Pursh. L. g r a m i n i f o l i a Pursh. L. p r o v i n c i a l i s Godfrey L. punctata Hook. L. pycnostachya Michx. L. scabra (Greene) Schum. L. secunda (Ell.) Small L. spicata Willd. L. squarrosa (L.) Michx. L, tenuifolia Nutt. LIDBECKIA (6) L. pectinata Berg.
545
LIGULARIA (7) L. c a l t h a e f o l i a (Maxim.) Maxim. L. f a u r i e i (Fr.) Koidz L. f i s c h e r i i Turez L. Hodgsonii Hook. L. intermedia Nakai L. macrophylla DC. L. Schmidtii Makino L. trichocephala Pojark. L. vorobierii Worosh. LOPHOLAENA (7) L. dregeana DC. L. platyphylla Benth. LOURTEIGIA (2) L. b a l l o t a e f o l i a
(H.B.K.)
K. et R.
LYCHNOPHORA ( I ) L. b l a n c h e t t i i (Sch. B i p . ) H. Robinson L. h a k e a e f o l i a Mart. L. passerina Gardn. L. p h y l i c a e f o l i a DC. L. s a l i c i f o l i a Mart. L. u n i f l o r a Sch. Bip. MACOWANIA (4) M. corymbosa M. D. Henderson MATRICARIA (6) M. chamomilla L. M. globifera (Thunb.) Druce M. nigellaefolia DCo M. suffructicosa (L.) Druce M. suffructicosa var. leptoloba M. zuurbergensis Oliv. MATTFELDANTHUS (1) M. nobilis (H. Robins.) H. Robins. MELAMPODIUM (5; l) M. americanum L. M. argophyllum S. F. Blake M. cinereum DC. M. cinereum DC. var. cinereum M. diffusum Cass. M. divaricatum (Rich. in Pers.) DC. M. heterophyllum Lag. M. leucanthum Torr. et Gray M. linearilobum DC. M. longipes (A. Gray) Robins. M. perfoliatum (Carv.) A. Gray
546
THE BOTANICAL REVIEW
MIKANIA (2) M. b a t a t i f o l i a DC. M. cordata (Burm. f . ) B. L. Robinson M. c o r d i f o l i a W i l l d . M. micrantha H.B.K. M. monagasensis B a d i l l o M. scandens (L.) W i l l d . MONACTIS (5; 4) M. holwayae (Blake) H. Rob. MONTANOA (5; 4) M. frutescens (Mairet) Hemsl. M. hibiscifolia (Benth.) Sch. Bip. M. pteropoda Blake M. tomentosa Cerv. MOQUINIA (ll; 19) M. velutina Bong. MUNNOZIA (13) M. gigantea Rusby M. maronii (Andre) H. Robins. NEUROLAENA (5; 12) N. lobata R. Br. ONOPORDON (IO; 16) O. acanthium L. O. leptolepsis DC. O. tauricum Willd. OSMITOPSIS (6) O. asteriscoides (L.) Cass. OTHONNIA (7) O. a m l e x i c a u l i s Thunb. O. arborescens L. 0. barkerae Compton O. bulbosa L. O. capensis (L.) Bailey O. coronopifolia L. O. dentata L. O. euphorbioides Hutchinson O. filicaulis L. O. intermedia Compton O. lobata Schltr. O. macrophylla DC. O. natalensis Sch. Bip. O. quercifolia DC. O. sp. nov. O. triplinervia DC.
OXYLOBUS (2) O. oaxacanus Blake PARTHENICE (5; 14) P. mollis Gray PARTHENIUM (5; 14) P. alpinum Torr. et Gray P. alpinum (Nutt.) Torr. et Gray var. tetraneuris (Barneby) Rollins P. argentatum Gray P. bipinnatifidum (Ortega) Rollins P. confertum Gray P. confertum Gray var. lyratum (Gray) Rollins P. confertum var. microcephalum Rollins P. fruticosum L. P. fruticosum Less. var. trilobatum Rollins P. hispidum Raf. P. hysteropherus L. P. incanum H.B.K. P. integrifolium L. P. ligulatum (Jones) Barneby P. lozanianum Bartlett P. schottii Greenm. P. tomentosum L. P. tomentosum var. stramonium (Greene) Rollins PENTZIA (6) P. elegans DC. P. suffructicosa (L.) Hutch. ex Merxm. PETASITES (7) P. albus Gaertn. P. f r a g r a n s P r e s l . P. hybridus Gaertn. Mey. et Scherb. P. japonicus Maxim. P. japonicus ssp. giganteus Kitam. P. officinalis Moench PERTYA (II; 19) P. robusta (Maxim.) Beauv. PEUCEPHYLLUM (14) P. schottii Gray PEYROUSIA (6) P. umbellata (L. f.) Fourc.
SESQUITERPENE LACTONES--ASTERACEAE
PICRADENIOPSIS (5; 9) P. o p p o s i t i f o l i a (Nutt.) Rydb. P. woodhousei (Gray) Rydb.
RUDBECKIA (5; 5) R. m o l l i s E l l . R. l a c i n i a t a L.
PICRIDIUM (12) P. cristalIinum Sch. Bip. P. ligulatum Vent.
SAUSSUREA (10; 16) S. amara S. elegans S. e l o n g a t a S. lappa C l a r k e S, n e o p u l c h e l ] a L i p s c h . S. p u t c h e l l a F i s c h . ex DC.
PIPTOCARPHA (1) P
chontalensis Pall.
PIPTOLEPIS (1) P ericoides
(Less.)
Sch. Bip.
PLATYCARPHA (9) P g l o m e r a t a L.
PLUCHEA (4) P dioscorides DC. PODACHAENiUM (5; 4) P eminens (Lag.) Sch. Bip. PODANTHUS (5; 4) P ovatifolius Lag. P. mitiqui Lindl. POLYMNIA (5; l) P. canadensis L. P. laevigata Beadle PROTEOPSIS ( I ) P. a r g e n t e a Mart. ex Zucc.
PSACALIUM (7) P. decompositum (A. Gray) Robinson and Brettell PSEUDOHANDELIA (6) P. umbellifera (Boiss,) Tsvelev PSILOSTROPHE (5; 6) P. cooper] (Gray) Greene P. villosa Rydb. PTILOSTEMON (lO; 16) P. afer (Jacq,) Greuter P. diacanthum (Lab]l].) Greuter PULICARIA (4) P. crispa Sch. Bip. ROLANDRA (1) R. fruticosa (L.) Kuntze
547
SCHKUHRIA (5; 9) S. pinnata (Lam.) Kuntze S. virgata (LaLave et Lex) DC. SENECIO (7) S. a e g y p t i u s L i n n . S. a f f i n i s DC. S. a l a t u s Wall S. a l b a n e n s i s DC. v a r . d o r o n i c o f l o r u s (DC.) Harv. S. a r a c h n o i d e s Scop. S. aureus L. S. brachychaetus DC. S b r e v i d e n t a t u s M. D. Henderson S chrysanthemoides D C . S chrysocoma Meerburgh S c i n e r a r i a DC. S colaminus C u a t r . S r Ait. S depeanus Hems]. S d o r i a L, S Doronicum W i l l k . S digitalifollus DC. S elegans L. S erraticus Bertol. S fiuviatilis Wallr. S f u c h s i i C. C. Gme]. S gathlambanus H i i l i a r d S g]astifolius L. S g r a n d i f l o r u s Berg S g r e y ] Hook f . S h a l i m i f o l i u s L. S Harveianus MacOwan S. h i r s u t i l o b u s H i ] ] i a r d
S. hypochoerideus DC. (no~-radiate form) S. hypochoerideus DC. (radiate form) S. inaequidens DC. S. inornatus DC. S. jacobaea L. S. jaquinianus Reichb. S. lanceus Ait. S. lautus Soland,
548
THE BOTANICAL REVIEW
S. S, S. S. S. S. S. S. S. S. S. S. S. S, S. S. S. S. S. S. S. S. S. S. S. S. S.
longilinguae Cuatr. lyraticus Reichb. lyratifolius Reichb. macrophyllus M. B. macrospermus DC. macrotis Baker maritimus L~ medley-woodii Hutch. nemorensis var. Bulgaricus othonnae Bieb. paludaffinis Hilliard paludosus L. pampse L. panduriformis Hilliard petasites DC. polyanthemoides Sch. Bip. praecox DC. pterophorus DC. pyramidatus DC. rathenensis rigidus L. ruthenensis Maz. et Timb. salignus DC. saniensis sandersonii Harv. scytophylIus serratifolius (Meyer et (Walp.) Cuatr. S. sauveo|ens Eli. Sketch. S. sylvaticus L. S. terretifolius DC. S. tournefortii S. umbellatus L. S. umbrosus Waldst. et Kit. S. vellereus Franch. S. vitalis N. E. Br.
SONCHUS (]2) S. h i e r r e n s i s ( P i t ) Svent. S. h l e r r e n s i s var. Benehoavensis Svent. S. j a c q u i n i DC. S. pinnatus A i t . S. r a d i c a t u s A i t . S, t u b e r i f e r Svent. STEIRACTINIA (5; 4) S. m o l l i s Blake STEVIA (2) S. b o l i v i e n s i s Sch. Bip. S, r h o m b i f o l i a H.B.K. S. s e r r a t a Cav. S. s e t i f e r a Rusby ex B. L. Robinson STIZOLOPHUS (2) S. coronopifolius
(Lam.) Cass.
STOKESIA ( ] ) S. ] a e v i s ( H i l l . )
Greene
TANACETUM (6) T, b a l s a m i t a L. T. b a l s a m i t a T. c h i | i o p h y l l u m Sch. Bip. T. m y r i o p h y | l u m W i l | d . T. p s e u d o a c h i l l e a C. Winkl. T. S a n t o l i n a C. Winkl. T. t a n a c e t i o i d e s (DC.) T z v e ] . T. v u l g a r e L. TARAXACUM ( ] 2 ) T. o f f i c i n a l e
Wigg.
SIGESBECKIA (5; I) S~ orientalis L.
TELEKIA (4) T. speciosa Baumg,
SILPHIUM (5; 13) S. perfoliatum L.
TESSARIA (4) T. absinthioides DC.
SIMSIA (5; 5) S. Dombeyana DC.
TETRADYMIA (7) T. glabrata A. Gray
SMALLANTHUS (5; l) S. fruticosus (Benth.) H. Robins. S. maculatus (Cav.) H. Robins. S. reparlus (H.B.K.) H. Robins. S. sigesbeckia (DC.) H. Robins. S. uvedalius (L.) Mackenzie
TETRAGONOTHECA (5; l) T. helianthoides Linn. T. ludoviciana A. Gray T. repanda Small T. texana A. Gray et Engelm. TITHONIA (5; 5) T. diversifolia (Hemsl.) Gray T. fruticosa Canby et J. N. Rose
SESQUITERPENE LACTONES--ASTERACEAE
T. T. T. T.
tagetiflora Desf. rotundifolia (Mill.) Blake speciosa Hook. ex Griseb. tubaeformis Cass.
TRICHOGONIA (2) T. T. T. T.
prancii Baroso salviaefolia Gardn. scottmorii K. et R. villosa (DC.) Sch. Bip. ex Baker
TRIXIS ( l l ; 20) T. paradoxa Cass. TUSSILAG0 (7) T. P e t a s i t e s Linn. UROSPERMUM (12) U. dalechampii
F. W. Schmidt
URSINIA (6) U. alpina N. E. Br. U. anthemoides Gaertn. U. anethoides N. E. Br. U. crithmifolia Spreng. VANILLOSMOPSIS ( | ) V. brasiliensis (Gardn.) Sch. Bip. V. erythropappa Sch. Bip. V. pohlii Baker
VENEGASIA (5; 7) V. c a r p e s i o i d e s DC. VENIDIUM (9) V. decurens Less. V. h i r s u t u m Harv.
VERBESINA (5; 4) V. coahuilensis ex S. Wats.
A. Gray
VERNONIA (1) V. a c a u l i s ( W a l t . ) G]eason V. a]amani DC. V. a ] t i s s i m a N u t t . V. a m y g a l i n a D e l i l e V. a n g u s t i f o l i a Michx. v a r . m o h r i i S. B. Jones V. a n g u s t i f o l i a Michx. v a r . s c a b e r r i m a ( N u t t . ) A. Gray V. a n i s o c h a e t o i d e s Sonder.
549
V.anthelmintica Willd. V. arkansana DC. V. baldwinii Torr. V. baldwinii Torr. var. baldwinii V. baldwinii Torr. var. interior (Small) Schubert V. blodgettii Small V. brevifolia Less. V. canescens H.B.K. V. capreaefolia Gleason V. chinensis Less. V. colorata Drake V. conferta Benth. V. cordata H.B.K. V. cotoneaster V. divaricata SW. V. duncanii S. B. Jones V. fasciculata Michx. V. fasciculata Michx. var. fasciculata V. flaccidifolia Small V. flexuosa Sims V. fruticosa (L.) SW. V. gigantea (Walt.) Trll. ex Brann et Colv. V. glauca (L.) Willd. V. greggii Gray V. guineensis Benth. V. hirsuta (DC.) Sch. Bip. vat. flanaganii Phill. V. hirsuta (DC.) Sch. Bip. var. hirsuta V. hymenolepis A. Rich V. incana Less. V. lanuginosa Gardn. V. larsenii King V. leiocarpa DC. V. lettermannii Engelm. ex Gray V. liatroides DC. V. lilacina Mart V. lindheimera Gray et Engelm. V. lindheimera Gray et Engelm. var. leucophylla Larsen V. lindheimera Gray et Englem. var. lindheimeri V. marginata Oliv. et Hiern V. marginata (Torr. Raf. var. marginata V. marginata (Torr.) Raf. vat. tenuifolia (Small) Shinners V. missurica Rafin V. natalensis Sch. Bip. V. novebaracensis (L.) Michx. V. nudiflora Less.
550
THE BOTANICAL REVIEW
V. V. V. V. V.
obtusa (Gl.) Blake oligocephala (DC.) Walp. ovalifolia T. & G. pectoralis Baker pectoralis Baker var. delphinensis H. Humbert V. polyanthes Less. V salicifolia (DC.) Sch. Bip. V saltensis Hieron V scorpioides (Lam.) Pers. V steetzii Sch, Bip. V sublutea S. Elliott V texana (A. Gray) Small V trifloculosa H.B.K. V uniflora Sch, Bip. VIGUIERA (5; 5) V. angustifolia Glaziou V. buddleiaeformis (DC.) Benth. et Hook. V. linearis Sch. Bip. ex Hemsl V. pinnatilobata Blake V. procumbens (Pets.) Blake V. sphaerocephala (DC.) Hemsl. V. stenoloba Blake WEDELIA (5; 3) W. grandiflora Benth. W. trilobata (L.) Hitchc. WUNDERLICHIA (ll; 19) W. mirabilis Riedel ex Baker XANTHIUM (5; 14) X brasilicum Veil. X canadense Mill~ X chasei Fern. X chinense Mill. X commune Britton X inaequilaterum DC. X indicum Koen ex. Roxb. X occidentale Bert X orientale L. X pennsylvanicum Wallr. X riparium Lasche X sibiricum Patrin ex. Widder X spinosum Linn. X. strumarium L. XERANTHEMUM X. cylindraceum Sibth et Smith ZALUZANIA (5; 12) Z. angusta (Lag.) Sch. Bip.
Z. globosa var. globosa (Ort.) Sch. Bip. Z. montagnaefolia Sch. Bip, Z. Pringlei Greenm. Z. robinsonli Sharp Z. triloba (Ort.) Pers. ZEXMENIA (5; 4) Z. brevifolia A. Gray Z. gnaphalioides A, Gray Z. phyllocephala (Hemsl.) Standley et Steyerm. ZINNIA (5; 2) Z. acerosa (DC.) A. Gray Z. Haageana Regel Z. multiflora L. Z. pauciflora L. Z. peruviana (L.) L.
551
SESQUITERPENE LACTONES--ASTERACEAE X. Appendix B Sesquiterpene lactones isolated from the Asteraceae.
Compound name Absinthin Acanthamolide Acanthospermal A Acanthospermal A, 9a-hydroxyisobutyryl-desacetyl Acanthospermal B Acanthospermolide, 9a-acetoxy-14,15-dihydroxy-8/3-(2methylbutyryloxy)-14-oxo Acanthospermolide, 15-acetoxy-8fl-[isovaleryloxy]-14oxo-4,5-cis Acanthospermolide, 9a-acetoxy-8fl-(2-methylbutyryloxy)-14-oxoAcanthospermolide, 15-acetoxy-8~-[2-methylbutyryloxy]- 14-oxo-4,5-cis Acanthospermolide-14-acid methylester, 8fl-angeloyloxy-9a-acetoxy Acanthospermolide-14-acid methylester, 8fl-epoxyangeloyloxy-9a-acetoxy Acanthospermolide-14-acid methylester, 9a-hydroxy8/3-angeloyloxy Acanthospermolide, 8fl-angeloyloxy-9a-acetoxy-14-oxo Acanthospermolide, 8fl-angeloyloxy-9fl-hydroxy-14-oxo Acanthospermolide, 8fl-angeloyloxy-14-oxo Acanthospermolide, 8/3~9a-diangeloyloxy- 15-hydroxy14-oxo-4,5-cis Acanthospermolide, 8/3,9a-diangeloyloxy-14-oic acid Acanthospermolide, 9a, 15-dihydroxy-8/3-(2-methylbutyryloxy)-14-oxo Acanthospermolide, 15-hydroxy-8~-(isovaleryloxy)-14oxo Acanthospermolide, 15-hydroxy-8fl-[isovaleryloxy]-14oxo-4,5-cis Acanthospermolide, 15-hydroxy-8~-(2-methylbutyryloxy)- 14-oxo Acanthospermolide, 15-hydroxy-8fl-[2-methylbutyryloxy]- 14-oxo-4,5-cis Acanthospermolide, 9a-linoloyloxy-8~-(2-methylbutyryloxy)-15-hydroxy-14-oxo
Structure number (ref. Fig. 32)
Page number
964 238 236 236.5 237,241 245
416 377 377
403
377
239
378
377 377
402 249.6
380
249.7
381
233
381
249.5 542 541 552
380 366 366 377
543 244
377 377
243
377
401
377
242
377
400
377
248
378
552
THE BOTANICALREVIEW
Appendix B Continued.
Compound name Acanthospermolide, 9a-linolenoyloxy-8/3-(2-methylbutyryloxy)-15-hydroxy- 14-oxo Acanthospermolide, 8/3-methacryloyloxy-9aacetoxy, 14-oxo Acanthospermolide, 8/3-[2-methylbutyryloxy]-9/3-hydroxy- 14-oxo Acanthospermolide, 8/3-[2-methylbutyryloxy]-9/3-hydroxy- 14-oxo-4,5-cis Acanthospermolide, 8/3-[2-methylbutyryloxy]-9/3-hydroxy- 14-oxo- 1/3,10/3-epoxy-1,10-dihydro Acanthospermolide, 9a-palmitoyloxy-8/3-(2-methylbutyryloxy)-15-hydroxy- 14-oxo Acanthospermolide, 9a-stearoyloxy-8/3-(2-methylbutyryloxy)-15-hydroxy- 14-oxo Achillicin Achillin (=Santolin) Achillin, acetoxy Achillin, 1,10-epoxy Achillin, 1,10-epoxy-8a-hydroxy Achillin, hydroxy (=Santolinol) Aciphylla acid Acroptilin (=Chlorohyssopifolin C) Acrorepiolide Agriantholide Agriantholide, 3a,4a-epoxy Aguerin A Aguerin B Akihalin Alantolactone Alantolactone, dihydro Alantolactone, la,8a-dihydroxy Alantolactone, l/3-hydroxy Alantolactone, 2a-hydroxy Alantolactone, la-hydroxy-8~-[(2-hydroxymethyl)acryloxy] Alantolactone, 8a-hydroxy-la-[(2-hydroxymethyl)acryloxy]
Structure number (ref. Fig. 32)
Page number
249
378
249.8
380
240
385
399
385
264
385
246
378
247
378
959 912 915 934 935 913 1021.5 829 868 8O8 819 847 848 1017 705 723 597 706 707 599
415 414 414 420 420 420 415 484 484 362 362 482 487 395 373 374 388 374 375 388
598
388
SESQUITERPENE LACTONES--ASTERACEAE
553
Appendix B Continued.
Compound name Alantolactone, Alantolactone, Alantolactone, Alantolactone, Alantolactone,
iso iso, dihydro iso, 3fl-hydroxy-2a-senecioyloxy neo 2-oxo
Structure number (ref. Fig. 32)
Page number
686 725 696 724 709
367 374 373
Alatolide
53
485
Albicolide Albicolide, 8a-[2-methylbutyryloxy]
56 79
485 489
Alkhanin Altamisin
669 1154
418 407
Alternilin Amarilin Amberboin Amberboin, iso Amblyodin Amblyodiol Ambrosic acid
1176 1172 958 957 1164 1187 1149.5
394 394 486 485 393 393 405
Ambrosin Ambrosin, 2,3-H-2,3-epoxy Ambrosin, neo (=Coronopilin, anhydro) Ambrosin, tetrahydro Ambrosiol Anabsinthin Angustibalin (=Helenalin acetate) Anthemoidin (=Vermeerin B, dihydro) Apachin Apoludin Apoludin acetate (=Apoludin, 2-acetyl)
1111 1116 1117 1130 1120 965 1197 1249 1023 1118 1119
405 407 407 408 407 416 393 409 407 407
Apressin Arabsin
800 659
414 416
Arbiglovin Arborescin (=Sieversinin)
885 932
417 416
Arbusculin Arbusculin Arbusculin Arbusculin
613 614 582 585
416
A A, 4-epi B B, 8fl-angeloyloxy-l/3-hydroxy
374
369 391
554
THE BOTANICAL REVIEW
Appendix B Continued.
Compound name
Structure number (ref. Fig. 32)
Page number
586
391
Arbusculin C
591
416
Arbusculin D
665
416
Arbusculin E
619
416
Arbusculin, lfl-hydroxy
611
430
Archangolide Arctiopicrin
921
Arctolide Argentiolide A
988 437
484 483 416
Argentiolide B Arglanine
438
416
609
418
Armexifolin
589
422
Armexin diacetate
615
421
1207
494
1211 1209 1208
494 494 494 494 394 376 376 395 423
Arbusculin B, 8fl-[2,3-epoxy-2-methylbutyryloxy]-lflhydroxy
Aruicolide A (=Helenalin acetate, dihydro) Arnicolide B Arnicolide C Arnicolide D Arnifolin Aromaticin Aromaticin, 2,3-dihydro Aromaticin, 6a-hydroxy-2,3-dihydro Aromatin Arsanin
49
1190 1161
1159 1160 1194
Arsantin
658 657
Arsubin
65O
419
Artabin
138
416
Artabsin
961
416
Arteannuin B
1323
416
Artecalin Artecanin Artefransin Arteglasin A Arteglasin B Artemexifolin
616
414 415 419 418 418 422
Artemin
893 871 770 794 610 651
423
417
SESQUITERPENE LACTONES--ASTERACEAE
555
Appendix B Continued.
Compound name Artemisiifolin Artemisiifolin, C-15 acetyl Artemisiifolin- 15-O-acetyl-sarracinate Artemisiifolin, cis, cis, 15-desoxy Artemisiifolin diacetate
Structure number (ref. Fig. 32) 169 170 172 412 171
Page number 405 488 490 373 354 490 490
Artemisiifolin-6-O-[4-hydroxytiglate]
175
Artemisiifolin- 15-O- [4-hydroxytiglate] Artemisiifolin- 15-O-sarracinate
174 173
Artemisiifolin-6-O-tiglate, 14-hydroxy-cis, cis Artemisin
411 645
Artemorin Artenovin (=Cumambrin B)
413 875
418 421 422
Artesin Artevasin Artilesin B Arturin (=Eudesmane-4(15), 1l(13)-diene-6,12-olide, lfl-
638 417 922 602
423 417 424 387
467.4 726 687 729 735 732 730 736 737 756 754 758 757 755
402 419 374 371 371 371 371 371 371 427 427 427 427 427
759 760 887 889
427 426 426
hydroxy-8fl-angeloyloxy = Reynosin, 8/3-angeloyloxy) Arucanolide Ashurbin Asperilin Asterolide Asterolide, 8,9-dehydro Asterolide, 8-epi Asterolide, 8~-hydroxy Asterolide A, iso Asterolide B, iso Athamontanolide 8a-acetoxy Athamontanolide 8a-acetoxy-4-anhydro Athamontanolide 8a-acetoxy-4-epi Athamontanolide 8a-isobutyryloxy Athamontanolide 8a-isobutyryioxy-4-anhydro Athamontanolide 8a-isobutyryloxy-4-epi Athamontanolide 8a- [2-methylbutyryloxy]-4-epi Athanadregeolide Athanadregeolide, 10-epi
490 490
556
THE BOTANICALREVIEW
Appendix B Continued.
Compound name Athanadregeolide, 8a-hydroxy Atripliciolide, 9/3-[4'-acetoxyangeloyloxy] Atripliciolide-angelate Atripliciolide-angelate, 11,13-dihydro- l 1,13-epoxy Atripliciolide-8-O-angelate,9a, 11-dihydroxy-13-chloro- 11,13-dihydro Atripliciolide-8-O-angelate,9a-hydroxy Atripliciolide-8-O-angelate,9/3-hydroxy Atripliciolide-8-O-angelate, 1l-hydroxy-13-chloro11,13-dihydro Atripliciolide-8-O-angelate,9a-hydroxy-I 1,13-dihydro- 11,13-epoxy Atripliciolide-8-O-angelate,5-myrtenyl-4,5-11,13-tetrahydro- 11,13-epoxy Atripliciolide isobutyrate Atripliciolide isovalerate Atripliciolide-8-O-methacrylate,9/3-acetoxy Atripliciolide-8-O-methacrylate,9/3-acetoxy-11/3,13epoxy Atripliciolide methacrylate, 11,13-dihydro- 11,13-epoxy Atripliciolide-8-O-methacrylate,9a-hydroxy Atripliciolide-8-O-methacrylate,9/3-hydroxy Atripliciolide-8-O-methacrylate,9a-hydroxy-I 1,13-dihydro- 11,13-epoxy Atripliciolide-8-O-methacrylate,9O-hydroxy- 11/3,13epoxy Atripliciolide, 9/3-methacryloyloxy Atripliciolide-(2-methylacrylate) Atripliciolide-8-O-[2-methylacrylate],9a-angeloyloxy15-hydroxy Atripliciolide-8-O-[2-methylacrylate], 9a-hydroxy Atripliciolide-[2-methylacrylate], 15-hydroxy Atripliciolide-8-O-[2-methylacrylate], 9a-isovaleryloxy15-hydroxy Atripliciolide-8-O-[2-methylacrylate], 9a-senecioyloxy15-hydroxy
Structure number (ref. Fig. 32)
Page number
888 551 346 380 378
426 371 362 401 402
347 548 376
401 371 401
383
401
379
401
333 336 549 546
403 403 370 370
382 349 547 385
401 401 370 402
545
370
550 335 342
370 401 402
339 343 340
402 403 402
341
402
SESQUITERPENE LACTONES---ASTERACEAE
557
Appendix B Continued.
Compound name Atripliciolide-2-methylbutyrate Atripliciolide figlate Atripliciolide tiglate, 11,13-dihydro-11,13-epoxy Atripliciolide tiglate, 15-hydroxy Atripliciolide-8-O-tiglate, 9a-hydroxy Atripliciolide-8-O-tiglate, 1l-hydroxy- 13-chloro- 11,13dihydro Atripliciolide-8-O-tiglate, 9a-hydroxy-11,13-dihydroI l, 13-epoxy Autumnolide Axivalin Ayanin Badgerin Badkhysidin Badkhysin Badkhysin, iso Badkhysinin (eudesmanolide) Badkhysinin (pseudoguaianolide) Bahia I Bahia II Bahifolin Baileyin Baileyin (revised) Baileyolin Bakkenolide A Bakkenolide A, 2-hydroxy, angeloyl Bakkenolide A, 3a-hydroxy, tigloyl Bakkenolide B Bakkenolide C Bakkenolide D Bakkenolide E Balchanin (=Santamarin) Balchanin, 8/3-angeioyloxy Balchanin, 8~-[2,3-epoxy-2-methylbutyryloxy] Balchanolide
Structure number (ref. Fig. 32)
Page number
350 337 381 344 348 377
389 401 401 403 401 401
384
401
1229 970 768
395 410 415
447 653 923 984 605 1236 809 810 811 188 273 1188 1292 1299 1300 1294 1293 1295 1296 568 570 571 141
416
399 399 399 392 392 392 448 439 440 439 439 439 439 417 391 391 417
558
THE BOTANICAL REVIEW
Appendix B Continued.
Compound name Balchanolide acetate Balchanolide, hydroxy Balchanolide, 3a-hydroxy-iso Balchanolide, 3a-hydroxy-iso Balchanolide, iso Balduilin Balsamin Bedfordia acid, 4-hydroxy Bedfordia acid, 4-oxo Bedfordia symmetric dimeric lactone Bedfordia unsymmetric dimeric lactone Berlandin Bigelovin Bigelovin, desacetyl-iso Bipinnatin Blainvilleolide, 1lfl, 13-dihydro-8B-hydroxy Blainvilleolide, 8fl-hydroxy Blainvilleolide, 8fl- [2-methylbutyryloxy] Blainvilleolide, 8/3-senecioyloxy Bourbon-I l(13)-en-6,12-olide, 8a-(2methylacryloyloxy)-lfl,5flH-4a,7ot-epoxy Bourbon-ll(13)-en-6,12-olide, 8a-tiglinoyloxy-lfl, 5fill4a,7a-epoxy Brevilin A Brittanin Budlein A Budlein A-8fl-isovalerate, desangelyl Budlein B Burrodin Calaxin Caleine A Caleine B Caleurticolide-acetate Caleurticolide-acetate, 2a,3ct-epoxy-2,3-dihydro Caleurticolide-angelate, 2a,3t~-epoxy-2,3-dihydro Caleurticolide-angelate
Structure number (ref. Fig. 32)
Page number
142 143 188.5 540 190 I ! 98 514 1050 1051 1290 1291 772 1168 1171 1106 136 97 96 95 1303
415 417 390
1302
356
1217 1227 338 345 85 1139
394 373 392 389 392 407
334 452 453 456 466 462 460
389 403 403 402 403 402 402
417 393 431 431 431 431 405 394 397 411 385 385 385 384 356
SESQUITERPENE LACTONES---ASTERACEAE
559
Appendix B Continued.
Compound name Caleurticolide, 8/~-angeloyl-9a-acetyl-de-[2methylacryloyl] Caleurticolide-isobutyrate Caleurticolide-isobutyrate, 2a,3a-epoxy-2,3-dibydro Caleurticolide-isovalerate, 2a,3a-epoxy-2,3-dihydro Caleurticolide-[2-methylacrylate] Caleurticolide-[2-methylacrylate], 2a,3a-epoxy-2,3dihydro Caleurticolide, 8fl-tigloyl-9a-acetyle-de[2-methacryloyl] Callitfin Calocephalin Canambrin Canin Carabrone Carabrone, 4H Carmelin Carolenalin Carolenalone Carolenin Carpesia lactone Carpesin Carpesiolin Centaurepensin (=Chlorohyssopifolin A) Centratherin Chamissanthin (=Tulipinolide, epi) Chamissarin Chamissellin Chamissonin Chamissonin diacetate Chamissonin, 4,5-epoxy Chamissonin, l(10)-epoxy Chapliatrin Chapliatrin, acetyl Chapliatrin, iso Chiapin A Chiapin B
Structure number (ref. Fig. 32)
Page number
458
403
461 465 463 459 464
402 403 403 402 403
457 1096 1016 1157 894 1049 1045 140 1007 1006 1008 1314 719 1134 862 392 10 165 166 164 1645 187 181 502 504 503 1104 1102
403 372 406 417 372 375 370 395 395 395 372 372 372 488 351 406 406 4O6 372 405
367 367 367 411 411
THE BOTANICALREVIEW
560
Appendix B Continued.
Compound name Chihuahuin Chlorochrymorin Chlorohyssopifolin Chlorohyssopifolin Chlorohyssopifolin Chlorohyssopifolin
Structure number (ref. Fig. 32)
Page number
A B C D
29 966 862 859 829 861
406 428 484 487 487 487
Chlorohyssopifolin E Chrestanolide Christinin
860 518 929
487 351 370
Christinin II Christinin III Chromolaenide Chromolaenide, 3-epi,20-acetoxy Chromolaenide, 3-epi-20-hydroxy (=Eupaformosanin) Chromolaenide, 20-hydroxy (=Eucannabinolide) Chromolaenide, 20-tiglinoyloxy Chromolaenide, 4,5-trans, 3-desacetyl, 20-tiglinoyloxy Chrysanin Chrysanolide Chrysartemin A Chrysartemin B Chrysostomalide acetate Chrysostomalide isobutyrate Ciliarin Cinerenin Cnicin Colartin
930 931 286 284 283 288 287 30 677 426 776 895 985 986 332 274 52 656
367 403 403 404 404 404 427 427 420 428 495 495 389 378 487 418
Collumellarin Conchosin A
1320 1110
411
Conchosin B Confertdiolide Confertiflorin Confertiflorin, desacetyl Confertin (=Cumanin, anhydro) Confertin, 4a-H Confertiphyllide
1114 1158 1109 1108 1137 1144 1061
411 411 405 405 406 374 494
SESQUITERPENE LACTONES--ASTERACEAE
561
Appendix B Continued.
Compound name Confertolide Conoprasiolide Conoprasiolide-5'-O-acetate Cordifene Cordifene, 4,15-epoxy-4,15-dihydro Cordilin Coronopilin Coronopilin, anhydro (=Ambrosin, neo) Coronopilin, dihydro Costic acid Costic acid, iso Costunolide Costunolide, 3/3-acetoxy-8/3-angeloyloxy- 1,10-dihydrola, 10ft-epoxy Costunolide, 8/3-[5-acetyloxytiglinoyloxy] Costunolide, 8/3-angeloyloxy-9/3-hydroxy Costunolide, 4,5-cis, 14-acetoxy-8/3-(4-hydroxytiglinoyloxy) Costunolide, cis, cis-3a-acetoxy-8fl-hydroxy Costunolide, cis, cis, 2a-hydroxy Costunolide, 4,5-cis, 14-hydroxy-8/3-(4-hydroxytiglinoyloxy) Costunolide diepoxide Costunolide, 11,13-dihydro Costunolide, 2a,8/3-dihydroxy Costunolide, 3/3, 9a-dihydroxy, 8/3-angeloyloxy Costunolide, 3/3,9/3-dihydroxy,8/3-[2-methyibutyryloxy] Costunolide, 8/3-[3,4-epoxyisovaleryloxy]-9fl-hydroxy Costunolide, 8a-[2',3'-epoxy-2'-methylbutyryloxy]-9flacetoxy Costunolide, 8-hydroxy Costunolide, 9/3-hydroxy (= Haageanolide) Costunolide, 14-hydroxy Costunolide, 7a-hydroxy-8a-acetoxy-9fl-[2',3'-epoxy2'-methylbntyryloxy]
Structure number (ref. Fig. 32)
Page number
517 352 351 429 430 1151 1099 1117 1132.5 628 629 1 108
357 362 362 352 352 407 405 411 409 406 389 350 402
15 536 301
366 366 363
398 397 300
415 428 363
129 137 530.5 34 33
486 390 365 364
538 40
366 387
6 35 84 22
417 374 414 387
562
THE BOTANICALREVIEW
Appendix B Continued.
Compound name Costunolide, 2a-hydroxy-8/3-angeloyloxy Costunolide, 7a-hydroxy-8a-[2',3'-epoxy-2'methylbutyryloxy]-9/3-acetoxy Costunolide, 2a-hydroxy-8fl-[5-hydroxyangeloyloxy] Costunolide, 2a-hydroxy-8fl-[4-hydroxymethacryloyloxy] Costunolide, 14-hydroxy-8fl-(4-hydroxytiglyloxy) Costunolide, 15-hydroxy-8t~-isobutyryl Costunolide, 15-hydroxy-8a-[isobutyryloxy] Costunolide, 15-hydroxy-8a-[a-methylacryl] Costunolide, 15-hydroxy-8a-[a-methylacryloyloxy] Costunolide, 3fl-hydroxy-8fl-tiglinoyloxy Costunolide, 8fl-[5-hydroxytiglinoyloxy] Costunolide, 9~-isobutyryloxy Costunolide, 15-isobutyryloxy Costunolide, 3fl-isovaleryloxy Costunolide, 9fl-isovaleryloxy Costunolide, 15-isovaleryloxy Costunolide, 8fl-isovaleryloxy-9/3-hydroxy Costunolide, 9fl-(2-methylbutyryloxy) Costunolide, 15-[2-methylbutyryloxy] Costunolide, 9-oxo- 11,13-dihydro-7,11-dehydro- 1,10dihydro- la, 10ft-epoxy Costunolide, 9-oxo- 11,13-dihydro-7,11-dehydro (=Germacrone-analog lactone) Costunolide, 9-oxo- 1,10-4,5-11,13-tri(dihydro)- la, 10/348,5a-diepoxy-7,1 l-dehydro Costunolide, 1-peroxy Costunolide, 9O-propionyloxy Costunolide, 15-senecioyloxy Costunolide, 8~- [4-stearoyioxyisovaleroyloxy]-9/3-hydroxy Costunolide, 8fl-tiglinoyloxy Costus acid (=Costic acid) Costus acid, la-angeloyloxy Costus acid, 3/3-angeloyloxy- 11,13-dihydro
Structure number (ref. Fig. 32)
Page number
530 23
390 387
531 530.6
390
51 72 65 71 64 31 14 37 60 44 38 58 537 39 61 162 161
363 485 485 366 366 374 399 428 374 358 366 374 399
490
163 414 36 59 539 16 628 630 622
375 358 366
376
SESQUITERPENE LACTONES---ASTERACEAE
563
Appendix B Continued.
Compound name Costus acid, 11,13-dihydro Costus acid, 4,15-dihydro-3,4-dehydro Costus acid, 3/3-hydrocinnamoyloxy-11,13-dihydro Costus acid, lt~-hydroxy Costus acid, la-hydroxy- 11,13-dihydro Costus acid, 3O-hydroxy-11,13-dihydro Costus acid, iso (=Costic acid, iso) Costus acid, 3O-isobutyryloxy-11,13-dihydro Costus acid, 3/3-isovaleryloxy-11,13-dihydro Costus acid, 1-oxo Costus acid, 3-oxo-iso Costus acid, 3O-senecioyloxy-11,13-dihydro Costus acid, 3/3-tiglinoyloxy-11,13-dihydro Costus lactone, dehydro Costus lactone, dehydro, 1-epi, 8a-senecioyloxy Costus lactone, dehydro, 8c~-senecioyloxy Costus lactone, dehydrodihydro Costus lactone, 2,3-dihydroxy-8a-methacryloyloxydehydro Costus lactone, 8t~-isovaleryloxy-dehydro Critonilide Critonilide, iso Cumambranolide, 8a-isobutyryloxy Cumambranolide, 8a-[2-methylacryloyloxy] Cumambranolide, 8a-tiglinoyloxy Cumambrin A Cumambrin B (=Artenovin) Cumambrin B, 8-deoxy Cumambrin B, iso Cumambrin B, 3,4-oxide Cumanin Cumanin-3-acetate Cumanin diacetate Cumanin, dihydro Cyclobedfordia acid Cyclocostunolide, 9t~-angeloyloxy
Structure number (ref. Fig. 32)
Page number
632 629 626 631 633 620 629.5 624 625 627 617.5 621 623 834 980 835 946 855
360 484 484
854 604.5 571.5 880 881 881 876 875 877 981 892 1141 1142 1143 1146 1052 858
351 362 362 352 353 353 422 405 422 371 425 405 408 408 405 431 383
376
361
361
353
564
THE BOTANICALREVIEW
Appendix B Continued.
Compound name Cyclocostunolide, l lfl,13-dihydro-8a-hydroxy-la-[2(hydroxymethyl)acryloyloxy] Cyclocostunolide, 1lfl,13-dihydro-St~-hydroxy-la-(2methylacryloyloxy) Cyclocostunolide, 8a-hydroxy- lct-[2-(hydroxymethyl)acryloyloxy] Cyclocostunolide, 8a-hydroxy- Ia-(isobutyryloxy) Cyclocostunolide, 9a-senecionyloxy a-Cyclocostunolide fl-Cyclocostunolide fl-Cyciocostunolide, dihydro /3-Cyclopyrethrosin fl-Cyclopyrethrosin, dihydro Cynaropicrin Cynaropicrin, deacyl Cynaropicrin, dehydro Damsin Damsin, 3-hydroxy Damsinic acid Damsinic acid, hydroxy Decal -8-one, 4/3,5/~-dimethyl-7/3-[1-carbomethoxyethyl]-9,10-dehydro Decipienin A Decipienin G Decipienin H Deitoidin A Deltoidin B Deltoidin C (=Parthenolide, 8~-tiglinoyloxy) Dentatin A Dentatin B Dicomanolide, 14-acetoxy Dicomanolide, 14-oxo Dimerostemmolide Dimerostemmolide- l-angelate Dimerostemmolide- 1-O-[5-hydroxyangelate],4-iso Dimerostemmolide- 1-O-[5-hydroxyangelate]
Structure number (ref. Fig. 32)
Page number
668
388
667
388
604
388
603 857 566 593 648 676 678 841 844 826
388 383 369 369 489
1098 1107 1309 1310 1347
405 409 405
647 637 636 122 123 124 600 416 177 178 576 577 575 580
427 484 486 485
431
363 363 424 424 489 489 386 386 386
SESQUITERPENE LACTONES--ASTERACEAE
5~
Appendix B Continued.
Compound name Dimerostemmolide- 1-[5-hydroxyangelate], 8-O-angeloyl Dimerostemmolide- 1-[5-hydroxyangelate],8-O-[2methylbutyryl] Dimerostemmolide-l-O-[2-methyl-2,3-epoxybutyrate] Diosphenol guaianolide 9 Disecoeudesmanolide 3a Disecoeudesmanolide 5a Disyfolide Disyhamifolide Disynaphiolide Douglanine Dugesialactone Dumosin
Structure number (ref. Fig. 32)
Page number
578 579
386 386
581
386
886 745 744 519 553 1060 567 1260 1155
400 400 400 362 362 362 418 405 408
Eleganin Elegin Elehirtanolide
317 867 996
367 486 351
Elehirtanolide, 3fl-isovaleryloxy Elephantin Elephantol Elephantopin Elephantopin, dihydro Elephantopin, 3'-dihydro Eiephantopin, deoxy Elephantopin, isodeoxy Encelin Enhydfin Eregoyazidin Eregoyazin Eremanthine Eremanthine, 3~-angeloyloxy Eremanthine, 8fl-hydroxy- 1la, 13-dihydro Eremanthine, 8ct-isovaleryloxy Eremanthine, 3fl-senecioyloxy Eremantholanolide, 16a-isopropenyl-4/3, 5H Eremantholanolide, 16a-isopropyl-4fl,5H
997 127 515.5 126 154 128 93 94 700 260 940 789 782 785 911 784 786 374 373
351 351 351 351 351 351 351 384 380 352 352 352 383 373 351 383 352
566
THE BOTANICALREVIEW
Appendix B Continued.
Compound name Eremantholanolide, 16a-[ 1-methyl- 1,2-epoxy-propyl] Eremantholanolide, 16a-[ 1-methylprop- 1Z-enyl] Eremantholanolide, 16~t-[1'-methylprop-1Z-enyl]-4fl,5H Eremantholide A Eremantholide B Eremantholide C Eremantholide, 1lfl,13-dihydro Eremantholide, 16a-[ 1'-methylprop-1E-enyl] Eremantholide, 16a-[ 1-methylprop- 1Z-enyl] Eremophil-1,7(11)-dien-12-oic acid lactone, 8/3-hydroxy-8a-methoxy-3-oxo Eremophil-7(1 l)-ene- 12,8a, 14fl,6a-diolide Eremophil-7(11)-ene- 12,Sa,14fl,6a-diolide, 8fl-hydroxy Eremophil-7(l 1)-ene-12-Sa-olide, 6fl,8/3-dihydroxy Eremophila-l,7-dien-8, 12-olide, 3-oxo-8a-ethoxy Eremophila- 1,7-dien-8,12-olide, 3-oxo-8a-H Eremophila- 1,7-dien-8,12-olide, 3-oxo-8a-hydroxy Eremophila- 1,7-dien-8,12-olide, 3-oxo-8a-methoxy Eremophilanolide, 2fl-angeloyloxy-10/3-H Eremophilanolide, 2fl-angeloyloxy-8fl-hydroxy-lOfl-H Eremophilanolide, 2fl-[5'-hydroxyangeloyloxy]-10fl-H Eremophilanolide, 2/3-[5'-hydroxyangeloyloxy]-8fl-hydroxy- 10fl-H Eremophilene lactam Eremophilenolide Eremophilenolide, 6-hydroxy Eremophilenolide, 3fl-hydroxy-6fl-angeloyloxy-7,8epoxy Eremophilenolide, 3fl-hydroxy-6/3-tigloyloxy-7,8-epoxy Eremophilic acid Eriofertin Eriofertopin Eriofertopin, 2-O-acetyl Erioflorin Erioflorin acetate Erioflorin methacrylate
Structure number (ref. Fig. 32)
Page number
372 371 375 367 368 369 911.5 370 371 1266
354 353 352 351 352 352 353 351
1282 1283 1277 1265 1262 1263 1264 1279 1281 1278 1280
435 435 435 443 443 443 443 481 481 481 481
1346 1271 1276 1286
438 438 435 449
1287 1261.7 8l 80 83 306 313 314
449 495 494 494 494 383 387 387
482
SESQUITERPENE LACTONES--ASTERACEAE
567
Appendix B Continued.
Compound name Eriolangin Eriolanin Eriolin Eriolin, hydroxy Eriophyllin Eriophyllin B Eriophyllin C Erivanin Estatiatin Estafiatin, 8t~-[2-methylacryloyloxy] Estafietin, isoepoxy Estafietone, dihydro (=Zaluzanin C, 4/3,15,1l~,13-tetrahydro-3-dehydro) Eucannabinolide Eucannabinolide, 3-[2"-hydroxyisovaleryloxy]-3-desacetoxy Eucannabinolide, 3-isovaleryloxy-3-desacetoxy Eucannabinolide-5'-sarracinate Eudesm-4-en-6,12-olide, 1-hydroxy-6fl,7t~,1lfl-H Eudesm-4-en-6,12-olide, 1-oxo-6fl,7ot,l lfl-H Eudesma-5,7( 11)-diene-13-ol-8fl,12-olide Eudesma-4(15), 7(11)-diene-8/3-12-olide(=Asterolide, 8-epi) Eudesma-5,7(l l)-diene-8fl,12-olide Eudesmane -4(15),11( 13)-diene-6,12-olide,lfl-hydroxy8fl-angeloyloxy Eufoliatin Eufoliatorin Eupachlorin Eupachlorin acetate Eupachloroxin Eupacunin Eupacunin, desacetyl Eupacunolin Eupacunoxin Eupaformonin
Structure number (ref. Fig. 32)
Page number
741 740 524 525 305 304 315 652 795 798 775 956
495 495 494 494 494 494 494 418 369 353 429 488
288 296
363 400
296.5 296.6 639 641 734 731
400 400 419 419 374 374
733 602
374
994 937 872 873 890 5 l0 512.5 512 511 282
364 364 365 365 365 363 364 363 363 363
568
THE BOTANICALREVIEW
Appendix B Continued.
Compound name Eupaformosanin Eupahyssopin Euparhombin Euparotin Euparotin acetate Eupaserrin Eupaserrin, desacetyl Eupaserrin, 8/3-[2,3-epoxy-5-hydroxy-2-methylbutyryloxy]-8/3-desacyl-desacetyl Eupaserrin, 8fl-[2,3-epoxy-2-methylbutyryloxy]-8/3-desacyl-desacetyl Eupaserrin, 3/3-hydroxy Eupaserrin, 8/3-hydroxy, 8/3-desacyl-desacetyl Eupasessifolide B Eupasessifolide A Eupasessifolide B, 5a-hydroxy Eupassofilin Eupassopilin Eupassopin (=Eupahyssopin) Eupatocunin Eupatocunoxin Eupatolide Eupatolide-8-O-angelate,2a-hydroxy Eupatolide-8-O-angelate,2ot-hydroxy-14-acetoxy Eupatoriopicrin Eupatorium mohrii germacranolide 7a Eupatorium rnohrii germacranolide 7b Eupatorium recurvans heliangolide Eupatorium serotinum germacrolide 3 Eupatoroxin Eupatoroxin, 10-epi Eupatundin Eupatundin acetate Euperfolide Euperfolide, 1la-13-dihydro Euperfolin Euperfolitin
Structure number (ref. Fig. 32)
Page number
283 118 299 802 805 4 3 19
363 363 365 365 365 363 364 364
18
364
47.5 17 765 801 766 119 116 118 290 291 7 5 82 11 443 444 297 99 814 821 796 797 781 938 151 150
364 364 366 366 365 363 363 363 363 363 363 391 391 363
365 366 365 365 365 365 365 360 364 364
569
SESQUITERPENE LACTONES---ASTERACEAE
Appendix B Continued.
Compound name
Structure number fief. Fig. 32)
Page number
Eurecurvin Eurecurvin, 15-deshydroxy
442 441
363 364
Farinosin Farinosin, anhydro (=Encelin) Fasciculide B Fastigilin A Fastigilin B Fastigilin C
722 700 496 1184 1185 1167
389 389 357 392 392 392
Ferolide, 1-peroxy Ferreyanthus lactone Finitin Flexuosin A Flexuosin A-2-acetate (=Flexuosin A,2-acetyl) Flexuosin B
420 979 662 1174 1177 1213
493 418 394 395 396
Floribundin (=Psilotropin) Floribundin A, dihydro (=Themoidin) Florigrandin Florilenalin
1238 1247 1214 1004
398 397 398 395
Florilenalin, dihydro Flourensic acid Fluctuadin Fluctuanin Franserin Frutescin Fruticosin Fukinanolide (=Bakkenolide A) Fukinanolide, 9-acetoxy Fukinolide (=Bakkenolide B) Fukinolide, dihydro
I010 1261.5 257 258 1132 272 1027 1292 1301 1294 1298
395 389 385 385 405 410 412 434 439 439 439
Fukinolide S (=Bakkenolide D) Furanoeremophilane- 1413,6a-olide
1295 1288
439 435
Gafrinin Gafrinin acetate Gaillardilin Gaillardin GaiUardin, neo
1037 1040 1180 1321 1003
372 376 394 373 394
570
THE BOTANICAL REVIEW
Appendix B Continued.
Compound name
Structure number (ref. Fig. 32)
Page number
Gaillardipinnatin Gaillardipinnatin, desacetyl GaUicin
1165 1162 422
393 393 421
Gazaniolide Gazaniolide, 8a-isovaleroyloxy Geigerin Geigerinin Gerin Germacra-l(10), 4-dien-cis-6,12-olide, trans, trans,
606 607 1012 1228 617 158
483 483 372 372
Cmp 2a Germacra- 1(10), 4-dien-cis-6,12-olide, trans, trans,
159
386
Cmp. 3a Germacra-l( lO),4-dien-cis-6,12-olide, trans, trans,
160
387
Cmp. 4a Germacranolide, 4,5-cis, 3fl-hydroxy Germacrene D lactone Germacrolide le Germacrolide I f Germanin A Germanin B Glaucolide A Glaucolide A, 19-hydroxy Glaucolide B Glaucolide B-8-O-propionate, 8-O-desacetyl Glaucolide D Glaucolide E
279 427 20 21 89 515 519.2 519.3 519.1 520 133 131
430 374 364 364 373 373 355 353 355 359 361 361
132 135 200 933 856 395
359 359 493 423 490 355
394
353
393
354
Glaucolide E acetate, 8-O-desacyl Glaucolide G Glechomanolide Globicin Glucozaluzanin C Goyazensolanolide, 5fl-hydroxy-6a-methacryloyloxy-A4,~5-iso Goyazensolanolide, 6~-angeloyloxy (=Lychnopholide) Goyazensolanolide, 6a-[2,3-epoxy-butyryloxy]
386
SESQUITERPENE LACTONES--ASTERACEAE
571
Appendix B Continued.
Compound name Goyazensolanolide, 6a- [2-methylacryloyloxy] Goyazensolanolide, 6a-tiglinoyloxy Goyazensolide Goyazensolide, 15-deoxy Gradolide Graminichlorin
Structure number (ref. Fig. 32)
Page number
390 389 388 387 920 891
367
Graminiliatrin Graminiliatrin, deoxy Grandicin (=Carabrone) Grandulin (=Ivalin) Granilin Graveolide Grazielia acid Grazielolide, 8fl-angeloyloxy Grazielolide, 8/3-[2,3-epoxy-2-methyl-butyryloxy] Greenein Griesenin Griesenin, dihydro
815 804 1049 690 689 720 535 532 533 1246 1047 1048
367 367 374 374 372 374 367 367 367 398 372 372
Grilactone Grosshemin Grossmisin Guaiagrazielolide, 8fl-angeloyloxy Guaianolide la Guaianolide lb Guaianolide 4a Guaianolide 4b Guaianolide 6a Guaianolide 6b Guevariolide
1311 870 914 812 823 824 799 799.5 817 818 773
484 418 367 363 363 363 363 363 363 367
H. maximiliani compound 7a
Haageanolide Halshalin
445 446 35 1014
389 389 383 395
Handelin Hanphyllin Helenalin
963 25 1195
428 417 371
H. rnaximiliani compound 7c
352 352 352 352
572
THE BOTANICAL REVIEW
Appendix B Continued.
Compound name Helenalin acetate (=Angustibalin) Helenalin acetate, dihydro (=Arnicolide A) Helenalin, dihydro (=Plenolin) Helenalin, dihydro, 2-methoxy Helenalin, iso Helenalin, neo Helenalin, tetrahydro Helenium lactone Heliangine Heliangolide 10a Helisplendiolide Herbolide A Herbolide B Herbolide C Hirsutinolide-13-O-acetate, 8fl-acetoxy- 1/3,10fl-dihydroxy Hirsutinolide-13-O-acetate, 8/3-acetoxy- 10/3-hydroxy Hirsutinolide-13-O-acetate, 8fl, 10fl-diacetoxy-la-OH Hirsutinolide-13-O-acetate, 8fl, 10fl-diacetoxy- lfl-OH Hirsutinolide-13-O-acetate, 80,10fl-diacetoxy- la-Omethyl Hirsutinolide-13-O-acetate, 8fl, 10fl-diacetoxy- lfl-Omethyl Hirsutinolide-13-O-acetate, 10fl-hydroxy-8fl-tiglinoyloxy- la-O-methyl Hirsutinolide-13-O-acetate, 10fl-hydroxy-8fl-tiglinoyloxy-lfl-O-methyl Hirsutinolide-13(O)-acetate,8fl-(2-hydroxymethylacryloyloxy) Hirsutinolide-13(O)-acetate, iso, 8fl-(2-methylacryloyloxy) Hirsutinolide-13(O)-acetate, 8fl-(2-methylacryloyloxy) Hirsutinolide-13(O)-acetate,8fl-(2-methyl-2,3-epoxypropionyloxy) Hirsutinolide-13-O-acetate,Sfl-propionyloxy-10fl-hydroxy
Structure number (ref. Fig. 32)
Page number
1197 1207 1206 1191 1196 1254 1215 1015 306.5 354 993 145 148 153 478.5
494 494 494 395 396 393 494 395 389 389 373 419 419 419 355
472 478 487 477
361 355 355 355
486
355
488
351
489
351
484
358
485
360
482 483
356 356
474
361
SESQUITERPENE LACTONES---ASTERACEAE
573
Appendix B Continued.
Compound name Hirsutinolide-13-O-acetate,8fl-propionyloxy-10fl-hydroxy-l-O-methyl Hirsutinolide- 1,13-O-diacetate, 8fl-acetoxy-10fl-hydroxy Hirsutinolide- 1,13-O-diacetate, 8fl-propionyloxy-10flhydroxy Hirsutinolide, 15-hydroxy,8fl-(2-methylacryloyloxy) Hirsutinolide, 8fl-(2-methylacryloyloxy) Hirsutinolide, 8fl-(2-methyl-2,3-epoxypropionyloxy) Hiyodorilactone A Hiyodorilactone B Hiyodorilactone C Homofukinolide Hybrifarin Hymenin Hymenoflorin Hymenograndin Hymenograndin, acetyl Hymenolane Hymenolide Hymenolide, 2a-acetoxy Hymenolide, 2a-tiglinoyloxy Hymenolin Hymenoratin Hymenosignin Hymenovin Hymenoxon Hymenoxon, 2a-acetoxy Hymenoxon, 2a-tiglinoyloxy Hymenoxynin Hypochaerin Hyporadiolide-8-O-cinnamate Hyporadiolide-8-O- [2-methylacrylate] Hyporadiolide-8-O- [2-methylacrylate], 1l, 13-dihydro Hysterin Hysterin acetate
Structure number (ref. Fig. 32)
Page number
476
361
373
361
475
361
481 479 480
360 356 356
45 46 47 1297 727 I 113 1222 1204 1205.5 1218 1245 1243 1244 1131 1205 1013.5 1240 1239 1241 1242 1248 962 883 884 884.5 1125 1126
366 366 439 389 408 398 398 398 398 398 399 399 409 392 398 398 399 399 398 491 491 491 491 411 411
THE BOTANICAL REVIEW
574
Appendix B Continued.
Compound name
Structure number (ref. Fig. 32)
Page number
Igalan Igalan, 8a-H
1091 1090
367 383
Igalan, 8/3-H Ilicic acid
1089 618
383 406
Incanin (=Ligulafin B) Ineupatolide
1103 469
412 373
470 471
373 373
Ineupatorolide A Ineupatorolide B Innunolide, 3-a-fl-D-glucopyranoside Inuchinenolide A Inuchinenolide B Inuchinenolide C Inucrithmolide Inulicin Inulicin, desacetyl Inunolide Inunolide, dihydro Inunolide, lfl,10a-epoxy-l,10-H Inunolide, 4fl,5t~-epoxy, 4,5-H Inuviscolide Inuviscolide, 4a,5a-epoxy, 10ct, 14-H Inuviscolide, iso, 4-epi Isabelin Istanbulin A Istanbulin C Ivalbatin Ivalbin Ivalin
192 1036 1002 1136 634 1256 1255 195 201 197 198 987 992 1322 179 1284 1285 1026 1046 690
410 410 372
Ivalin acetate Ivalin, pseudo
691 1000
375 372
Ivalin, pseudo, acetate Ivalin, pseudo, dihydro Ivambrin Ivangulin Ivangustin Ivangustin acetate, 6fl-tiglinoyloxy
1001 1005 1022 742 684 684.6
372 410 4 l0 4 l0 410 388
373 373 373 373 375 375 375 375 374 374 376 374 373 405
SESQUITERPENE LACTONES--ASTERACEAE
575
Appendix B Continued.
Compound name Ivangustin, 1-desoxy,8-epi Ivangustin, l-desoxy-8-epi Ivangustin, 8-epi Ivangustin, iso, 8-epi Ivangustin, 6B-tiglinoyloxy Ivasperin Ivaxillarin Ivaxillarin, anhydro Ivoxanthin
Structure number (ref. Fig. 32) 674 708 675 673 684.5 688 971 969 1105
Page number 375 375 375 375 388 408 410 410 411
Jacquinelin Janerin Janerin, chloro Juanislamin Juanislamin, 2,3-dihydro, 2a,3a-epoxy Judaicin (=Tauremisin) Jurineolide Jurmolide
983 833 864 467.5 467.6 654 55 939, 1316
491 484 487 403 403 419 485 485
Kingiolide
1200
414
Lactucin Lactucin, 8-deoxy Lactucopicrin Laferin Lanuginolide, I 1,13-dehydro Lanuginolide Laserolide Laserolide, iso Laurenobiolide Laurenobiolide, 6-desacetoxy, dihydro Laurenobiolide, desacetyl (=Chamissellin) Leptocarpin Leptocarpin, 17,18-dihydro Leucanthin A Leucanthin B Leu canthinin Leucodin, dehydro
972 763 973 907 114 152 144 1065 167 189 166 308 309 262 263 223 761
491 492 491
416 391 379 379 379 362
576
THE BOTANICAL REVIEW
Appendix B Continued.
Compound name Liabinolide
Structure number (ref. Fig. 32)
Page number
386
493
12 32
367 367
Liatrin
355
367
Liatripunctin
361
367
Liacylindrolide Liacylindrolide,3/3-hydroxy
Lidbeckialactone (=Leucodin, dehydro)
761
428
Ligolide
1270
436
Ligucalthaefolin
1289
435
Ligularenolide
1267
371
Ligularenolide, 6fl-acetoxy
1269
459
Ligularenolide, 6fl-hydroxy
1268
Ligulatin B (=Incanin) Ligustrin
1103 791
412 363
941 792
370 370
Linearifol-2,11(13)-dien-8fl-ol-acetate,4-oxo-6a-[2methylbutyryloxy] Linearifolin (=Linearifolin A)
1235
398
1199
398
Linearifolin B
1253
398
Linearilobin A
73
379
Linearilobin Linearilobin Linearilobin Linearilobin
B C D E
74 75 76 77
380 380 380 380
Linearilobin F Linearilobin G
78 100
380 380
Linearilobin H Linearilobin I
302 303
380 380
Linichlorin A
865
487
Linichlorin B
849
487
Linichlorin C
866
487
Linifolin A Linifolin B
1169 1170
394 496
Linifolin, desacetoxy Lipiferolide Lippidiol
1169.5 115 955
397
Ligustrin, 1 lfl,13-dihydro Ligustrin-[4',5'-dihydroxytiglate]
486
577
SESQUITERPENE LACTONES--ASTERACEAE
Appendix B Continued.
Compound name
Structure number (ref. Fig. 32)
Page number
Lippidiol, iso y-Liriodenolide Liscundin Liscunditrin Longipilin Longipilin acetate Longipin Ludalbin Ludartin Ludartin, dihydro Ludovicin A
954 583 316 318 256 256.5 227 569 769 928 572
486
Ludovicin B Ludovicin C Lumisantonin
595 588 739
418 421 420
Lychnopholide
391
353
259 134 436 906 762 764 903 905 915 913 1312 250 252 255.5 255
381 356 493 417 426 418 414 414 414 414 414 379 379 379 378
275 278 276 277 254 253
378 379 378 378 378 378
Maculatin Marginatin Maroniolide Matricarin Matricarin, 11,13-dehydro Matricarin, 11,13-dehydro-desacetyl Matricarin, desacetoxy Matricarin, desacetyl Matricarin, 11-epi (=Achillin, acetoxy) Matricarin, l l-epi-desacetyl (=Achillin, hydroxy) Matricin Melampodin A Melampodin A acetate Melampodin A, 11/3,13-dihydro Melampodin A, 1la,13-dihydro,9-a-methylbutyrate Melampodin B Melampodin B, 4,5-dihydro Melampodin C Melampodin D Melampodinin Melampodinin B
368 368 380 381 380 420 418 418 421
578
THE BOTANICAL REVIEW
Appendix B Continued.
Compound name Melampodinin, 9-desacetyl Melampolidin Melcanthin A Melcanthin B Melcanthin C Melcanthin D Melcanthin E Melcanthin F Melcanthin G Melfusin
Structure number (ref. Fig. 32) 251 224 410 409 408 404 405 406 407 125
Page number 378 379 379 379 379 379 379 379
Melitensin Melitensin, 1l(13)-dehydro
1063 1053
Melitensin, dehydro, 15-dehydro-8-(O)-[4'hydroxymethacrylate] Melitensin, 1 l(13)-dehydro,/3-hydroxyisobutyrate Melitensin, 1l(13)-dehydro-8-(O)-[4'hydroxymethacrylate] Melitensin-/~-hydroxyisobutyrate Melnerin A Melnerin A, 9-acetoxy Melnerin A, 2',3'-dehydro Melnerin A, 9a-hydroxy-2',3'-dehydro Melnerin A, 9a-hydroxy,-8-desacyloxy-8fl-isovaleryl-
1057
379 379 487 488 485
1056 1054
487 485
1064 265 267 269 270 271
488 379 379 381 381 381
266 268 710 1201 1216 1254 1257 1258 1225 1163 672 1085
379 379 418 395 395 396 396
oxy Melnerin B Melnerin B, 9-acetoxy Meridianone Mexicanin A Mexicanin C Mexicanin D (=Helenalin, neo) Mexicanin E Mexicanin E, dihydro Mexicanin H Mexicanin I Mibulactone Micordilin
395 396 394 419 368
SESQUITERPENE LACTONES--ASTERACEAE
579
Appendix B Continued.
Compound name Microcephalin Microhelenin A Microhelenin B Microhelenin C Microlenin Microlenin acetate Mikanokryptin Mikanolide Mikanolide, desoxy Mikanolide, dihydro Millefin
Structure number (ref. Fig. 32) 712 1193 1210 1212 1250 1251 99i 185 183 193 139
Miscandenin Mokko lactone Molephantin
lO69 947 505
Molephantinin Mollisorin A Mollisorin B Monogynin Montafrusin Montanolide Montanolide, iso Montanolide, isoacetyl Montanolide, iso, acetyl Montathanolide Multigilin Multiradiatin Multistatin Muricatin
506 42 43 671 24 917, 1317 916, 1318 918 1319 587 1166 1223 1224 863
Neoleonin Neurolenin A Neurolenin B Niveusin A Niveusin B Niveusin C Novanin Nobilin
1226 454 455 326 327 328 27 281
Page number 410 396 396 396 396 396 369 368 369 368 415 369 351 351 390 390 422 386
392 392 392 486 394 404 404 390 390 389 422 415
THE BOTANICAL REVIEW
580
Appendix B Continued.
Compound name
Structure number (ref. Fig. 32)
Page number
Nobilin, 3-dehydro Nobilin, 3-epi Nobilin, 1,10-epoxy Nobilin, iso, hydroxy Norpsilotropin, 4-hydroxy Novanin
298 280 307 424 1252 27
415 415 416 416 399 422
Oaxacin
1115
412
Ocotealactol Odoratin (=Hymenoratin) Oferin
728 1205 925
398
Olgin Olgoferin
924 926
Onopordopicrin Orientalide Orientalide, 9c~-methoxy-desacetyl Orientin Orizabin Orizabin-8/3-angelate, desisobutyryl Orizabin,8/3-angelate, desisobutyryl,des-3c~-hydroxy Osmitopsin Osmitopsin, 1,8-epoxy Osmitopsin, 4,5-epxoy Ovatifolin
50 231 232 516 319 321 320 967 968 813 86
483 380 380 380 392 390 390 429 429 429 387
Ovatifolin acetate Ovatifolin-8-O-angelate, 14-O-desacetyl
88 534
366
Ovatifolin, desacetyl Oxidoisotrilobolide-6-O-angelate Oxidoisotrilobolide-6-O-isobutyrate Oxidoisotrilobolide-6-O-methacrylate
87 717 716 718
388 385 385 385
767 1021 904 1024 1025 1112
421 424 424 411 409 409
Parishin Parishin B Parishin C Parthemollin Parthemollin, acetyl Parthenin
SESQUITERPENE LACTONES---ASTERACEAE
581
Appendix B Continued.
Compound name
Structure number (ref. Fig. 32)
Page number
Parthenolide Parthenolide, 9a-acetoxy
112 120
373 415
Parthenolide, 9fl-acetoxy Parthenolide, dihydro Parthenolide, 1-peroxy (=Verlotorin)
121 149 419
406 426
Parthenolide, 8fl-tiglinoyloxy
124
366
Paucin Paulitin (=Dumosin?) Paulitin, iso (unspecified isomer of paulitin [1156]) Pectorolide Pelenolide A, keto Pelenolide B, keto Pelenolide, hydroxy
1192 1156 54 522 523 521
392 407 407 360 416 416 416
Peruvin Peruvinin Petasitolide A
1138 1145 1273
406 408 438
Petasitolide A, S
1274
438
Petasitolide B Petasitolide B, S Petiolaride Peucephyllin Phantomolin Photosantonic lactone, iso Picridin Picridin, dihydro Picrohelenin
1272 1275 902 285 501 960 777 936 1203
439 438 361 495 351 424 492 492 395
Pinnatifidin Pinnatifidin, la-acetoxy-2-dihydro
680 683
397 389
Pinnatifidin, la-hydroxy Pinnatifidin, la-hydroxy-2-dihydro
681 682
389
(683.5) 490
389 354
491 492 493 494
354 354 354 354
Pinnatifidin, 2-dihydro Piptocarphin A Piptocarphin Piptocarphin Piptocarphin Piptocarphin
B C D E
582
THE BOTANICALREVIEW Appendix B Continued.
Compound name Piptocarphin F Piptolepolide Pleniradin (revised) Plenolin (=Helenalin, dihydro) Pluchea lactone Polhovolide Polydalin Polymatin A Polymatin B Polymatin C Polymniolide Preeupatundin-2-acetate, 8/3-angeloyloxy-5c~-hydroxy Preeupatundin-2-O-acetate, 8fl-angeloyloxy-5a-hydroxy, 3,4,10,14-diepoxy Preeupatundin-2-O-acetate, 8/3-tiglinoyloxy-5c~-hydroxy- 10,14-epoxy Preeupatundin, 8fl-angeloyloxy Preeupatundin, 5a-hydroxy-8/3-angeloyloxy Preeupatundin, 5a-hydroxy-8/3-tiglinoyloxy Preeupatundin, 8/3-tiglinoyloxy, 10,15-epoxide Provincialin Provincialin, desacetyl -4'-desoxy Provincialin, 4'-desoxy Provincialin, 4'-desoxy-3-desacetoxyl-3a-hydroxy Provincialin, 4'-desoxy-3-epi Prutenin Pruteninone, 8-acetoxy Pruteninone, 8-angeloyloxy Pseudoguaian-6,12-olide, 8-acetoxy-3-oxo Pseudoguaian-6,12-olide, 4-hydroxy-3-oxo Psilostachyin Psilostachyin, 11-epi-dihydro Psilostachyin B Psilostachyin C Psilotropin Puberolide
Structure number (ref. Fig. 32)
Page number
495 467 1011 1206 574 919 226 202 203 261 168 975 822
354 354 393 393 376
820
365
974 976.5 976 803 289 292 293 294 295 901 9O9 910 1129 1128 1150 1151.5 1153 1152 1238 995, 1013
381 381 381 381 380 365 365
366 365 365 365 367 367 367 367
406 406 405 405 4O5 405 397 397
SESQUITERPENE LACTONES--ASTERACEAE
583
Appendix B Continued.
Compound name
Structure number (ref. Fig. 32)
Page number
Pulchellidine
1189
394
Pulchellidine, neo Pulchellin Pulchellin B
1219 1173 694
394 394 394
Pulchellin C
692
393
Pulchellin E Pulchellin F Pulchellin, neo Pulicariolide Punctaliatrin (=Punctatin) Punctatin Punctatin, 15,5'-bis-deoxy Punctatin, 15-deoxy Pycnolide Pyrethrosin
693 695 1202 1135 362 362 363 364 562 180
393 394 394 376 367 367 367 367 368 415
Quing Hau Sau
1324
416
Radiatin Repandin A Repandin B Repandin C Repandin D Repin Repin, 8-desacyl Reynosin Reynosin, 8fl-angeloyloxy Reynosin, dihydro Ridentin
1186 433 434 431 432 828 830 594 601 666 415
393 382 382 382 382 484 485 407 391
Ridentin, dihydro Ridentin, iso Ridentin B
423 421 596
426 414 426
Ridentin B, 4a, 15,11/3,13-tetrahydro Rolandrolide Rolandrolide, 13-acetoxy Rolandrolide, iso Rolandrolide, 13-ethoxyiso
661 497 498 499 500
492 354 354 354 354
417
584
THE BOTANICALREVIEW
Appendix B Continued.
Compound name Rothin A Rothin B Rudimollitrin Rudmollin Rudmollin, 4-acetoxy Rudmollin, 15-acetoxy Rupicolin A Rupicolin A, 15-acetoxy-l,8-hydroxy-8-(2a-acetoxyethyl)acrylate Rupicolin A-8-(O)-acetate, 1-desoxy-lct-per0xy Rupicolin A, 1-desoxy-la-peroxy Rupicolin A, 3rt,4a-diacetoxy-3,4-dihydro-8-(2-c~-acetoxyethyl)acrylate Rupicolin B Rupicolin B-8-O-acetate, 1-desoxy-la-peroxy Rupicolin B, 1-desoxy-la-peroxy Rupin A Rupin B Salonitenolide Salonitenolide, 8-desoxy Salonitenolide, 8-desoxy, 15-(2,3-epoxyisobutyryloxy) Salonitenolide, 8-desoxy, 15-(2,3-dihydroxyisobutyryloxy) Salonitenolide, 8-desoxy, 15-(3-hydroxyisobutyryloxy) Salonitenolide, 8-desoxy, 15-(3-hydroxy-2-methylacryloxy) Salonitenolide, ,8-11,13-dihydro-8-desoxy Salonitenolide, 8a-[4-hydroxymethacryl] Salonitenolide, 8-(O)-[2-methylbutyrate] Salonitolide Salsolin (=Apoludin acetate) Santamarin (=Balchanin) Santamarin, dihydro (= Sant-3-en-6,12-olide C, 1]3-hydroxy) Santamarin, epoxy
Structure number (ref. Fig. 32) 584 592 1133 1147 1148 1149 778 779, 780
Page number 423 423 390 390 390 390 426 353
788.5 788 787
493 493 353
790 793.5 793 896 897
426 493 493 414 426
48, 62 57 67 69
483 483 368 369
68
369
66
368
146 63 70 191 1119 568 635
483
573
407
489 485 409 407 492
SESQUITERPENE LACTONES---ASTERACEAE
585
Appendix B Continued.
Compound name Sant-3-en-6,12-olide C, lfl-hydroxy Sant-4(14)-en-6,12-olide C, 1/3-hydroxy Santolin ( = Achillin) Santolinol (=Achillin, hydroxy) Santonin a-Santonin fl-Santonin tk-Santonin ~-Santonin, deoxy Santonin, desmotropa Santonin, 1,2-dihydro Santonin, 11-oxy Saupirin Saurin Saussurea lactone Scabiolide Scandenolide Scandenolide, dihydro Secocrispiolide Secoeudesmanolide, 8a-H Secoeudesmanolide, 8fl-H (=Igalan, 8fl-H) Secoeudesmanolide precursor 7a Secoheliangolide l l a Secomacrolide, 6fl-angeloyloxy Secomacrolide, 8-epi-6fl-angeloyloxy Secomacrotolide, 8-epi-6fl-isovaleryloxy Secomacrotolide, 8-epi-6~-tiglinoyloxy Secomacrotolide, 6fl-isovaleryloxy Secomacrotolide, 6fl-tiglinoyloxy Sieversin Sieversinin (=Arborescin) Simsiolide Solstitialin A Solstitialin acetate Spathulin Spathulin-2-O-angelate, 9-O-desacetyi
Structure number (ref. Fig. 32) 635 649 912 913 644.5 643 644 664 663 647.5 642 646 978 977 1062 176 184 194 746 1088, 1090 1089 743 396 747 748 752 750 751 749 1313 932 199 948 949 1175 1178
Page number 425 425 415 415 418 417 417 418 421 421 423 421 486 486 486 487 369 369 376
400 400 481 481 481 481 481 481 423 423 391 488 488 393 393
586
THE BOTANICAL REVIEW
Appendix B Continued.
Compound name Spathulin-2-O-isovalerate, 9-O-desacetyl
Structure number (ref. Fig. 32)
Page number
1179
393
Sphaerocephalin Spicatin
107 806
392 368
Spicatin-14-O-cis-sarracenate, desacetyl
879 807 816
368 368 368
Spicatin, hydrochloride Spicatin hydrochloride, desacetyl Spiciformin Stevin Stizolicin
874 878 186 1140 117
368 368 416 369 486
Stizolin Stramonin B Subacaulin Subluteolide
113 1127 771 831
412 405 361
832 944
485 486
1221
395
Tabarin TachiUin Tagitinin A Tagitinin B Tagitinin C
655 677 357 324 508
418 430 391 391 392
Tagitinin D (=Tirotundin) Tagitinin E
359 312
392 391
Tagitinin F
356
392
927 908 2 26 425 590 440 182 1020
407 407 429 429 430 430 429
Spicatin, desacetyl Spicatin, epoxy
Subluteolide, 8-desacyloxy-8a-[2-methylacryloyloxy] Subluteolide, 8-desacyloxy-Sa- [2-methylacryloyloxy]1lfl, 13-dihydro Sulferalin
Talassin A Talassin B Tamaulipin A Tamaulipin B Tamirin Tanacetin Tanachin Tanacin Tanamyrin
SESQUITERPENE LACTONE S---ASTERACEAE
587
Appendix B Continued.
Compound name Tanapsin Taraxacolide-[1 '-O-~-D-glucopyranoside]
Structure number (ref. Fig. 32) 679 660
Page number 430 492
98
492
147 435
492 416
Tatridin B
428
416
Tatridin C
439
Tauremisin (=Vulgarin = Judaicin)
654
419
Taurin
640
419
Telekin
699
372
Telekin acetate, 3-epiiso- 1,2-dehydro
703
384
Telekin, 3-epi-iso Telekin, 3-epi-iso, 1,2-dehydro
373 384
Telekin, 3-epi-iso, 11,13-dihydro
698 702 704
Telekin, iso Telekin, iso, dehydro
697 701
373 384
Temisin
1066
418
Tenulin
1220
394
Tenulin, iso Tenulin, iso, desacetyl Tessaric acid Tetrahelin A Tetrahelin B Tetrahelin C Tetrahelin D Tetrahelin E Tetrahelin F
1182 1181 1261.6 205 234 206 207 208 235 209
395 395 376 381 381 381 381 381 381 381
Tetraludin B Tetraludin C
210
382
211
382
Tetraludin D
212
382
Tetraludin E
213
382
Tetraludin F
214
382
Tetraludin Tetraludin Tetraludin Tetraludin
215 216 217 218
382 382 382 382
Taraxin acid- 1'-O-fl-D-glucopyranoside Taraxin acid- 1'-O-fl-D-glucopyranoside, 11,13-dihydro Tatridin A
Tetraludin A
G H I J
THE BOTANICAL REVIEW
588
Appendix B Continued.
Compound name
Structure number (ref. Fig. 32)
Page number
Tetraludin K Tetraludin L Tetraludin M
219 220 221
382 382 382
Tetraludin N Tetraneurin A Tetraneurin B Tetraneurin C Tetraneurin D Tetraneurin E Tetraneurin F Themoidin Thieleanin Thurberilin Tifruticin
222 1101 1100 1122 1121 1123 1124 1247 989 1183 509
382 411 411 411 411 411 411 397 362 397 390
Tifruticin, acetyl Tifruticin, deoxy Tirotundin Tirotundin ethyl ether Tithifolin, 8fl-angeloyloxy Tithifolin, 8fl-angeloyloxy- 14-acetoxy Tithifolin, 8/3-angeloyloxy- 14-hydroxy Tithifolin, 8fl-[2,3-epoxy-2-methylbutyryloxy] Tithifolin, 8fl-[2,3-epoxy-2-methylbutyryloxy]- 14-acetoxy Tomentosin (=Germacrolide) Tomentosin (=Xanthanolide) Tomentosin, 4-H Tomentosin, 8-epi (=Xanthinosin) Torrentin Trichogoniolide Trichogoniolide-9-O-acetate Trichogoniolide-9-O-acetate, iso Trichosalviolide, 9fl-acetoxy-8fl-angeloyloxy-5a-hydroxy Trichosalviolide, 9fl-acetoxy-8~-angeloyloxy-5/3-hydroxy
507.5 507 359 358 102 105 104 103 106
390 390 391 391 391 391 391 391 391
41 1041 1038
387 373 375
1033
375
670 564 565 563 554
370 370 370 370
555
370
SESQUITERPENE LACTONES--ASTERACEAE
589
Appendix B Continued.
Compound name Trichosalviolide, 9fl-acetoxy-8fl-[2-methyl-2,3-epoxybutyryloxy]-5~x-hydroxy Trichosalviolide, 9fl-acetoxy-8fl-[2-methyl-2,3epoxybutyryloxy]-Sfl-hydroxy Trichosalviolide, 8fl-angeloyloxy-5a,9fl-dihydroxy Trichosalviolide, 8fl-angeloyloxy-5fl,9fl-dihydroxy Trichosalviolide, 8fl-[2-methyl-2,3-epoxybutyryloxy]5tz,9fl-dihydroxy Trichosalviolide, 8fl-([2-methyl-2,3-epoxy-butyryloxy]5/3,9fl-dihydroxy Trifloculoside Trilobolide Trilobolide-6-O-angelate Tdlobolide-6-O~isobutyrate Trilobolide-6-O-methacrylate Trixikingolide-[3 '-acetoxyisovalerate], 9a-hydroxy Tdxikingolide-[3'-acetoxyisovalerate], 9t~-hydroxy-3flisovaleryloxy Trixikingolide-[3 '-acetoxyisovalerate], 9a-hydroxy-13[2-methylbutyryloxy] Trixikingolide-isovalerate Trixikingolide-[2-methylbutyrate] Tuberiferin Tulipdienolide, epi Tulipinolide Tulipinolide, desacetyl Tulipinolide, epi (=Chamissanthin) Tulipinolide, epi, diepoxide Urospermal A Urospermal B Ursialpinolide Ursiniolide A Ursiniolide B Ursiniolide B, 3-desacetoxy Ursiniolide C
Structure number (ref. Fig. 32)
Page number
556
370
557
370
558 559 560
371 371 371
561
371
898 1315 714 713 715 1306 1305
360 386 386 386 491 491
1304
491
1307 1308 608 1055 8 9 l0 130
490 490 492
90 91 711 155 156 156.5 157
406 404
492 493 430 430 430 430 430
590
THE BOTANICAL REVIEW
Appendix B Continued.
Compound name Uvedalin Uvedalin, iso
Structure number (ref. Fig. 32) 225 228
Page number 381 381
Vachanic Acid
619.5
Vahlenin Vanillosmin (=Eremanthine)
612 782
487 355
Vanillosmin, 8a-senecioyloxy
783
360
1086 1087 419
388 388 426
418
426 372
Verafinin Verafinin C Verlotorin Verlotorin, anhydro (=Artemarin, dihydro) Vermeeric acid (unlactonized precursor of Vermeerin (1237)) Vermeerin
1237
372
Vermeerin B, dihydro (=Anthemoidin) Vernodalin Vernodalol Vernodesmin Vernoflexine Vernoflexine, 17,18-dihydro Vernoflexuoside Vernolepin Vernolide Vernolide, hydroxy Vernolide, 8a-hydroxy-desacyl Vernomenin Vernomygdalin
1249 1059 1097 738 839 850 840 1058 109 111 110 1067 513
397 356 356 357 356 354 358 358 356 357
Vernonallenolide
527
357
Vernonallenolide, 4a,5/3-epoxy-4,5-dihydro Vernonallenolide, 4a-hydroxy-4,5-dihydro-5,6-dehydro Vernopectolide A Vernopectolide B Vernudifloride Viguestenin, 8a-isovaleryloxy-8-desacyl Viguestenin, 8a-[2-methylbutyryloxy]-8-desacyl Viguiepinin Viguiestenin Viguiestenin, desacetyl
528 529 101 92 196 311 310 353 366 365
359 359 360 360 360 392 392 392 392 392
359 355
SESQUITERPENE LACTONES--ASTERACEAE
591
Append~B Continued.
Compound name Viguilenin Virginin Virginolide Viscidulin A Viscidulin B Viscidulin C Vulgarin
Structure number (ref. Fig. 32)
Page number
468 721 999 945 943 942 654
392 389 397 417 417 417 418
1232 1234 1231 1233
385 385 385 385
Wedelifloride-6-O-methacrylate Woodhousin Woodhousin, 8/3-[2-methylbutyryloxy]-8/3-desacyl Woodhousin, 8/3-tiglinoyloxy-8fl-desacyl
1230 325 330 329
385 400 400 400
Xanthalongin Xanthanene
1049.5 1261
494 413
Xanthanodiene (= Dugesialactone) Xanthanol Xanthanol-2-acetate, desacetyl Xanthanol, desacetyl Xanthanol, iso Xanthanolacetate Xanthatin Xanthinin Xanthinin, 2-desacetoxy (=Xanthinosin) Xanthinin, 2-desacetoxy-11/3,13-dihydro Xanthinosin Xanthumanol (=Xanthuminol) Xanthumin Xanthumin, desacetoxy
1259 1028 1031 1030 1029 1032 1043 1034 1033 1035 1033 1039 1042 1044
405 376
Xanthuminol (=Xanthumanol) Xerantholide
1039 990
489
982 774 685
428 418 422
Wedelifloride-4-O-acetate, Wedelifloride-4-O-acetate, Wedelifloride-4-O-acetate, Wedelifloride-4-O-acetate,
Yejuhua lactone Yomogiartemin Yomogin
6-O-isobutyryloxy 6-O-isovaleryloxy 6-O-methacryloyloxy 6-O-tiglinoyloxy
376 376 376 372 376 373 376 413 413 376
592
THE BOTANICALREVIEW Appendix B Continued.
Compound name Zacatechinolide, l/3-acetoxy Zacatechinolide, 1-oxo Zaluzanin A Zaluzanin B Zaluzanin C Zaluzanin C-acetate (=Zaluzanin D) Zaluzanin C, 8t~-acetoxy Zaluzanin C, 13-acetoxy-11,13-dihydro-7,11-dehydro3-desoxy Zaluzanin C, angelate Zaluzanin C, dehydro Zaluzanin C, dehydro, 9/3-hydroxy Zaluzanin C, 3-dehydro-4ct-15,1la, 12-tetrahydro Zaluzanin C, 3-dehydro-4t~-15,1la,12-tetrahydro-9-hydroxy Zaluzanin C, desoxy (=Costus lactone, dehydro) Zaluzanin C, 4/3,15-dihydro-3-dehydro Zaluzanin C, 11,13-dihydro-7,11-dehydro-3-desoxy Zaluzanin C, 3-epi Zaluzanin C, 3/3-H, (=Zaluzanin C, 3-epi) Zaluzanin C, 7a-hydroxy-3-desoxy Zaluzanin C, 7a-hydroxy-3-desoxy- 11/3,13-dihydro Zaluzanin C, 8a-hydroxy- 11/3,13-dihydro-3-dehydro Zaluzanin C-isovalerate Zaluzanin C-[2-methylbutyrate] Zaluzanin C-senecioate (=Vernoflexine) Zaluzanin C, 4/3,15,1lfl, 13-tetrahydro-3-dehydro Zaluzanin D Zaluzanin D, 8a-acetoxy Zempoalin A Zempoalin B Zexbrevanolide, 8fl-angeloyloxy Zexbrevanolide, 8fl-angeioyloxy-9/3-hydroxy Zexbrevanolide, 8a-[2-methylacryloyloxy] Zexbrevanolide, 8a-tiglinoyloxy
Structure number (ref. Fig. 32)
9
Page number
323 331 1018 1019 837 838 845 900
403 403 404 404 356 369
843 825 827 953 952
383 356 361 353 483
851 869 899 836 836 842 950 951 852 853 839 956 838 846 1092 1093 448 544 450 451
404 352 387
387
356 387 387 360 399 399 358 483 382
354 371 352 352
SESQUITERPENE LACTONES---ASTERACEAE
593
Append~B Continued.
Compound name Zexbrevin Zexbrevin B Zexbrevin C Zexbrevin D Zexbrevin-tiglate, demethacryloyl Zinaflorin I Zinaflorin II Zinaflorin III Zinamultifloride, 6fl-acetoxy-9a-angeloyloxy Zinamultifloride, 6/3-angeloyloxy-9a-acetoxy Zinamultiflofide, 9a-angeloyloxy-6fl-hydroxy Zinamultifloride, 6/3-angeloyloxy-9a-hydroxy Zinamultifloride, 9a-angeloyloxy-6fl-hydroxy-epoxy Zinamultifloride, 6fl-angeloyloxy-9a-hydroxy-epoxy Zinamultifloride, 6/3-isobutyryloxy-9a-hydroxy-epoxy Zinamultifloride, 9a-isobutyryloxy-6fl-hydroxy-epoxy Zinamultifloride, 9a-[2-methylacryloyloxy]-6fl-hydroxy Zinamultifloride, 6/3-[2-methylacryloyloxy]-9a-hydroxy Zinamultifloride, 9a-[2-methylacryloyloxy]-6fl-hydroxyepoxy Zinamultifloride, 6fl-[2-methylacryloyloxy]-9a-hydroxyepoxy Zinamultifloride, 6fl-[2-methylbutyryloxy]-9a-hydroxyepoxy Zinamultifloride, 9a-[2-methylbutyryloxy]-613-hydroxyepoxy Zinarosin Zinarosin, dihydro, diacetate Ziniolide Zinniadilactone Zuurbergenin Zuurbergenin, desacetyl
Structure number (ref. Fig. 32)
Page number
360 322 526 526.5 449 1084 1082 1083 1073.6 1073.5 t072 1070 1076 1074 1079 1081 1073 1071 1077
388 388 388 388 403 384 384 384 384 384 383 383 383 383 382 383 383 383 383
1075
383
1078
382
1080
382
1094 1095 998, 1009 1068 753 753.5
382 382 383 382 429 493
594
THE BOTANICALREVIEW
Appendix B Continued. II. Furanosesquiterpenes and related lactones isolated from the Asteraceae.
Compound name Adenostylone Andenostylone, iso Adenostylone, neo Cacalohastine Cacalohastine, dehydro Cacalol Cacalolide Cacalol, 1-oxo-9-desoxy Eremophilene lactam Euryopsin Euryopsin-9-one Euryopsin, 6-angeloyloxy-4,5-didehydro-5,6-seco Furanoeremophil-9,10-en- l-one,6/3-hydroxy Furanoeremophil- 1-one,9,10-dehydro Furanoeremophil-9-one, 1a,6fl-dihydroxy- 10a-H Furanoeremophilane Furanoeremophilane, 9,10-dehydro Furanoeudesm-4( 15)-ene, 3/3-hydroxy-5a-H-10fl-methyl Furanoeudesm-4(l 5)-ene, 3fl-acetoxy-5a-H- 10/3-methyl Furanopetasin Japonicin Japonicin, angelyl Japonicin, diangelyl Kablicin Petasalbin
Structure number (ref. Fig. 32) 1338 1340 1339 1344 1345 1342 1341 1343 1346 1336 1337 1348 1335 1334 1332 1325 1333 1350 1349 1330 1327 1328 1329 1331 1326
Page number 434 434 434 440 440 434 434 438 444 460 467 445 436 445 489 488 438 438 438 439