Russian Chemical Bulletin, International Edition, Vol. 66, No. 5, pp. 891—898, May, 2017
891
Synthesis of phosphonamides of methane and benzenesulfonic acids bearing the P—C—N fragments A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, and V. S. Petrosyan
Department of Chemistry, M. V. Lomonosov Moscow State University, 3 Build., 1 Leninskie Gory, 119991 Moscow, Russian Federation. Email:
[email protected] Preparative synthetic procedures towards new phosphoruscontaining benzenesulfon amides were elaborated. The synthesis is involved the reactions of trivalent phosphorus acids with high reactive NmethylNchloromethylsulfonamide, phosphorylated methylamines bearing the NH and NSi groups, and methane and benzenesulfonyl chlorides. Key words: phosphoruscontaining methane and benzenesulfonamides, esters of triva lent phosphorus acids, NchloromethylNmethylmethanesulfonylamide, phosphorylated methylamines.
Functionalized organophosphorus derivatives of amino acids and peptides are promising biomimetics of natural phosphates, oxy and amino acids. These compounds containing a hydrolytically stable P—C bond efficient ly interact with different enzymes and show antimicro bial, antiviral, pesticide, and antitumor activities.1 Well known sulfurcontaining amino acids, e.g., cysteine, cysteic and cysteinesulfinic acids, and taurine (2amino ethanesulfonic acid) are important biologically active substances playing many fundamental roles in bio chemical processes. 2 Recently,3 we have synthesized some organophosphorus derivatives of ethanesulfon ic acid. In the present work, we describe convenient synthetic procedures to access new phosphoruscon taining methane and benzenesulfonamides bearing the P—C—N fragments. These compounds are of great inter est as biologically active substances and polydentate ligands. The most convenient method to synthesize the PCH2N fragment is the Arbuzov reaction of Nchloromethyl amines (amides) with esters of trivalent phosphorus ac ids. 4 This prompted the interest in readily available NchloromethylNmethylmethanesulfonamide.5,6 In the present work, we performed the detailed study of reactivity of this compound towards esters of trivalent phosphorus acids. It was shown that NchloromethylNmethyl methanesulfonamide smoothly reacts with both simple phosphites and recently synthesized functionalized phos phonites7—10 under mild conditions (CH2Cl2, 5 °C). The reactions follow the Arbuzov reaction mechanism to give new phosphonates 1a,b and phosphinates 2a—f bearing simultaneously the sulfonamidomethyl moiety and other functional groups (Scheme 1).
Scheme 1
1: X = Et (a), Me3Si (b) 2: Y = CH2CH 2Ph (b), CH2CH 2COOSiMe3 (c),
CH(COOMe)CH2COOMe (d),
(e),
(f)
Conditions: CH2Cl2, 5 °C.
It should be noted that phosphonate 1a is the only product of amidomethylation of both triethyl phosphite and diethyl(trimethylsilyl)phosphite. In the last case, quasiphosphonium intermediate decomposes during the Arbuzov reaction with the selective elimination of chloro trimethylsilane (Scheme 2). Phosphinates 2a—e (see Scheme 1) were obtained in 73—85% yields. In contrast, phosphinate 2f was isolated in 35% yield only since phosphonate 1b is produced in 40% yield along with 2f.
Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 0891—0898, May, 2017. 10665285/17/66050891 © 2017 Springer Science+Business Media, Inc.
892
Russ. Chem. Bull., Int. Ed., Vol. 66, No. 5, May, 2017
Prishchenko et al.
Scheme 2
Scheme 3
Reagents and conditions: ClCH2N(Me)SO2Me, CH2Cl2, 5 °C.
Undoubtedly, this fact is explained by easy decompo sition of intermediate quasiphosphonium compounds, which can follow two directions. The first direction, the ordinary Arbuzov reaction, produces phosphinate 2f. An alternative route proceeds apparently via elimination of cyclohexene to give phosphonate 1b (Scheme 3). Bis(trimethylsilyloxy)phosphine containing two high ly reactive centers, namely, the PH and POSi groups, reacts with NchloromethylNmethylmethanesulfon amide in the presence of triethylamine under mild con ditions to give selectively phosphonite 3 in 87%yield (Scheme 4).
Scheme 5
Scheme 4
NR2 = N(Me)SO2Me (a), NMe2 (b),
Reagents and conditions: ClCH2N(Me)SO2Me, Et3N, CH2Cl2, 5 ° C.
Phosphonite 3 was used as a key intermediate in the synthesis of a series of phosphinates 4 (see Refs 11, 12) bearing simultaneously the sulfonylamidomethyl moiety and another functional group. Thus, mild reactions of phosphonite 3 with Nchloromethylamines, N(chloro methyl)methanesulfonamide, acetyl chloride, and benz aldehyde smoothly give phosphinates 4 (Scheme 5). In the present work, we also elaborated another versa tile procedure to phosphoruscontaining sulfonamides via the reaction between readily available phosphorus and siliconcontaining methylamines13 containing the N—Si bond and substituted sulfonyl chlorides. This reaction smoothly proceeds in dichloromethane to produce phos phonates 1a,c—h in high yields (Scheme 6).
R´ =
(c),
(d);
(e), Bu t (f)
Conditions: CH2Cl2, 5 ° C. Scheme 6
R = Me (a, f—h), Et (c), CH2=CHCH 2 (d), Bu (e) X = Me (a, c—e), 4MeC6H 4 (f), 4ClC6H4 (g), 4BrC6H4 (h)
Conditions: CH2Cl2, 10 ° C.
In recent years, organophosphorus analogs of amino acids, including phosphorussubstituted amides with
Derivatives of sulfonic acids with P—C—N moieties
Russ. Chem. Bull., Int. Ed., Vol. 66, No. 5, May, 2017
asymmetric carbon atom, attract special interest of the researches.14—16 Taking this fact into account, we elabo rated synthetic approach to phosphoruscontaining sulf onamides with asymmetric carbon atom in the PCHNH fragment starting from readily available adducts of PHacids and imines.17 These adducts readily react with methanesulfonyl chloride in diethyl ether in the presence of triethylamine. The reactions proceed selectively at the NH group to give the corresponding sulfonamides 5a—d in 70—78% yields (Scheme 7). Scheme 7
893
Scheme 9
(a), But (b)
R=
Reagents and conditions: MeONa, MeOH, 10—20 °C.
Trimethylsilyl groups of phosphonates 1b and phos phinates 2b—e and 4a—d,g can be easily cleaved by treat ment with excess methanol to give phosphonic (7) and phosphinic (8) acids, which are of interest as complex ones and biologically active substances (Scheme 10). Scheme 10
X = Ph (a, c), 2furyl (b, d)
Reagents and conditions: MeSO2Cl, Et3N, Et2O, 20 ° C.
Phosphorussubstituted sulfonamides 1a—h and 5a—d are formed upon decomposition of ammonium interme diates with elimination of chlorotrimethylsilane and tri ethylamine hydrochloride, respectively (Scheme 8).
8 a
X (CH2)2Ph
8 f
b
(CH2)2COOH
g
c
CH(COOMe) 2CH 2COOMe
h
X CH 2NMe2
Scheme 8 d e
i
CH(OH)Ph
(CH 2)2N(Me)SO 2Me
Conditions: 10—40 ° C.
In summary, we elaborated unique synthetic proce dures to access new phosphorussubstituted methane and benzenesulfonamides bearing the P—C—N fragments starting from readily available reagents. The obtained compounds are of interest as the building blocks for synthesis of organophosphorus peptides with different arrangement of the phosphoryl and sulfonyl moieties and are also promising polydentate ligands. The obtained trimethysilyl esters of phosphonic and phosphinic acids 1, 2, and 4 were successfully used for the synthesis of the corresponding watersoluble acids and their salts. Thus, treatment of phosphinates 4e,f with a diluted solution of sodium methoxide in methanol results in so dium salts 6a and 6b as hygroscopic crystals (Scheme 9).
Experimental 1H, 13C{1H}, and 31P{1H} NMR spectra were registered on a Bruker Avance 400 instrument (working frequencies of 400, 100, and 162 MHz, respectively). The chemical shifts are given in the δ scale and referenced to Me 4 Si ( 1H, 13C{1H}) and 85% H3PO4 in D2O (31P{1H}). All reactions were carried out in
894
Russ. Chem. Bull., Int. Ed., Vol. 66, No. 5, May, 2017
anhydrous solvents under argon. The starting trimethylsilyl esters of trivalent phosphorus acids,7—12 NchloromethylN methylmethanesulfonamide were synthesized by the known procedures.5 O,ODiethyl NmethanesulfonylNmethylaminomethylphos phonate (1a). To a stirred solution of triethyl phosphite (7 g, 0.042 mol) in dichloromethane (10 mL), a solution of Nchloro methylNmethylmethanesulfonamide (6 g, 0.038 mol) in dichloromethane (15 mL) was added dropwise at 5 °C. The reaction mixture was heated to reflux, the volatiles were re moved in vacuo. Vacuum distillation of the residue gave 8.6 g (87%) of phosphonate 1a, b.p. 159 °C (2 Torr). Found (%): C, 32.34; H, 6.92. C7H18NO5PS. Calculated (%): C, 32.43; H, 7.00. 1H NMR (CDCl3), δ: 0.94 (t, 6 H, 2 Me, 3JP,H = 7.0 Hz); 2.51 (s, 3 H, MeN); 2.61 (s, 3 H, MeS); 3.16 (d, 2 H, C(1)H2, 2J 13 1 P,H = 10.0 Hz); 3.70—3.80 (m, 4 H, 2 CH2O). C{ H} NMR (CDCl3), δ: 15.4 (d, Me, 3JP,C = 5.7 Hz); 34.8 (s, MeN); 35.2 (s, MeS); 44.2 (d, C(1), 1JP,C = 160.5 Hz); 61.6 (d, CH2O, 2J 31 1 P,C = 6.8 Hz). P{ H} NMR (CDCl3), δ: 18.4 (s). Under similar conditions, phosphonate 1a was obtained from diethyl trimethylsilyl phosphite (6.0 g, 0.029 mol) and NchloromethylNmethylmethanesulfonamide (3.7 g, 0.024 mol) in the yield of 4.9 g (80%). Compounds 1b, 2, and 4 were synthesized similarly. O,OBis(trimethylsilyl) N(methanesulfonyl)Nmethyl aminomethylphosphonate (1b). Yield 89%, b.p. 155 °C (2 Torr), m.p. 49 °C. Found (%): C, 30.95; H, 7.49. C9H26NO5PSSi2. Calculated (%): C, 31.11; H, 7.54. 1H NMR (CDCl3), δ: –0.01 (s, 18 H, 2 Me3Si); 2.54 (s, 3 H, MeN); 2.70 (s, 3 H, 2 MeS); 3.10 (d, 2 H, C(1)H2, 2JP,H = 10.8 Hz). 13C{1H} NMR (CDCl3), δ: 0.2 (s, Me3Si); 34.6 (s, MeN); 35.4 (s, MeS); 46.5 (d, C(1), 1J 31 1 P,C = 169.6 Hz). P{ H} NMR (CDCl3), δ: –0.05 (s). OIsopropyl N(methanesulfonyl)Nmethylaminodimethyl phosphinate (2a). Yield 84%, b.p. 148 °C (0.5 Torr), m.p. 57 °C. Found (%): C, 34.40; H, 7.39. C7H18NO4PS. Calculated (%): C, 34.56; H, 7.46. 1H NMR (CDCl3), δ: 1.03 (d, 3 H, MePri, 3J 3 H,H = 6.0 Hz); 1.04 (d, 3 H, MePri, JH,H = 6.0 Hz); 1.27 (d, 3 H, MeP, C(1)HB and C(1)HA, 2JP,H = 14.0 Hz); 2.57 (s, 3 H, MeN); 2.75 (s, 3 H, MeS); 3.04 and 3.10 (both m, ABX system, 2 H, 2JHA,HB = 15.6 Hz, 2JP,HA = 8.8 Hz, 2JP,HB = 9.6 Hz); 4.35—4.50 (m, 1 H, CHO). 13C{1H} NMR (CDCl3), δ: 12.5 (d, MeP, 1JP,C = 94.1 Hz); 23.6 (d, MePri, 3JP,C = 3.4 Hz); 34.1 (d, MeN, 3JP,C = 5.4 Hz); 36.0 (s, MeS); 48.3 (d, C(1), 1JP,C = = 169.6 Hz); 69.3 (d, CHO, 2JP,C = 6.9 Hz). 31P{1H} NMR (CDCl3), δ: 45.2 (s). OTrimethylsilyl N(methanesulfonyl)Nmethylaminometh yl2(phenylethyl)phosphinate (2b). Yield 83%, b.p. 165 ° C (1 Torr). Found (%): C, 45.91; H, 7.08. C14H26NO4PSSi. Calcu lated (%): C, 46.26; H, 7.21. 1H NMR (CDCl3), δ: 0.17 (s, 9 H, Me3Si); 1.90—2.10 (m, 2 H, CH2P); 2.64 (s, 3 H, MeN); 2.75—2.80 (m, 2 H, CH2Ph); 2.88 (s, 3 H, MeS); 3.14 and 3.29 (both m, ABX, 2 H, C(1)HB and C(1)HA, 2JHA,HB = 15.0 Hz, 2J 2 P,HA = 8.0 Hz, J P,HB = 10.0 Hz); 7.00—7.25 (m, 5 H, Ph). 13C{1H} NMR (CDCl ), δ: 0.8 (s, Me Si); 27.3 (s, CH Ph); 3 3 2 29.6 (d, CH2P, 1JP,C = 92.2 Hz); 33.7 (d, MeN, 3JP,C = 4.9 Hz); 36.1 (d, MeS, 3JP,C = 3.1 Hz); 48.0 (d, C(1), 1JP,C = 107.2 Hz); 125.7 (s, Cp); 127.5 (s); 128.0 (s); 140.3 (d, Ci, 3JP,C = 15.7 Hz). 31P{1H} NMR (CDCl ), δ : 37.2 (s). 3 OTrimethylsilyl N(methanesulfonyl)Nmethylaminomethyl 2(trimethylsilyloxycarbonyl)ethylphospinate (2c). Yield 85%, b.p. 190 °C (2 Torr). Found (%): C, 35.59; H, 7.33. C12H30NO6PSSi2.
Prishchenko et al.
Calculated (%): C, 35.71; H, 7.49. 1H NMR (CDCl3), δ: 0.02 (s, 9 H, Me3Si); 0.07 (s, 9 H, Me3Si); 1.50—1.75 (m, 2 H, CH2P); 2.10—2.20 (m, 2 H, CH2C=O); 2.40 (s, 3 H, MeN); 2.57 (s, 3 H, MeS); 3.06 and 3.14 (both m, ABX system, 2 H, C(1)HB and C(1)HA, 2JHA,HB = 15.0 Hz, 2JP,HA = 8.0 Hz, 2J 13 1 P,HB = 10.0 Hz). C{ H} NMR (CDCl3), δ: –1.3 (s, Me3Si); 0.3 (s, Me 3 Si); 22.5 (d, CH 2 P, 1 J P,C = 95.6 Hz); 27.1 (s, CH2C=O); 33.3 (d, MeN, 3JP,C = 4.7 Hz); 35.7 (s, MeS); 47.7 (d, C(1), 1JP,C = 108.7 Hz); 171.2 (d, C=O, 3JP,C = 16.0 Hz). 31P{1H} NMR (CDCl ), δ : 37.2 (s). 3 OTrimethylsilyl N(methanesulfonyl)Nmethylaminomethyl 1,2bis(methoxycarbonyl)ethylphosphinate (2d). Yield 80%, b.p. 205 °C (1.5 Torr). Found (%): C, 35.59; H, 6.57. C12H26NO8PSSi. Calculated (%): C, 35.72; H, 6.50. The first isomer, 70%. 1H NMR (CDCl3), δ: 0.04 (s, 9 H, Me3Si); 2.65—2.75 (m, 2 H, CH2C=O); 2.67 (s, 3 H, MeN); 2.83 (s, 3 H, MeS); 3.30—3.40 (m, 3 H, CHP, C(1)H2); 3.55—3.60 (m, 6 H, 2 MeO). 13C{1H} NMR (CDCl3), δ: –0.3 (s, Me3Si); 29.1 (s, CH2C=O); 34.6 (s, MeN); 35.2 (s, MeS); 39.3 (d, CHP, 1JP,C = 86.4 Hz); 47.9 (d, C(1), 1JP,C = 114.9 Hz); 51.2 (s, MeO); 52.1 (s, MeO); 168.8 (s, C=O); 170.9 (d, C=O, 3J 31 1 P,C = 15.4 Hz). P{ H} NMR (CDCl3), δ: 28.6 (s). The second isomer, 30%. 1H NMR (CDCl3), δ: 0.04 (s, 9 H, Me3Si); 2.65—2.75 (m, 2 H, CH2C=O), 2.64 (s, 2 H, MeN); 2.82 (s, 2 H, MeS); 3.30—3.40 (m, 3 H, CHP, C(1)H2), 3.55—3.60 (m, 6 H, 2 MeO). 13C{1H} NMR (CDCl3), δ: 0.2 (s, Me3Si); 28.5 (s, CH2C=O); 34.7 (s, MeN); 36.3 (s, MeS); 39.9 (d, CHP, 1JP,C = 87.5 Hz); 47.2 (d, C(1), 1JP,C = 112.8 Hz); 51.7 (s, MeO); 52.3 (s, MeO); 169.1 (s, C=O); 172.5 (d, C=O, 3J 31 1 P,C = 14.6 Hz). P{ H} NMR (CDCl3), δ: 29.0 (s). OTrimethylsilyl N(methanesulfonyl)Nmethylmethyl aminomethylN(pyrrolidon2yl)phosphinate (2e). Yield 73%, b.p. 208 ° C (1.5 Torr). Found (%): C, 36.91; H, 6.97. C11H25N2O5PSSi. Calculated (%): C, 37.06; H, 7.07. 1H NMR (CDCl3), δ: 0.10 (s, 9 H, Me3Si); 1.75—1.90 (m, 2 H, CH2); 2.15—2.20 (m, 2 H, CH2); 2.64 (s, 2 H, MeN); 2.82 (s, 2 H, MeS); 3.10—3.50 (m, 6 H, C(1)H2, 2 CH2N). 13C{1H} NMR (CDCl3), δ: 0.7 (s, Me3Si); 17.5 (s); 29.6 (s); 34.5 (s, MeN); 36.3 (s, MeS); 47.7 (d, 3JP,C = 6.2 Hz); 47.9 (d, C(1), 1JP,C = = 104.5 Hz); 174.6 (d, C=O, 3JP,C = 3.9 Hz). 31P{1H} NMR (CDCl3), δ: 29.7 (s). OTrimethylsilyl N(methanesulfonyl)Nmethylaminomethyl (2trimethylsilyloxycyclohexyl)phosphinate (2f). Yield 35%, b.p. 175 °C (1 Torr). Found (%): C, 41.78; H, 8.38. C15H36NO5PSSi2. Calculated (%): C, 41.93; H, 8.45. The first isomer, 60%. 1H NMR (CDCl3), δ: 0.15 (s, 9 H, Me3Si); 0.22 (s, 9 H, Me3Si); 1.5—2.3 (m, 9 H, (CH2)4, HCP); 2.52 (s, 3 H, MeN); 2.78 (s, 3 H, MeS); 3.00—3.30 (m, 2 H, C(1)H2); 4.10—4.30 (m, 1 H, CHO). 13C{1H} NMR (CDCl3), δ: –1.0 (s, Me3Si); 0.2 (s, Me3Si); 24.6 (s); 26.8 (s); 34.8 (s, MeN); 36.3 (d, CH2CHP, 2JP,C = 14.1 Hz); 36.7 (s, MeS); 44.2 (d, HCP, 1JP,C = 98.3 Hz); 50.1 (d, C(1), 1JP,C = 102.3 Hz); 71.1 (d, CHO, 2JP,C = 4.2 Hz). 31P{1H} NMR (CDCl3), δ: 38.5 (s). The second isomer, 40%. 1H NMR (CDCl3), δ: 0.15 (s, 9 H, Me3Si); 0.22 (s, 9 H, Me3Si); 1.5—2.3 (m, 9 H, (CH2)4, HCP); 2.60 (s, 3 H, MeN); 2.81 (s, 3 H, MeS); 3.0—3.3 (m, 2 H, C(1)H2); 4.10—4.30 (m, 1 H, CHO). 13C{1H} NMR (CDCl3), δ: –1.0 (s, Me3Si); 0.2 (s, Me3Si); 24.6 (s); 26.8 (s); 34.8 (s, MeN); 35.9 (d, CH 2 CHP, 2J P,C = 11.8 Hz); 36.4 (s, MeS); 43.8 (d, HCP, 1JP,C = 95.9 Hz); 50.1 (d, C(1), 1JP,C =
Russian Chemical Bulletin, International Edition, Vol. 66, No. 5, pp. 895—898, May, 2017
= 102.3 Hz); 71.3 (d, CHO, 2JP,C = 4.4 Hz). 31P{1H} NMR (CDCl3), δ: 38.2 (s). O,OBis(trimethylsilyl) (Nmethanesulfonyl)Nmethylami nomethylphosphonite (3). A stirred solution of bis(trimethyl silyloxy)phosphine (19 g, 0.09 mol) and triethylamine (8 g, 0.038 mol) in dichloromethane (50 mL) was treated dropwise with a solution of NchloromethylNmethylmethanesulfon amide (6 g, 0.038 mol) in dichloromethane (20 mL) at 5 ° C. After 3 h, the precipitate was filtered off. Vacuum distillation of the filtrate afforded 11.5 g (87%) of phosphonite 3, b.p. 126 °C (1 Torr). Found (%): C, 32.45; H, 7.81. C9H26NO4PSSi2. Cal culated (%): C, 32.61; H, 7.90. 1H NMR (CDCl3), δ: –0.26 (s, 18 H, 2 Me3Si); 2.34 (s, 3 H, MeN); 2.49 (s, 3 H, 2 MeS); 2.75 (d, 2 H, C(1)H2, 2JP,H = 9.2 Hz). 13C{1H} NMR (CDCl3), δ: 0.9 (s, Me3Si); 34.2 (s, MeN); 36.6 (d, MeS, 3JP,C = 4.2 Hz); 58.9 (d, C(1), 1JP,C = 28.4 Hz). 31P{1H} NMR (CDCl3), δ: 145.7 (s). OTrimethylsilyl bis(Nmethanesulfonyl)Nmethylamino methylphosphinate (4a). Yield 83%, b.p. 210 °C (1.5 Torr). Found (%): C, 28.26; H, 6.49. C9H25N2O6PS2Si. Calculated (%): C, 28.41; H, 6.62. 1H NMR (CDCl3), δ: 0.05 (s, 9 H, Me3Si); 2.58 (s, 6 H, 2 MeN); 2.74 (s, 6 H, 2 MeS); 3.23 (d, 4 H, 2 C(1)H2, 2JP,H = 7.2 Hz). 13C{1H} NMR (CDCl3), δ: 0.5 (s, Me3Si); 34.2 (s, MeN); 36.1 (s, MeS); 47.1 (d, C(1), 1JP,C = = 107.4 Hz). 31P{1H} NMR (CDCl3), δ: 28.3 (s). OTrimethylsilyl N(methanesulfonyl)Nmethylaminomethyl dimethylaminomethylphosphinate (4b). Yield 86%, b.p. 155 °C (1 Torr). Found (%): C, 33.98; H, 7.83. C9H25N 2O4PSSi. Cal culated (%): C, 34.16; H, 7.96. 1H NMR (CDCl3), δ: 0.22 (s, 9 H, Me3Si); 2.16 (s, 6 H, Me2N); 2.48 (s, 3 H, MeN); 2.44 and 2.52 (both m, ABX system, 2 H, CH2N, 2JHA,HB = 15.0 Hz, 2J 2 P,HA = 8.0 Hz, J P,HB = 10.0 Hz); 2.85 (s, 3 H, MeS); 3.32 and 3.34 (both m, ABX system, 2 H, C(1)H2, 2JHA,HB = 6.0 Hz, 2J 2 13 1 P,HA = 2.0 Hz, JP,HB = 3.2 Hz). C{ H} NMR (CDCl3), δ : 1.3 (d, Me3Si, 3JP,C = 4.7 Hz); 34.5 (d, MeN, 3JP,C = 4.0 Hz); 36.7 (s, MeS); 45.6 (d, MeN, 3JP,C = 9.8 Hz); 47.5 (d, MeN, 3J 1 P,C = 9.8 Hz); 47.8 (d, C(1), J P,C = 105.9 Hz); 57.2 (d, CH2N, 1JP,C = 114.1 Hz). 31P{1H} NMR (CDCl3), δ: 32.6 (s). OTrimethylsilyl N(methanesulfonyl)Nmethylaminomethyl pyperidinomethylphosphinate (4c). Yield 78%, b.p. 167 °C (1 Torr), m.p. 55 °C. Found (%): C, 40.08; H, 8.12. C12H29N2O4PSSi. Calculated (%): C, 40.43; H, 8.20. 1H NMR (CDCl3), δ: 0.04 (s, 9 H, Me3Si); 1.00—1.30 (m, 6 H, 3 CH2); 2.79 (s, 3 H, MeN); 2.97 (s, 3 H, MeS); 3.13 and 3.16 (both m, ABX system, 2 H, CH2N, 2JHA,HB = 16.0 Hz, 2JP,HA = 10.4 Hz, 2JP,HB = = 8.8 Hz); 3.38 and 3.45 (both m, ABX system, 2 H, C(1)H2, 2J 2 2 13 1 H A,HB = 24.8 Hz, J P,HA = 8.8 Hz, J P,HB = 7.2 Hz). C{ H} NMR (CDCl3), δ: 1.2 (s, Me3Si); 22.5 (s, CH2); 25.5 (s, 2 CH2); 35.0 (s, MeN); 36.5 (s, MeS); 47.4 (d, C(1), 1JP,C = 106.0 Hz); 56.4 (d, 2 CH2N, 3JP,C = 6.1 Hz); 56.5 (d, CH2N, 1JP,C = = 116.0 Hz). 31P{1H} NMR (CDCl3), δ: 33.5 (s). OTrimethylsilyl N(methanesulfonyl)Nmethylaminometh ylmorpholinomethylphosphinate (4d). Yield 80%, b.p. 182 °C (1.5 Torr). Found (%): C, 36.68; H, 7.52. C11H27N2O5PSSi. Calculated (%): C, 36.86; H, 7.59. 1H NMR (CDCl3), δ: 0.18 (s, 9 H, Me3Si); 2.53 (s, 3 H, MeN); 2.39—2.60 (m, 4 H, 2 CH2N); 2.82 (s, 3 H, MeS); 3.17—3.33 (m, 4 H, C(1)H2N, CH2N); 3.48 (t, 4 H, 2 CH2O, 3JH,H = 4.8 Hz). 13C{1H} NMR (CDCl3), δ: 1.3 (s, Me3Si); 34.4 (s, MeN); 36.7 (s, MeS); 47.8 (d, C(1), 1JP,C = 106.2 Hz); 55.7 (d, 2 CH2N, 3JP,C = 9.1 Hz); 56.0 (d, CH2N, 1JP,C = 113.8 Hz); 66.9 (s, 2 CH2O). 31P{1H} NMR (CDCl3), δ: 32.4 (s).
895
OTrimethylsilyl N(methanesulfonyl)Nmethylaminometh ylcyclopropylcarbonylphosphinate (4e). Yield 74%, b.p. 161 °C (2 Torr). Found (%): C, 36.52; H, 6.49. C10H22NO5PSSi. Cal culated (%): C, 36.68; H, 6.77. 1H NMR (CDCl3), δ: 0.67 (s, 9 H, Me3Si); 0.71—0.77 (m, 4 H, 2 CH2); 1.50—1.65 (m, 1 H, CHC=O); 3.24 (s, 3 H, MeN); 3.37 (s, 3 H, MeN); 4.00 and 4.62 (both m, ABX, 2 H, C(1)HB and C(1)HA, 2JHA,HB = 18.3, 2J 2 13 1 P,HA = 9.2, JP,HB = 5.2). C{ H} NMR (CDCl3), δ: 0.7 (d, Me3Si, 3JP,C = 3.8 Hz); 14.0 (s, 2 CH2); 20.9 (d, CHC=O, 2J P,C = 61.7 Hz); 34.9 (s, MeN); 36.1 (s, MeS); 45.8 (d, C(1), 1J 1 31 1 P,C = 104.9 Hz); 214.0 (d, C=O, J P,C = 112.3 Hz). P{ H} NMR (CDCl3), δ: 10.8 (s). OTrimethylsilyl N(methanesulfonyl)Nmethylaminometh yltertbutylcarbonylphosphinate (4f). Yield 81%, b.p. 147 °C (0.5 Torr). Found (%): C, 38.29; H, 7.52. C11H26NO5PSSi. Calculated (%): C, 38.47; H, 7.63. 1H NMR (CDCl3), δ: 0.10 (s, 9 H, Me3Si); 1.07 (s, 9 H, But); 2.64 (s, 3 H, MeN); 2.78 (s, 3 H, MeS); 3.32 and 3.50 (both m, ABX system, 2 H, C(1)HB and C(1)HA, 2JHA,HB = 15.6 Hz, 2JP,HA = 4.4 Hz, 2JP,HB = 9.2 Hz). 13C{1H} NMR (CDCl ), δ: –0.7 (s, Me Si); 24.5 (d, CMe , 3 3 3 3J P,C = 4.2 Hz); 34.9 (s, MeN); 36.0 (s, MeS); 46.4 (d, CMe3, 2J 1 P,C = 43.7 Hz); 46.5 (d, C(1), J P,C = 105.7 Hz); 218.0 (d, C=O, 1JP,C = 90.2 Hz). 31P{1H} NMR (CDCl3), δ: 12.5 (s). OTrimethylsilyl 1(trimethylsilyloxyphenyl)methylNmeth ylNmethanesulfonylaminomethylphosphinate (4g). Yield 91%, b.p. 175 ° C (1 Torr), m.p. 60 °C. Found (%): C, 43.71; H, 7.28. C16H32NO5PSSi. Calculated (%): C, 43.91; H, 7.37. The first isomer, 55%. 1H NMR (CDCl3), δ: –0.03 (s, 9 H, Me3Si); –0.01 (s, 9 H, Me3Si); 2.58 (s, 3 H, MeN); 2.79 (s, 3 H, MeS); 3.20—3.70 (m, ABX system, 2 H, C(1)HAHB); 4.83 (d, 1 H, CHO, 2JP,H = 9.2 Hz); 7.05—7.45 (m, 5 H, Ph). 13C{1H} NMR (CDCl3), δ: 0.2 (s, Me3Si); 1.1 (s, Me3Si); 34.9 (s, MeN); 36.7 (s, MeS); 46.2 (d, C(1), 1JP,C = 100.2 Hz); 73.2 (d, CHO, 1J P,C = 114.1 Hz); 128.1 (s); 128.3 (s); 128.4 (s); 136.8 (s, Ci). 31P{1H} NMR (CDCl ), δ: 29.3 (s). 3 The second isomer, 45%. 1H NMR (CDCl3), δ: –0.01 (s, 9 H, Me3Si); 0.04 (s, 9 H, Me3Si); 2.52 (s, 3 H, MeN); 2.95 (s, 3 H, MeS); 3.20—3.70 (m, ABX system, 2 H, C(1)HAHB); 5.04 (d, 1 H, CHO, 2JP,H = 6.2 Hz); 7.05—7.45 (m, 5 H, Ph). 13C{1H} NMR (CDCl3), δ: 0.2 (s, Me3Si); 1.1 (s, Me3Si); 34.7 (s, MeN); 36.8 (s, MeS); 46.1 (d, C(1); 1JP,C = 102.8 Hz); 73.6 (d, CHO, 1J P,C = 117.0 Hz); 128.1 (s); 128.3 (s); 128.4 (s); 136.8 (s, Ci). 31P{1H} NMR (CDCl ), δ : 30.1 (s). 3 O,ODiethyl N(methanesulfonyl)Nmethylaminomethyl phosphonate (1a). A stirred solution of O,Odiethyl Nmethyl Ntrimethylsilylaminomethylphosphinate (2.5 g, 0.010 mol) in dichloromethane (5 mL) was treated dropwise with a solution of methanesulfonyl chloride (1 g, 0.009 mol) in dichloro methane (3 mL) at 10 °C. The mixture was refluxed and con centrated. Vacuum distillation of the residue afforded 1.7 g (74%) of phosphonate 1a, b.p. 184 °C (4 Torr). Found (%): C, 32.28; H, 6.87. C7H18NO5PS. Calculated (%): C, 32.43; H, 7.00. 1H NMR (CDCl3), δ: 1.00—1.20 (m, 6 H, 2 Me); 2.63 (s, 3 H, MeN); 2.74 (s, 3 H, MeS); 3.22 (d, 2 H, C(1)H2, 2J 13 1 P,H = 10.0 Hz); 3.80—4.00 (m, 4 H, 2 CH2O). C{ H} NMR 3 (CDCl3), δ: 15.7 (d, Me, JP,C = 5.8 Hz); 35.4 (s, MeS); 35.5 (s, MeN); 44.3 (d, C(1), 1JP,C = 160.7 Hz); 62.0 (d, CH2O, 2J 31 1 P,C = 6.7 Hz). P{ H} NMR (CDCl3), δ: 18.5 (s). Compounds 1c—h were synthesized similarly. O,ODiethyl NethylN(methanesulfonyl)aminomethylphos phonate (1c). Yield 78%, b.p. 182 °C (4 Torr). Found (%): C, 34.97; H, 7.29. C8H20NO5PS. Calculated (%): C, 35.16;
896
Russ. Chem. Bull., Int. Ed., Vol. 66, No. 5, May, 2017
H, 7.38. 1H NMR (CDCl3), δ: 0.92 (t, 3 H, Me, 3JH,H = 6.8 Hz); 1.03 (t, 6 H, 2 Me, 3JH,H = 6.8 Hz); 2.67 (s, 3 H, MeS); 3.13 (q, 2 H, CH2N, 3JH,H = 6.8 Hz); 3.80—3.90 (m, 4 H, 2 CH2O); 3.34 (d, 2 H, C(1)H2, 2JP,H = 9.2 Hz). 13C{1H} NMR (CDCl3), δ: 12.5 (s, Me); 15.6 (d, 2 Me, 3JP,C = 5.7 Hz); 38.5 (s, MeS); 40.6 (d, C(1), 1JP,C = 159.4 Hz); 42.5 (s, CH2N); 61.7 (d, 2 CH2O, 2J 31 1 P,C = 6.4 Hz). P{ H} NMR (CDCl 3), δ: 19.1 (s). O,ODiethyl NallylN(methanesulfonyl)aminomethylphos phonate (1d). Yield 73%, b.p. 162 °C (1 Torr). Found (%): C, 37.68; H, 6.97. C9H20NO5PS. Calculated (%): C, 37.89; H, 7.07. 1H NMR (CDCl3), δ: 1.13 (t, 6 H, 2 Me, 3JH,H = 7.2 Hz); 2.80 (s, 3 H, MeS); 3.42 (d, 2 H, C(1)H2,2JP,H = 8.8 Hz); 3.80 (d, 2 H, CH2N, 3JH,H = 6.0 Hz); 3.90—4.00 (m, 2 CH2O); 5.05—5.15 (m, 2 H, CH2=); 5.55—5.70 (m, 1 H, CH=). 13C{1H} NMR (CDCl3), δ: 15.3 (d, Me, 3JP,C = 5.9 Hz); 39.1 (s, MeS); 40.1 (d, C(1), 1J P,C = 159.0 Hz); 49.6 (s, CH 2N); 61.6 (d, CH2O, 2JP,C = 6.9 Hz); 119.3 (s); 131.2 (s). 31P{1H} NMR (CDCl3), δ: 19.1 (s). O,ODiethyl NbutylN(methanesulfonyl)aminomethylphos phonate (1e). Yield 78%, b.p. 166 °C (1 Torr). Found (%): C, 39.69; H, 7.92. C10H24NO5PS. Calculated (%): C, 39.86; H, 8.03. 1H NMR (CDCl3), δ: 0.56 (t, 6 H, 2 Me, 3JH,H = 7.2 Hz); 0.90—1.10 (m, 7 H, Me(CH2)2); 2.61 (s, 3 H, MeS); 2.96 (t, 2 H, CH2N, 3JH,H = 6.4 Hz); 3.29 (d, 2 H, C(1)H2, 2JP,H = 8.8 Hz); 3.70—3.80 (m, 4 H, 2 CH2O). 13C{1H} NMR (CDCl3), δ: 12.7 (s, Me); 15.4 (d, 2 Me, 3JP,C = 5.5 Hz); 18.8 (s); 28.7 (s); 38.1 (s, MeS); 40.9 (d, C(1), 1JP,C = 157.4 Hz); 47.1 (s, CH2N); 61.5 (d, 2 CH2O, 2JP,C = 6.7 Hz). 31P{1H} NMR (CDCl3), δ: 19.2 (s). O,ODiethyl NmethylN(ptoluenesulfonyl)aminomethyl phosphonate (1f). Yield 75%, b.p. 195 ° C (1 Torr). Found (%): C, 46.40; H, 6.52. C13H22NO5PS. Calculated (%): C, 46.56; H, 6.61. 1H NMR (CDCl3), δ: 1.14 (t, 6 H, 2 Me, 3JH,H = 6.8 Hz); 2.22 (s, 3 H, MePh); 2.68 (s, 3 H, MeN); 3.16 (d, 2 H, C(1)H2, 2J P,H = 11.2 Hz); 3.90—4.10 (m, 4 H, 2 CH2O); 7.14 (d, 2 H, 2 CHPh, 3JH,H = 8.4 Hz); 7.45 (d, 2 H, 2 CHPh, 3JH,H = 8.4 Hz). 13C{1H} NMR (CDCl ), δ : 15.8 (d, 2 Me, 3J 3 P,C = 5.7 Hz); 20.9 (s, MePh); 36.1 (s, MeN); 44.8 (d, C(1), 1JP,C = 163.7 Hz); 62.3 (d, 2 CH2O, 2JP,C = 6.6 Hz); 127.1 (s); 129.3 (s); 132.5 (s); 143.4 (s). 31P{1H} NMR (CDCl3), δ: 17.9 (s). O,ODiethyl N(4chlorobenzenesulfonyl)Nmethylamino methylphosphonate (1g). Yield 70%, b.p. 188 °C (0.5 Torr), m.p. 53 °C. Found (%): C, 40.40; H, 5.26. C12H19ClNO5PS. Calculated (%): C, 40.51; H, 5.38. 1H NMR (CDCl3), δ: 1.07 (t, 6 H, 2 Me, 3JH,H = 7.2 Hz); 2.64 (s, 3 H, MeN); 3.14 (d, 2 H, C(1)H2, 2JP,H = 11.2 Hz); 3.80—4.00 (m, 4 H, 2 CH2O); 7.27 (d, 2 H, 2 CHPh, 3JH,H = 8.8 Hz); 7.49 (d, 2 H, 2 CHPh, 3J 13C{1H} NMR (CDCl ), δ: 15.7 (d, 2 Me, H,H = 8.8 Hz). 3 3J 1 P,C = 5.7 Hz); 35.9 (s, MeN); 44.8 (d, C(1), JP,C = 163.5 Hz); 62.2 (d, CH2O, 2JP,C = 6.7 Hz); 128.5 (s); 128.9 (s); 134.4 (s, Cp); 138.8 (s, Ci). 31P{1H} NMR (CDCl3), δ: 17.9 (s). O,ODiethyl N(4bromobenzenesulfonyl)Nmethylamino methylphosphonate (1h). Yield 72%, b.p. 214 °C (1 Torr), m.p. 65 ° C. Found (%): C, 35.87; H, 4.64. C12H19BrNO5PS. Calcu lated (%): C, 36.01; H, 4.78. 1H NMR (CDCl3), δ: 1.30 (t, 6 H, 2 Me, 3JH,H = 6.8 Hz); 2.86 (s, 3 H, MeN); 3.33 (d, 2 H, C(1)H2, 2JP,H = 11.6 Hz); 4.05—4.15 (m, 4 H, 2 CH2O); 7.60 (d, 2 H, 2 CHPh, 3JH,H = 8.8 Hz); 7.64 (d, 2 H, 2 CHPh, 3J 13C{1H} NMR (CDCl ), δ: 16.3 (d, 2 Me, H,H = 8.8 Hz). 3 3J 1 P,C = 5.9 Hz); 36.4 (s, MeN); 45.1 (d, C(1), JP,C = 163.7 Hz); 62.8 (d, CH2O, 2JP,C = 6.4 Hz); 128.0 (s, Cp); 128.9 (s); 132.4 (s); 135.3 (s, Ci). 31P{1H} NMR (CDCl3), δ: 17.7 (s).
Prishchenko et al.
O,ODiethyl N(methanesulfonyl)Nmethylamino(phenyl) methylphosphonate (5a). A stirred solution of O,Odiethyl Nmethylamino(phenyl)methylphosphonate (5.2 g, 0.02 mol) in diethyl ether (25 mL) was treated with a solution of metha nesulphonyl chloride (2.3 g, 0.02 mol) in diethyl ether (10 mL). After 24 h, the precipitate was filtered off and the filtrate was vacuum distilled to give 5 g (74%) of phopshonate 5a, b.p. 181 °C (1 Torr). Found (%): C, 46.35; H, 6.49. C13H22NO5PS. Calculated (%): C, 46.56; H, 6.61. 1H NMR (CDCl3), δ: 0.78 (t, 3 H, Me, 3JH,H = 7.2 Hz); 1.08 (t, 3 H, Me, 3JH,H = 7.0 Hz); 2.48 (s, 3 H, MeN); 2.95 (s, 3 H, MeS); 3.60—4.10 (m, 4 H, 2 CH2O); 5.44 (d, 2 H, C(1)H, 2JP,H = 24.8 Hz); 7.10—7.60 (m, 5 H, Ph). 13C{1H} NMR (CDCl3), δ: 16.1 (d, Me, 3JP,C = = 5.4 Hz); 16.5 (d, Me, 3JP,C = 5.3 Hz); 31.7 (s, MeN); 37.9 (s, MeS); 57.7 (d, C(1), 1JP,C = 159.7 Hz); 62.7 (d, CH2O, 2J 2 P,C = 6.7 Hz); 63.2 (d, CH 2O, J P,C = 6.9 Hz); 128.1 (s, C p); 129.0 (s, Cm); 130.4 (d, Co, 3JP,C = 8.3 Hz); 132.8 (d, Ci, 2J 31 1 P,C = 5.8 Hz). P{ H} NMR (CDCl3), δ: 17.3 (s). Phosphonates 5b—c were synthesized similarly. O,ODiethyl N(methanesulfonyl)Nmethylamino(2furyl) methylphosphonate (5b). Yield 70%, b.p.. 179 °C (1 Torr). Found (%): C, 40.38; H, 6.03. C11H20NO6PS. Calculated (%): C, 40.61; H, 6.20. 1H NMR (CDCl3), δ: 0.90 (t, 3 H, Me, 3J 3 H,H = 7.2 Hz); 1.08 (t, 3 H, Me, JH,H = 7.2 Hz); 2.56 (s, 3 H, MeN); 2.83 (s, 3 H, MeS); 3.75—3.90 (m, 2 H, CH2O); 4.00—4.10 (m, 2 H, CH2O); 5.48 (d, 2 H, C(1)H, 2JP,H = 25.6 Hz); 6.21 (dd, 1 H, 3JH,H = 2.0 Hz); 6.66 (d, 1 H, 3JH,H = 3.2 Hz); 7.29 (d, 1 H, 3JH,H = 2.0 Hz). 13C{1H} NMR (CDCl3), δ: 16.4 (d, Me, 3J 3 P,C = 5.8 Hz); 16.6 (d, Me, JP,C = 5.6 Hz); 31.7 (s, MeN); 1 36.6 (s, MeS); 52.0 (d, C(1), JP,C = 166.7 Hz); 62.9 (d, CH2O, 2J 2 P,C = 7.4 Hz); 63.9 (d, CH2O, J P,C = 7.2 Hz); 111.1 (s); 112.7 (d, 3JP,C = 2.6 Hz); 143.9 (s); 146.3 (d, 2JP,C = 13.5 Hz). 31P{1H} NMR (CDCl ), δ: 14.5 (s). 3 OEthyl N(methanesulfonyl)NmethylNmethylamino (phenyl)methylphosphinate (5c). Yield 72%, b.p. 164 °C (1 Torr). Found (%): C, 47.02; H, 6.42. C12H20NO4PS. Calculated (%): C, 47.20; H, 6.60. The first isomer, 55%. 1H NMR (CDCl3), δ: 0.62 (d, 3 H, Me, 3JH,H = 7.2 Hz); 0.91 (d, 3 H, MeP, 2JP,H = 13.6 Hz); 2.22 (s, 3 H, MeN); 3.00 (s, 3 H, MeS); 3.30—3.65 (m, 2 H, CH2O); 5.11 (d, 2 H, C(1)H, 2JP,H = 15.6 Hz); 7.09—7.16 (m, 5 H, Ph). 13C{1H} NMR (CDCl ), δ: 13.7 (d, MeP, 1J 3 P,C = 92.9 Hz); 32.3 (d, MeN, 3JP,C = 3.9 Hz); 37.3 (s, MeS); 60.3 (d, C(1), 1JP,C = = 99.8 Hz); 129.0 (s); 129.2 (s); 130.7 (d, Ci, 3JP,C = 7.2 Hz); 132.1 (s). 31P{1H} NMR (CDCl3), δ: 44.3 (s). The second isomer, 45%. 1H NMR (CDCl3), δ: 1.05 (d, 3 H, Me, 3JH,H = 6.2 Hz); 1.40 (d, 3 H, MeP, 2JP,H = 14.0 Hz); 2.32 (s, 3 H, MeN); 2.97 (s, 3 H, MeS); 3.30—3.65 (m, 2 H, CH2O); 4.00—4.55 (m, 2 H, CH2O); 5.22 (d, 2 H, C(1)H, 2JP,H = } = 17.6 Hz); 7.09—7.16 (m, 5 H, Ph). 13C{1H} NMR (CDCl3), δ: 13.5 (d, MeP, 1JP,C = 92.6 Hz); 31.7 (d, MeN, 3JP,C = 4.0 Hz); 37.5 (s, MeS); 60.2 (d, C(1), 1JP,C = 106.7 Hz); 129.2 (s); 129.3 (s); 132.7 (d, Ci, 2JP,C = 7.4 Hz). 31P{1H} NMR (CDCl3), δ: 44.8 (s). OEthyl N(methanesulfonyl)Nmethylamino(2furyl)meth ylphosphinate (5d). Yield 78%, b.p. 194 °C (3 Torr). Found (%): C, 40.52; H, 6.09. C10H18NO5PS. Calculated (%): C, 40.67; H, 6.14. The first isomer, 60%. 1H NMR (CDCl3), δ: 0.82 (t, 3 H, Me, 3JH,H = 7.2 Hz); 1.13 (d, 3 H, MeP, 2JP,H = 14.0 Hz); 2.53 (s, 3 H, MeN); 2.88 (s, 3 H, MeS); 3.50—3.80 (m, 2 H, CH2O);
Derivatives of sulfonic acids with P—C—N moieties
Russ. Chem. Bull., Int. Ed., Vol. 66, No. 5, May, 2017
5.34 (d, 2 H, C(1)H, 2JP,H = 18.0 Hz); 6.15—6.20 (m, 1 H); 6.68 (d, 1 H, 3JH,H = 2.8 Hz); 7.26 (s, 1 H). 13C{1H} NMR (CDCl3), δ: 13.5 (d, MeP, 1JP,C = 95.6 Hz); 16.4 (d, Me, 3J 3 P,C = 4.9 Hz); 32.3 (d, MeN, JP,C = 5.2 Hz); 36.2 (s, MeS); 1 54.4 (d, C(1), JP,C = 109.4 Hz); 61.3 (d, CH2O, 2JP,C = 7.1 Hz); 111.1 (s); 113.1 (s); 146.4 (d, 2JP,C = 12.3 Hz); 143.8 (s). 31P{1H} NMR (CDCl3), δ: 42.8 (s). The second isomer, 40%. 1H NMR (CDCl3), δ: 1.08 (t, 3 H, Me, 3JH,H = 7.0 Hz); 1.44 (d, MeP, 3 H, 2JP,H = 14.4 Hz); 2.50 (s, 3 H, MeN); 2.85 (s, 3 H, MeS); 4.00—4.10 (m, 2 H, CH2O); 5.24 (d, C(1)H, 2 H, 2JP,H = 20.0 Hz); 6.15—6.20 (m, 1 H); 6.80 (d, 1 H, 3JH,H = 3.6 Hz); 7.15 (s, 1 H). 13C{1H} NMR (CDCl3), δ: 13.1 (d, Me, 1JP,C = 98.8 Hz); 16.6 (d, Me, 3JP,C = = 5.7 Hz); 31.7 (d, MeN, 3JP,C = 5.4 Hz); 36.1 (s, MeS); 54.6 (d, C(1), 1JP,C = 103.6 Hz); 61.8 (d, CH2O, 2JP,C = 6.9 Hz); 111.2 (s); 113.3 (s); 146.6 (d, 2JP,C = 6.2 Hz); 144.0 (s). 31P{1H} NMR (CDCl3), δ: 42.3 (s). CyclopropylcarbonylN(methanesulfonyl)Nmethylamino methylphosphinic acid, sodium salt (6a). A stirred solution of phosphinate 4e (8.2 g, 0.025 mol) in diethyl ether (10 mL) was treated with a solution of sodium methoxide (1.4 g, 0.025 mol) in methanol (30 mL) at 10 ° C. The mixture was heated to reflux and concentrated. After drying the residue in vacuo (1 Torr) for 1 h, salt 6a was obtained in the yield of 6.8 g (94%), m.p. 98 °C (decomp.) Found (%): C, 30. 21; H, 4.65. C7H13NNaO5PS. Calculated (%): C, 30.33; H, 4.73. 1H NMR (DMSOd6), δ: 0.75—0.90 (m, 4 H, 2 CH2); 2.00—2.25 (m, 1 H, CHC=O); 2.83 (s, 3 H, MeN); 3.18 (s, 3 H, MeS); 3.75 (d, 2 H, C(1)H2, 2J 13 1 P,H = 10.8 Hz). C{ H} NMR (DMSOd6), δ: 12.0 (s, 2 CH2); 20.2 (d, CHC=O, 2JP,C = 53.3 Hz); 34.8 (s, MeN); 36.1 (s, MeS); 46.1 (d, C(1), 1JP,C = 101.1 Hz); 224.5 (d, C=O, 1JP,C = = 121.4 Hz). 31P{1H} NMR (DMSOd6), δ: 13.8 (s). Salt 6b was synthesized similarly. tertButylcarbonylN(methanesulfonyl)Nmethylamino methylphosphinic acid, sodium salt (6b). Yield 96%, m.p. 89 °C (decomp.). Found (%): C, 32.64; H, 5.91. C8H17NNaO5PS. Calculated (%): C, 32.77; H, 5.84. 1H NMR (DMSOd6), δ: 1.17 (s, 9 H, But); 2.82 (s, 3 H, MeN); 2.86 (s, 3 H, MeS); 3.18 (d, C(1)H2, 2 H, 2JP,H = 8.0 Hz). 13C{1H} NMR (DMSOd6), δ: 26.4 (s, 3 Me); 35.2 (s, MeN); 35.9 (s, MeS); 45.6 (d, CMe3, 2J 1 P,C = 36.8 Hz); 47.6 (d, C(1), JP,C = 101.2 Hz); 228.7 (d, 1 31 1 C=O, JP,C = 97.5 Hz). P{ H} NMR (DMSOd6), δ: 15.5 (s). N(Methanesulfonyl)Nmethylaminomethylphosphonic acid (7). To methanol (40 mL), a solution of phosphonate 1b (10.4 g, 0.03 mol) in diethyl ether (15 mL) was added under stirring at 10 °C. The mixture was refluxed and concentrated. White crys tals were dried in vacuo (1 Torr) for 1 h to give acid 7 in the yield of 5.9 g (96%), m.p. 144 °C. Found (%): C, 17.49; H, 5.09. C3H10NO5PS. Calculated (%): C, 17.74; H, 4.96. 1H NMR (D2O), δ: 2.64 (s, 3 H, MeN); 2.76 (s, 3 H, MeS); 3.34 (d, 2 H, C(1)H2 , 2J P,H = 16.4 Hz). 13C{1H} NMR (D 2O), δ: 34.9 (s, MeN); 35.9 (s, MeS); 47.6 (d, C(1), 1JP,C = 172.6 Hz). 31P{1H} NMR (D2O), δ,: 17.7 (s). Acids 8a—i were synthesized similarly. N(Methanesulfonyl)Nmethylaminomethyl2phenylethyl phosphinic acid (8a). Yield 97%, m.p. 107 °C. Found (%): C, 45.23; H, 6.26. C11H18NO4PS. Calculated (%): C, 45.35; H, 6.23. 1H NMR (DMSOd6), δ: 1.91—1.99 (m, 2 H, CH2Ph); 2.70—2.85 (m, 2 H, CH2P); 2.92 (s, 3 H, MeN); 2.94 (s, 3 H, MeS); 3.35 (d, 2 H, C(1)H 2 , 2 J P,H = 8.8 Hz). 13C{1H} NMR (DMSOd6), δ: 27.8 (s, 2 H, CH2Ph); 29.7 (d, CH2P,
1J
897
= 91.0 Hz); 34.2 (s, MeN); 37.0 (s, MeS); 48.2 (d, C(1), = 103.9 Hz); 126.5 (s, Cp); 128.4 (s); 128.9 (s); 142.1 (d, Ci, 3JP,C = 16.5 Hz). 31P{1H} NMR (DMSOd6), δ: 42.6 (s). 2CarboxyethylN(methanesulfonyl)Nmethylaminometh ylphosphinic acid (8b). Yield 96%, m.p. 126 °C. Found (%): C, 27.68; H, 5.48. C6H14NO6PS. Calculated (%): C, 27.80; H, 5.44. 1H NMR (DMSOd6), δ: 1.75—1.95 (m, 2 H, CH2P); 2.60—2.70 (m, 2 H, CH2C=O); 2.85 (s, 3 H, MeN); 2.95 (s, 3 H, MeS); 3.37 (d, C(1)H2, 2 H, 2JP,H = 9.2 Hz). 13C{1H} NMR (DMSOd 6), δ : 24.4 (d, CH 2 P, 1J P,C = 94.2 Hz); 28.5 (s, CH2C=O); 34.5 (s, MeN); 36.7 (s, MeS); 48.8 (d, C(1), 1J 3 31 1 P,C = 106.9 Hz); 173.4 (d, C=O, J P,C = 16.5 Hz). P{ H} NMR (DMSOd6), δ: 42.2 (s). N(Methanesulfonyl)Nmethylaminomethyl1,2bis(meth oxycarbonyl)ethylphosphinic acid (8c). Yield 96%, m.p. 154 °C. Found (%): C, 32.42; H, 5.52. C9H18NO8PS. Calculated (%): C, 32.63; H, 5.48. 1H NMR (DMSOd6), δ: 2.70—2.80 (m, 2 H, CH2C=O); 2.88 (s, 3 H, MeN); 2.91 (s, 3 H, MeS); 3.40—3.50 (m, 3 H, CHP, C(1)H2); 3.58 (s, 3 H, MeO); 3.61 (s, 3 H, MeO). 13C{1H} NMR (DMSOd6), δ: 30.1 (s, CH2C=O); 34.2 (s, MeN); 36.5 (s, MeS); 42.0 (d, CHP, 1JP,C = 77.3 Hz); 47.5 (d, C(1), 1JP,C = 110.4 Hz); 51.9 (s, MeO); 52.2 (s, MeO); 169.2 (s, C=O); 171.5 (d, C=O, 3JP,C = 16.3 Hz). 31P{1H} NMR (DMSOd6), δ: 34.6 (s). N(Methanesulfonyl)Nmethylaminomethyl(2oxopyrrol idin1yl)methylphosphinic acid (8d). Yield 94%, m.p. 152 °C. Found (%): C, 33.66; H, 6.09. C8H17N2O5PS. Calculated (%): C, 33.80; H, 6.03. 1H NMR (DMSOd6), δ: 1.85—1.95 (m, 2 H, CH2); 2.20—2.25 (m, 2 H, CH2); 2.69 (s, 2 H, MeN); 2.84 (s, 2 H, MeS); 3.20—3.60 (m, 6 H, C(1)H2, 2 CH2N). 31P{1H} NMR (DMSOd6), δ: 18.3 (s); 29.9 (s); 34.6 (s, MeN); 36.5 (s, MeS); 48.1 (d, 3JP,C = 7.2 Hz); 48.8 (d, C(1), 1JP,C = 98.3 Hz); 175.9 (d, C=O, 3JP,C = 5.1 Hz). 31P{1H} NMR (DMSOd6), δ: 30.5 (s). Bis[N(methanesulfonyl)Nmethylaminomethyl]phosphinic acid (8e). Yield 97%, m.p. 127 °C. Found (%): C, 23.03; H, 5.61. C6H17N2O6PS2. Calculated (%): C, 23.37; H, 5.56. 1H NMR (DMSOd6), δ: 2.89 (s, 6 H, 2 MeN); 2.91 (s, 6 H, 2 MeS); 3.40 (d, 4 H, 2 C(1)H2, 2JP,H = 7.6 Hz). 13C{1H} NMR (DMSOd6), δ: 34.5 (s, MeN); 36.5 (s, MeS); 47.2 (d, C(1), 1JP,C = 102.9 Hz). 31P{1H} NMR (DMSOd ), δ : 35.3 (s). 6 N(Methanesulfonyl)Nmethylaminomethyldimethylamino methylphosphinic acid (8f). Yield 96%, m.p. 201 °C. Found (%): C, 29.28; H, 7.09. C6H17N2O4PS. Calculated (%): C, 29.50; H, 7.02. 1H NMR (DMSOd6), δ: 2.81 (s, 6 H, 2 MeN); 2.87 (s, 3 H, MeN); 2.90 (s, 3 H, MeS); 3.06 (d, 2 H, C(1)H2, 2J 2 13 1 P,H = 11.2 Hz); 3.08 (d, 2 H, CH2N, J P,H = 9.2 Hz). C{ H} NMR (DMSOd6), δ: 33.4 (s, MeN); 36.9 (s, MeS); 45.7 (s, Me2N); 49.2 (d, C(1), 1JP,C = 113.6 Hz); 54.4 (d, CH2N, 1J 31 1 P,C = 87.6 Hz). P{ H} NMR (DMSOd6), δ: 17.4 (s). N(Methanesulfonyl)Nmethylaminomethylpiperidinometh ylphosphinic acid (8g). Yield 95%, m.p. 186 °C. Found (%): C, 37.94; H, 7.48. C9H21N2O4PS. Calculated (%): C, 38.02; H, 7.44. 1H NMR (D2O, 400 MHz), δ: 1.70—1.95 (m, 6 H, (CH2)3); 2.95 (s, 3 H, MeN); 2.97 (s, 3 H, MeS); 3.26—3.30 (m, 4 H, 2 CH2N); 3.32 (d, 2 H, C(1)H2N, 2JP,H = 8.8 Hz); 3.63 (d, 2 H, CH2N, 2JP,H = 12.4 Hz). 13C{1H} NMR (D2O), δ: 20.8 (s, CH2); 22.8 (s, 2 CH2); 33.3 (s, MeN); 36.9 (s, MeS); 49.4 (d, C(1), 1JP,C = 108.2 Hz); 53.3 (d, CH2N, 1JP,C = 87.5 Hz); 56.0 (s, 2 CH2N). 31P{1H} NMR (D2O), δ: 21.1 (s). N(Methanesulfonyl)Nmethylaminomethylmorpholinome thylphosphinic acid (8h). Yield 95%, m.p. 193 °C. Found (%): 1J
P,C
P,C
898
Russ. Chem. Bull., Int. Ed., Vol. 66, No. 5, May, 2017
C, 33.40; H, 6.74. C8H19N 2O5PS. Calculated (%): C, 33.56; H, 6.69. 1H NMR (D2O), δ: 2.97 (s, 3 H, MeN); 2.99 (s, 3 H, MeS); 3.26—3.32 (m, 8 H, 2 (CH2)2); 3.36 (d, C(1)H2, 2 H, 2J 2 13 1 P,H = 9.6 Hz); 3.43 (d, CH2N, 2 H, J P,H = 8.8 Hz). C{ H} NMR (D2O), δ: 33.4 (s, MeN); 36.9 (s, MeS); 49.5 (d, C(1), 1J 1 P,C = 113.3 Hz); 53.5 (d, CH2N, J P,C = 86.5 Hz); 54.3 (d, 2 CH2N, 3JP,C = 5.2 Hz); 63.7 (s, 2 CH2O). 31P{1H} NMR (D2O), δ: 20.6 (s). 1HydroxyphenylN(methanesulfonyl)Nmethylaminome thylphosphinic acid (8i). Yield 97%, m.p. 172 °C. Found (%): C, 40.78; H, 5.57. C10H16NO5PS. Calculated (%): C, 40.95; H, 5.50. 1H NMR (D2O), δ: 2.99 (s, 3 H, MeN); 3.34 (s, 3 H, MeS); 3.75 (d, 2 H, Me, 2JP,H = 15.2 Hz); 5.05 (d, 1 H, CHO, 2J 13 1 P,H = 7.2 Hz); 7.35—4.50 (m, 5 H, Ph). C{ H} NMR (D2O), δ: 34.0 (s, MeN); 35.9 (s, MeS); 45.9 (d, C(1), 1JP,C = 100.6 Hz); 71.8 (d, CHO, 1JP,C = 71.6 Hz); 127.5 (d, Co, 3JP,C = 4.9 Hz); 128.4 (s, Cp); 128.7 (s, Cm), 136.3 (s, Ci). 31P{1H} NMR (D2O), δ: 34.4 (s).
This work was financially supported by the Russian Foundation for Basic Research (Project Nos 150300002 and 170300169).
Prishchenko et al.
4. A. A. Prishchenko, M. V. Livantsov, V. S. Petrosyan, Russ. J. Gen. Chem. (Engl. Transl.), 1994, 64, 1316 [Zh. Obshch. Khim., 1994, 64, 1316]. 5. A. G. Shipov, O. B. Artamkina, L. I. Livantsova, Yu. I. Baukov, Russ. J. Gen. Chem. (Engl. Transl.), 1986, 56, 1429 [Zh. Obshch. Khim., 1986, 56, 1429]. 6. V. N. Sergeev, E. P. Shapovalenko, Yu. I. Baukov, Russ. J. Gen. Chem. (Engl. Transl.), 1987, 57, 1315 [Zh. Obshch. Khim., 1987, 57, 1315]. 7. A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, Heteroat. Chem., 2008, 19, 345. 8. A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, Heteroat. Chem., 2008, 19, 418. 9. A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, Heteroat. Chem., 2010, 21, 361. 10. A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, Heteroat. Chem., 2008, 19, 450. 11. V. D. Romanenko, M. V. Shevchuk, V. P. Kukhar, Curr. Org. Chem., 2011, 15, 2774. 12. A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, Heteroat. Chem., 2008, 19, 352.
References 1. V. P. Kukhar, H. R. Hudson, Aminophosphonic and Amino phosphinic Acids. Chemistry and Biological Activity, John Wiley and Sons, New York, 2000, 634 pp. 2. R. M. C. Dawson, D. C. Elliott, W. H. Elliott, K. M. Jones, Data for Biochemical Research, Clarendon Press, Oxford, 1986, 544 pp. 3. A. A. Prishchenko, M. V. Livantsov, O. P. Novikova, L. I. Livantsova, V. S. Petrosyan, Heteroat. Chem., 2008, 19, 470.
Received November 2, 2016; in revised form December 13, 2016