Iran J Sci Technol Trans Sci https://doi.org/10.1007/s40995-017-0438-z
RESEARCH PAPER
Some Applications of Generalized Srivastava–Attiya Integral Operator S. Z. H. Bukhari1 • K. I. Noor2 • B. Malik2 Received: 22 January 2017 / Accepted: 27 November 2017 Ó Shiraz University 2017
Abstract A function analytic and locally univalent in a simply connected domain is of bounded radius rotations if its range has bounded radius rotations which is defined as the total variation of the direction angle of radial vector to the boundary curve under a complete circuit. We use Srivastava–Attiya integral operator to define some new subclasses of analytic functions which map the open unit disk to the domain related with the functions of bounded radius rotation. Some results including inclusion relations, integral preserving properties, and inverse inclusions are studied. We may relate our finding with the existing results found in the literature of the subject. Keywords Carathe´odory function Mo¨bius function Srivastava–Attiya integral operator Bernardi integral operator
1 Introduction and Definitions Let HðUÞ represent the class of analytic functions f defined in the open unit disk U :¼ fz : z 2 C and jzj\1g: For a positive integer n and a 2 C, let H½a; n :¼ f : f 2 HðUÞ and fðzÞ ¼ a þ an zn þ anþ1 znþ1
The Mo¨bius function
þ ðz 2 UÞg:
l 0 ðzÞ ¼
We also define the class A by A :¼ f f : f 2 H½0; 1 and f 0 ð0Þ ¼ 1g:
The class of univalent functions is represented by S and it is a subclass of the class A, whereas S ; C; K, and Q are the well-known classes of starlike, convex, close-to-convex, and quasi-convex functions, respectively. Let P denote the well-known class of Carathe´odory functions p, such that p 2 HðUÞ; pð0Þ ¼ 1 and Re pðzÞ [ 0 ðz 2 UÞ:
ð1:1Þ
1þz ¼ 1 þ 2z þ 2z2 þ ; 1z
ðz 2 UÞ
ð1:2Þ
maps U onto the right half-plane. If p 2 P and z ¼ reih , then 1r 1þr RepðzÞ j pðzÞj 1þr 1r
ðz 2 UÞ
ð1:3Þ
and & S. Z. H. Bukhari
[email protected] K. I. Noor
[email protected] B. Malik
[email protected] 1
Department of Mathematics, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJK, Pakistan
2
Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan
j p0 ð z Þ j
2RepðzÞ 1 r2
ðz 2 UÞ:
ð1:4Þ
These inequalities are sharp. Equalities occur in (1.3) and (1.4) for suitable rotations of l0 given by (1.2). The class P k ð1Þ studied by Padmanabhan and Parvatham (1975) generalized the classes P and P k . The class P is given above, whereas the class P k introduced by Pinchuk (1971) is defined in the following. Let p be analytic in U. Then, p 2 P k , if it satisfies the conditions pð0Þ ¼ 1 and
123
Iran J Sci Technol Trans Sci
1 pð z Þ ¼ 2p
Z2p
ð1Þ
1 þ zeih daðhÞ 1 zeih
ðz 2 UÞ;
0
where aðhÞ : 0 h 2p is a function of bounded variation which satisfies the condition Z2p
Z2p
daðhÞ ¼ 2p
and
0
jdaðhÞj kp:
For pj 2 P, j ¼ 1, 2, we may also write k 1 k 1 þ p1 ð z Þ p2 ð z Þ pð z Þ ¼ 4 2 4 2
Gd;d ðzÞ ¼ z þ
1 X n þ d d ðn þ # 1Þ! n¼2
ðz 2 UÞ:
j RepðzÞ 1jdh kð1 1Þp;
0
where 0 1\1 and k 2. The general Hurwitz–Lerch zeta function /, see Srivastava and Owa (1992), is given in the following: 1 z z2 þ þ þ d d d ð 2 þ dÞ d ð 1 þ dÞ 1 X zn ¼ ; ðz 2 UÞ; d n¼0 ðn þ dÞ
/ðd; d; zÞ ¼
where d 2 CnZ , Z ¼ f1; 2; . . .g, d 2 C and for jzj ¼ 1, Red [ 1. For different values of the parameters, some applications of / are studied by Choi and Srivastava (2005), Ferreira and Lo´pez (2004), Garg et al. (2006), Lin et al. (2006), Luo and Srivastava (2005), Ruscheweyh (1975). Recently, for d 2 C and d 2 CnZ , Srivastava and Attiya (2001) introduced the operator Gd;d : A ! A, such that 1 X 1þd d n an z ; Gd;d f ðzÞ ¼ Gd;d ðzÞ f ðzÞ ¼ z þ nþd n¼2 ðz 2 UÞ; where 1 d Gd;d ðzÞ ¼ ð1 þ dÞ /ðd; d; zÞ d d 1 X 1þd d n ¼ z ðz 2 UÞ: nþd n¼1 Many known subclasses of A are defined using the operator Gd;d , for example, see Liu (2008). In term of convolution, the operator Ddd;# for # [ 1, d 2 CnZ and d 2 C can be written as
123
ð1:5Þ
ð1Þ
Let p be analytic in U. Then, p 2 P k ð1Þ, if it satisfies the conditions pð0Þ ¼ 1 and
ðz 2 UÞ;
where
0
Z2p
Ddd;# f ðzÞ ¼ Gd;d ðzÞ f ðzÞ ¼ z 1 X n þ d d ðn þ # 1Þ! n an z þ 1þd #!ðn 1Þ! n¼2
1þd
#!ðn 1Þ!
zn
ðz 2 UÞ:
This operator has been extensively explored in the literature of the subject. For d 2 Z, d ¼ 1 and # ¼ 0, it was investigated by Wang et al. (2010), and when d 2 Z and # ¼ 0, this is closely linked with the transformations studied by Flett, see Flett (1972). For more details, see also Ahuja (1985), Jung et al. (1993), Sa˘la˘gean (1983), Srivastava and Attiya (2007). Various generalizations of this operator are explored by Bukhari et al. (2017), Cho et al. (2010), Srivastava and Gaboury (2015), Srivastava et al. (2015), Srivastava et al. (2013). From (1.5), we have the following identities: d zðDdd;# f ðzÞÞ0 ¼ ðd þ 1ÞDdþ1 d;# f ðzÞ dDd;# f ðzÞ ðz 2 UÞ
ð1:6Þ and zðDdd;# f ðzÞÞ0 ¼ ð# þ 1ÞDdd;#þ1 f ðzÞ #Ddd;# f ðzÞ
ðz 2 UÞ: ð1:7Þ
For reference of (1.6) and (1.7), see Al-Shaqsi and Darus (2009). Definition 1 Let f be given by (1.1). Then, f 2 Sd ðd; #Þ, if it satisfies the condition p0 ðzÞ ¼
zðDdd;# f ðzÞÞ0 Ddd;# f ðzÞ
2P
ðz 2 UÞ;
ð1:8Þ
where d 2 C, d 2 CnZ , # [ 1. We note that f 2 Sd ðd; #Þ () Ddd;# f 2 SH : In the year 1917, Loewner introduced the concept of functions with bounded boundary rotation. If f ðUÞ is a schlicht domain with a C 1 boundary curve, then the bounded boundary rotation of f ðUÞ is defined as the total variation of the boundary tangent vector argument over a complete circuit. For more general domains, the rotation is defined by a limiting process. Paatero showed that f given by (1.1) is of bounded boundary rotation, if and only if f 0 ðzÞ 6¼ 0 in U and f ðUÞ is a domain with boundary rotation at most kp. These and related classes are heavily explored in the literature of the subject. Using multiplier
Iran J Sci Technol Trans Sci
transformation, we define a new class T dk ðd; c; #Þ of analytic functions related with the functions of bounded radius rotation. Definition 2 g 2 Sd ðd; #Þ
Let f 2 A. Then, f 2 T dk ðd; c; #Þ, if for
0 d 1 zðDd;# f ðzÞÞ 1þ 1 c Ddd;# gðzÞ
! 2 Pk
ðz 2 UÞ;
ð1:9Þ
where k 2, d 2 C , c 2 Cnf0g, d 2 CnZ , and # [ 1. Various known classes of analytic functions can be obtained from (1.9) for suitable choices of parameters within their specific ranges; for reference, see Al-Shaqsi and Darus (2009), Noor (1993), Noor (2000), Padmanabhan and Parvatham (1975).
This result is sharp. The proof of this lemma can easily be obtained using (1.1), (1.4), (1.6), and (1.7). Lemma 5 Let F . 2 Sd ðd; #Þ, where F . is given by (2.1). Then, f 2 Sd ðd; #Þ for jzj\r0 , where r0 ¼
1þ. pffiffiffiffiffiffiffiffiffiffiffiffiffi ; 2 þ 3 þ .2
. 0;
and this result is sharp. The proof of this lemma is simple and straight forward. Lemma 6 Miller and Mocanu (2000). Let h be convex in U and let x : U ! C, with RexðzÞ [ 0. If p is analytic in U; then pðzÞ þ xðzÞzp0 ðzÞ hðzÞ implies that
2 A Set of Preliminary Results To establish our main results, we will use the following lemmas. Lemma 1 have
Let d 2 C; d 2 CnZ and # [ 1. Then, we
ðiÞ Sdþ1 ðd; #Þ Sd ðd; #Þ; Red 0 d
and
d
ðiiÞ S ðd; # þ 1Þ S ðd; #Þ;# 0: Lemma 2 Let f 2 Sd ðd; #Þ for d 2 C, d 2 CnZ , # 0, and z 2 U. Then, the Bernardi integral operator F . 2 Sd ðd; #Þ, where F . ð f ÞðzÞ ¼
.þ1 z.
Zz
t.1 f ðtÞdt; . [ 1
ðz 2 UÞ:
0
ð2:1Þ For the proof of these lemmas, we refer Al-Shaqsi and Darus (2009). Lemma 3 Let f 2 Sd ðd; #Þ for d ¼ d1 þ id2 2 CnZ , # [ 1, d 2 C and z 2 U. Then, f 2 Sdþ1 ðd; #Þ for jzj\r0 , where r0 ¼
1 þ d1 qffiffiffiffiffiffiffiffiffiffiffiffiffi ; Red ¼ d1 [ 0: 2 þ 3 þ d21
ð2:2Þ
This result is sharp. Lemma 4 Let f 2 Sd ðd; #Þ for d ¼ d1 þ id2 2 CnZ , # [ 1, d 2 C and z 2 U. Then, f 2 Sd ðd; # þ 1Þ for jzj\r0 , where 1þ# pffiffiffiffiffiffiffiffiffiffiffiffiffi ; r0 ¼ 2 þ 3 þ #2
# 0:
pðzÞ hðzÞ:
3 Main Results In the following theorem, we study certain inclusions results. Theorem 1 Let d ¼ d1 þ id2 2 CnZ with Red ¼ d1 0, c 2 Cnf0g, d 2 C, # [ 1, k 2 and z 2 U. Then, we have Tkdþ1 ðd; c; #Þ Tkd ðd; c; #Þ. Proof Let f 2 T dþ1 k ðd; c; #Þ. Then, by Definition 2, there exists g 2 Sdþ1 ðd; #Þ, so that ! 0 dþ1 1 zðDd;# f ðzÞÞ H ðzÞ ¼ 1 þ ð3:1Þ 1 2 Pk : c Ddþ1 d;# gðzÞ Consider ! 0 d 1 zðDd;# f ðzÞÞ pð z Þ ¼ 1 þ 1 : c Ddd;# gðzÞ
ð3:2Þ
Since g 2 Sdþ1 ðd; #Þ, so Lemma 1 implies that g 2 Sd ðd; cÞ. Furthermore, from (1.6) and (1.8), we have fp0 ðzÞ þ dgDdd;# gðzÞ ¼ ðd þ 1ÞDdþ1 d;# gðzÞ;
ð3:3Þ
where g 2 Sd ðd; cÞ. Again using (1.6) in (3.2) and then differentiating, we write 0 0 d 0 d ðd þ 1ÞzðDdþ1 d;# f ðzÞÞ ¼ dzðDd;# f ðzÞÞ þ czp ðzÞDd;# gðzÞ
þ ½cpðzÞ c þ 1zðDdd;# gðzÞÞ0 : ð3:4Þ Using (3.3) and (3.4) in (3.1) and then simplifying to have
123
Iran J Sci Technol Trans Sci
zp0 ðzÞ ½cpðzÞ c þ 1 1 þ1 þ p0 ð z Þ þ d c c zp0 ðzÞ ¼ pðzÞ þ 2 Pk: p0 ðzÞ þ d
HðzÞ ¼
pð z Þ ¼ ð3:5Þ
Moreover, consider that k 1 k 1 þ p1 ð z Þ p2 ðzÞ: pð z Þ ¼ 4 2 4 2
ð3:6Þ
z 2 U:
zp0j ðzÞ 2 P; j ¼ 1; 2: p0 ðzÞ þ #
pj ðzÞ þ
From (3.5) and (3.7), we deduce that and
in (3.12), we have zp0 ðzÞ k 1 zp01 ðzÞ k 1 pð z Þ þ ¼ þ p1 ð z Þ þ p 0 ðzÞ þ # 4 2 p0 ðzÞ þ # 4 2 zp02 ðzÞ
p2 ð z Þ þ : p0 ð z Þ þ # From (3.13) and (3.14), we observe that
ð3:7Þ
zp0j ðzÞ 2 P; j ¼ 1; 2 p0 ðzÞ þ d
ð3:8Þ
For Reðp0 ðzÞ þ dÞ [ 0, Lemma 2.5 and (3.8) imply that pj 2 P; j ¼ 1; 2, and z 2 U. Thus, from (3.7), we write d h f 2 T dk ðd; c; #Þ. Hence, T dþ1 k ðd; c; #Þ T k ðd; c; #Þ. Theorem 2 Let c 2 Cnf0g, d ¼ d1 þ id2 2 CnZ , d 2 C; # [ 0, k 2 and z 2 U. Then, Tkd ðd; c; # þ 1Þ Tkd ðd; c; #Þ. Proof Let f 2 T dk ðd; c; # þ 1Þ. Then, by Definition 2, there exists g 2 Sd ðd; # þ 1Þ, such that ! 0 d 1 zðDd;#þ1 f ðzÞÞ Q ðzÞ ¼ 1 þ ð3:9Þ 1 2 Pk: c Ddd;#þ1 gðzÞ To prove that f 2 T dk ðd; c; #Þ, we set p similar to that of (3.2). For g 2 Sd ðd; # þ 1Þ, from Lemma 1, it implies that g 2 Sd ðd; #Þ. Using the identity (1.7) in (1.8), we have fp0 ðzÞ þ #gDdd;# gðzÞ ¼ ð# þ 1ÞDdd;#þ1 gðzÞ; z 2 U: ð3:10Þ
ð# þ
¼ #zðDdd;# f ðzÞÞ0
From the operators Ddd;# and F . defined by (1.5) and (2.1), respectively, we obtain the following identity: zðDdd;# F . ðzÞÞ0 ¼ ð. þ 1ÞDdd;# f ðzÞ gDdd;# F . ðzÞ:
þ
Theorem 3 Let d 2 C, d ¼ d1 þ id2 2 CnZ , c 2 Cnf0g, # [ 1, k 2 and z 2 U. Then, for f 2 Tkd ðd; c; #Þ, F . 2 Tkd ðd; c; #Þ, . 0, where F . is given by (2.1). Proof
Consider
! 0 d 1 zðDd;# F . ð f ÞðzÞÞ pð z Þ ¼ 1 þ 1 ; . 0; c Ddd;# F . ðgÞðzÞ
On combining (3.9), (3.10), (3.11), and the following similar steps as in Theorem 1, we obtain Q ð z Þ ¼ pð z Þ þ
zp0 ðzÞ 2 Pk; p0 ðzÞ þ #
Taking
123
z 2 U:
ð3:12Þ
ð3:17Þ
where p is analytic in U and pð0Þ ¼ 1. Since g 2 Sd ðd; #Þ, so Lemma 2, we have F . ðgÞ 2 Sd ðd; #Þ. Using (3.16) in (3.17) and simplifying, we have ðDdd;# f ðzÞÞ0
¼
gðDdd;# F . ð f ÞðzÞÞ0
cp0 ðzÞDdd;# F . ðgÞðzÞ
þ
ð3:11Þ
ð3:16Þ
In the next theorems, we discuss integral preserving property of the operator F . defined by (2.1).
þ .þ1 .þ1 d ðcpðzÞ c þ 1ÞðDd;# F . ðgÞðzÞÞ0 .þ1
0
þ czp ðzÞDdd;# gðzÞ fcpðzÞc þ 1gzðDdd;# gðzÞÞ0 :
ð3:15Þ
For Reðp0 ðzÞ þ #Þ [ 0, Lemma 6 and (3.15) imply that pj 2 P, j ¼ 1, 2. Thus, f 2 T dk ðd; c; #Þ. Hence, T dk ðd; c; # þ 1Þ T dk ðd; c; #Þ. h
Again from (1.7) and (3.2), we can write 1ÞzðDdd;#þ1 f ðzÞÞ0
ð3:13Þ
ð3:14Þ
On combining (3.5) and (3.6), we obtain zp0 ðzÞ k 1 zp01 ðzÞ pð z Þ þ ¼ þ p1 ðzÞ þ p0 ð z Þ þ d 4 2 p0 ð z Þ þ d k 1 zp02 ðzÞ p2 ðzÞ þ : 4 2 p0 ð z Þ þ d
pj ðzÞ þ
k 1 k 1 þ p1 ð z Þ p2 ð z Þ 4 2 4 2
: ð3:18Þ
Set p0 ðzÞ ¼
zðDdd;# F . ðgÞðzÞÞ0 Ddd;# F . ðgÞðzÞ
ð3:19Þ
:
Using (3.16) in (3.19), we can write p0 ðzÞ þ . ¼ ð. þ 1Þ
Ddd;# gðzÞ Ddd;# F . ðgÞðzÞ
:
ð3:20Þ
Iran J Sci Technol Trans Sci
Following similar arguments as in the preceding theorems, from (1.9), (3.18), (3.19), and (3.20), we can write: pð z Þ þ
zp0 ðzÞ 2 Pk; p0 ð z Þ þ .
z 2 U:
ð3:21Þ
Using pð z Þ ¼
k 1 k 1 þ p1 ð z Þ p2 ð z Þ 4 2 4 2
Taking pð z Þ ¼
for j ¼ 1; 2:
j ¼ 1; 2:
ð3:26Þ
Thus, p 2 P k for z 2 U. Hence, F . ð f Þ 2 T
d k ðd; c; #Þ.
h
In the following theorems, we include some radii problems related with the class T dk ðd; c; #Þ. Theorem 4 Let f 2 Tkd ðd; c, #Þ for c 6¼ 0, d 2 CnZ with Red ¼ d1 0, d 2 C, # [ 1, k 2 and z 2 U. Then, f 2 Tkdþ1 ðd; c, #Þ for jzj\r0 , where 1 þ d1 qffiffiffiffiffiffiffiffiffiffiffiffiffi ; 2 þ 3 þ d21
d1 0:
This result is sharp.
Since g 2 Sd ðd; #Þ, so from (1.6) and (1.8), we have (3.3). Using (1.6) in (3.22) and then simplifying, we can write d ½cpðzÞ c þ 1Ddd;# gðzÞ ¼ ðd þ 1ÞDdþ1 d;# f ðzÞ dDd;# f ðzÞ:
This implies that ðd þ
¼dzðDdd;# f ðzÞÞ0 ½cpðzÞ
þ zðDdd;# gðzÞÞ0 cþ1 þ czp0 ðzÞDdd;# gðzÞ: ð3:23Þ
Now, consider
where pj 2 P, j ¼ 1, 2, and z 2 U. To find that pj ðzÞ þ
zp0j ðzÞ 2P p0 ðzÞ þ d
for j ¼ 1, 2 and z 2 U, we use (1.3) and (1.4) as below. zp0j ðzÞ Re pj ðzÞ þ p0 ð z Þ þ d ð3:27Þ ð1 r Þð1 r þ d1 þ rd1 Þ 2r : Repj ðzÞ ð1 r Þð1 r þ d1 þ rd1 Þ The right-hand side of (3.27) is positive, if |z| \r0 , where
Proof Let f 2 T dk ðd; c; #Þ. Then, by Definition 2, there exists g 2 Sd ðd; #Þ, such that ! 0 d 1 zðDd;# f ðzÞÞ pð z Þ ¼ 1 þ 1 2 P k ; z 2 U: ð3:22Þ c Ddd;# gðzÞ
0 1ÞzðDdþ1 d;# f ðzÞÞ
k 1 k 1 þ p1 ð z Þ p2 ð z Þ 4 2 4 2
in (3.25), we obtain zp0 ðzÞ k 1 zp01 ðzÞ pð z Þ þ ¼ þ p1 ðzÞ þ p0 ð z Þ þ d 4 2 p0 ð z Þ þ d k 1 zp02 ðzÞ p2 ð z Þ þ ; 4 2 p0 ð z Þ þ d
On applying Lemma 6, we see that pj 2 P for
r0 ¼
where H is analytic in U with Hð0Þ ¼ 1. From Lemma 3, it follows that g 2 Sdþ1 ðd; #Þ for jzj\r0 , where r0 is given by (2.2). On combining (3.3), (3.23), and (3.24), we obtain ½p0 ðzÞ þ d½cpðzÞ c þ 1 zp0 ðzÞ 1 þ þ1 c ð p0 ð z Þ þ d Þ p0 ð z Þ þ d c 0 zp ðzÞ ¼ pð z Þ þ : ð3:25Þ p0 ð z Þ þ d
This implies that
Reðp0 ðzÞ þ .Þ [ 0;
ð3:24Þ
H ðzÞ ¼
in (3.21), we have k 1 zp01 ðzÞ þ p1 ðzÞ þ 4 2 p0 ðzÞ þ . k 1 zp02 ðzÞ p2 ð z Þ þ 2 P k ; z 2 U: 4 2 p0 ð z Þ þ .
zp0j ðzÞ pj ðzÞ þ 2P p0 ðzÞ þ .
! 0 dþ1 1 zðDd;# f ðzÞÞ 1 ; H ðzÞ ¼ 1 þ c Ddþ1 d;# gðzÞ
r0 ¼
1 þ d1 qffiffiffiffiffiffiffiffiffiffiffiffiffi ; 2 þ 3 þ d21
Red ¼ d1 0
and the sharpness of r0 follows from pj ðzÞ ¼ l0 ðzÞ given by (1.2). Hence, from (3.25) and (3.26), we conclude that f 2 T dþ1 h k ðd;c ; #Þ. Theorem 5 Let f 2 Tkd ðd; c, #Þ for c 2 Cnf0g, d 2 C, # 0, k2 and d ¼ d1 þ id2 2 CnZ , d z 2 U. Then, f 2 Tk ðd; c, # þ 1Þ for jzj\r0 , where r0 ¼
1þ# pffiffiffiffiffiffiffiffiffiffiffiffiffi : 2 þ 3 þ #2
This result is sharp. Using (1.7), (1.8), (3.22), and Lemma 4, we obtain the desired proof.
123
Iran J Sci Technol Trans Sci
Theorem 6 Let F . ðf Þ 2 Tkd ðd; c; #Þ for d 2 C, d ¼ d1 þ id2 2 CnZ , c 2 Cnf0g, # [ 1, k 2, . 0 and z 2 U, where F . is defined by (2.1). Then, f 2 Tkd ðd; c; #Þ for jzj\r0 , where r0 ¼
1þ. pffiffiffiffiffiffiffiffiffiffiffiffiffi ; 2 þ 3 þ .2
zp0j ðzÞ Repj ðzÞ Re pj ðzÞ þ p0 ð z Þ þ . ð1 r Þð1 r þ . þ rgÞ 2r : ð1 r Þð1 r þ . þ rgÞ
ð3:31Þ
The inequality (3.31) is positive, if |z| \r0 , where 1þ. pffiffiffiffiffiffiffiffiffiffiffiffiffi ; 2 þ 3 þ .2
and this result is sharp.
r0 ¼
Let F . ðf Þ 2 T dk ðd; c; #Þ. Then, ! 0 d 1 zðDd;# F . ð f ÞðzÞÞ 1 2 Pk; pð z Þ ¼ 1 þ c Ddd;# F . ðgÞðzÞ
and this value of r0 is sharp for pj ðzÞ ¼ l0 ðzÞ ¼ 1þz 1z ; j ¼ 1; 2: Hence, (3.29) and (3.30) lead to the required result. h
Proof
. 0;
z 2 U; ð3:28Þ
where F . ðgÞðzÞ 2 Sd ðd; #Þ. Using (2.1) in (3.28) and simplifying ð. þ 1ÞDdd;# f ðzÞ ¼ gDdd;# F . ð f ÞðzÞ þ ðcpðzÞ c þ 1ÞDdd;# F . ðgÞðzÞ: On differentiating (3.28), we have (3.18). In addition, from Lemma 5, it follows that g 2 Sd ðd; #Þ for jzj\r0 , where r0 is given therein. Now, set H as in (1.9) and then use (3.18), (3.19), and (3.28) in (1.9), we have zp0 ðzÞ ðcpðzÞ c þ 1Þp0 ðzÞ þ p0 ð z Þ þ . cðp0 ðzÞ þ .Þ .ðcpðzÞ c þ 1Þ 1 þ þ1 cðp0 ðzÞ þ .Þ c 0 zp ðzÞ ¼ pð z Þ þ : p0 ð z Þ þ .
4 Concluding Remarks and Observations Motivated essentially by several applications of Attiya– Srivastava operator, we have introduced a new class Tkd ðd; c; #Þ of analytic functions with bounded radius rotations. For functions belonging to this general function class Tkd ðd; c; #Þ, we have derived several inclusion results, integral representations, and inverse inclusions. We have also shown how the results presented in this paper (see Theorem 1 to Theorem 6) would apply to yield the corresponding (known or new) results for a number of simpler function classes.
H ðzÞ ¼
ð3:29Þ
Taking pð z Þ ¼
References
k 1 k 1 þ p1 ð z Þ p2 ð z Þ 4 2 4 2
in (3.29), we can write zp0 ðzÞ k 1 zp01 ðzÞ pð z Þ þ ¼ þ p1 ðzÞ þ p0 ð z Þ þ . 4 2 p0 ð z Þ þ . k 1 zp02 ðzÞ p2 ð z Þ þ ; 4 2 p0 ð z Þ þ . ð3:30Þ where pj 2 P, j ¼ 1, 2, and z 2 U. To find that pj ðzÞ þ
zp0j ðzÞ 2P p0 ðzÞ þ .
for j ¼ 1; 2
we use (1.3) and (1.4) as below:
123
and z 2 U;
Acknowledgements The authors would like to thank Worthy Vice Chancellor MUST, Mirpur, AJK, Pak, Prof. Dr. Habib-ur-Rahman (FCSP, SI) and Honorable Rector CIIT, Islamabad, Pak, Prof. Dr. SM Junaid Zaidi (HI, SI) for their untiring efforts for the promotion of research conducive environment in their relevant Institutions.
Ahuja OP (1985) Integral operators of certain univalent functions. Int J Math Math Sci 8(4):653–662 Al-Shaqsi K, Darus M (2009) A multiplier transformation defined by convolution involving nth order polylogarithm functions. Int Math Forum 4(37):1823–1837 Bukhari SZH, Zafar S, Nazir M (2017) Functions of bounded radius rotation involving multiplier transformations. Pure Math Sci 6(1):29–37 Cho NE, Kim IH, Srivastava HM (2010) Sandwich-type theorems for multivalent functions associated with the Srivastava–Attiya operator. Appl Math Comput 217:918–928 Choi J, Srivastava HM (2005) Certain families of series associated with the Hurwitz–Lerch zeta functions. Appl Math Comput 170:399–409 Ferreira C, Lo´pez JL (2004) Asymptotic expansions of the Hurwitz– Lerch zeta functions. J Math Anal Appl 298:210–224 Flett TM (1972) The dual of an inequality of Hardy and Littlewood and some related inequalities. J Math Anal Appl 38:746–765 Garg M, Jain K, Srivastava HM (2006) Some relationships between the generalized Apostol–Bernoulli polynomials and Hurwitz– Lerch zeta functions. Integral Transform Spec Funct 17:803–815
Iran J Sci Technol Trans Sci Jung IB, Kim YC, Srivastava HM (1993) The Hardy space of analytic functions associated with certain one-parameter families of integral operators. J Math Anal Appl 176:138–147 Lin SD, Srivastava HM, Wang P-Y (2006) Some expansion formulas for a class of generalized Hurwitz–Lerch zeta functions. Integral Transf Spec Funct 17:817–827 Liu JL (2008) Subordinations for certain multivalent analytic functions associated with the generalized Srivastava–Attiya operator. Integral Transf Spec Funct 19:893–901 Luo Q-M, Srivastava HM (2005) Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials. J Math Anal Appl 308:290–302 Miller SS, Mocanu PT (2000) Differential subordination: theory and applications. Marcel Dekker Inc, New York Noor KI (1993) On certain classes of close-to convex functions. Int J Math Math Sci 16:329–336 Noor KI (2000) On close-to-convex functions of complex order. Soochow J Math 26(4):369–376 Noor KI, Bukhari SZH (2010) Some subclasses of analytic and spirallike functions of complex order involving the Srivastava– Attiya integral operator. Integral Transform Spec Funct 21(12):907–16 Padmanabhan KS, Parvatham R (1975) Properties of a class of functions with bounded boundary rotations. Ann Polon Math 31:311–323 Pinchuk B (1971) Functions of bounded boundary rotations. Isr J Math 10:6–16 Pommerenke Ch (1975) Univalent functions. Vanderhoeck and Ruprecht, Gottengen
Ra˘ducanu D, Srivastava HM (2007) A new class of analytic functions defined by means of a convolution operator involving the Hurwitz–Lerch Zeta function. Integral Transform Spec Funct 18:933–943 Ruscheweyh St (1975) New criteria for univalent functions. Proc Am Math Soc 49:09–115 Sa˘la˘gean GS (1983) Subclasses of univalent functionsm. Lecture Notes in Math. Springer, Berlin, pp 362–372 Srivastava HM, Attiya AA (2007) An integral operator associated with the Hurwitz–Lerch zeta function and differential subordination. Integral Transform Spec Funct 8(3):207–216 Srivastava HM, Choi J (2001) Series associated with the Zeta and related functions. Kluwer Academic Publishers, Dordrecht Srivastava HM, Gaboury S (2015) A new class of analytic functions defined by means of a generalization of the Srivastava–Attiya operator. J Inequal Appl 39:1–15 Srivastava HM, Gaboury S, Ghanim F (2015) A unified class of analytic functions involving a generalization of the Srivastava– Attiya operator. Appl Math Comput 251:35–45 Srivastava HM, Owa S (1992) Current topics in analytic function theory. World Scientific Publishing Co Pte Ltd., Singapore Srivastava HM, Ra˘ducanu D, Sa˘la˘gean GS (2013) A new class of generalized close-to-starlike functions defined by the Srivastava– Attiya operator. Acta Math Sin Engl Ser 29:833–840 Wang Z-G, Li Q-G, Jiang Y-P (2010) Certain subclasses of multivalent analytic functions involving the generalized Srivastava–Attiya operator. Integral Transform Spec Funct 21:221–234
123