IL NUOVO CIMENTO
VOL. 102 A, N. 3
Settembre 1989
NOTE BREVI
The Reaction Rate at T-300 K for the Reactions 2H(p, ~,)3He, 2H(d, p) 3H, 2H(d, n) 3He, 3H(d, n) 4He, ~He(d, p) 4He, 2H(a, ~,)6Li, 3He(3He, 2p) 4He, 3He(a, ~,)7Be. A. SCALIA Dipartimento di Fisica dell'Universit4 - Catania Istituto Nazionale di Fisica Nucleare - Sezione di Catania
(ricevuto il 3 Maggio 1989)
Summary. - - The reaction rate is obtained for the reactions 2H(p, v)3He, 2H(d, p) 3H, 2H(d,n) 3He, 3H(d,n) 4He, 3He(d, p) 4He, 2H(a,~,)6Li, 3He(~He, 2p)4He, SHe(a,y)TBe at T - 3 0 0 K . The distribution of relative velocities between two different sets of particles is described by MaxwellBoltzmann distribution. The fusion cross-section is determined by using the extended elastic model II. PACS 25.70 - Heavy-ion-induced reactions and scattering.
In previous papers (~) we suggested for the thermonuclear reaction rate an expression obtained in the framework of the elastic model for the heavy-ion fusion (~). The values of the cross-section factor were obtained at temperature involved in nuclear astrophysics and they have been compared with those reported in the literature for several systems (1-4).
(~) A. SCALIA:Nuovo Cimento A, 109, 559 (1988). (2) A. SCALIA:Nuovo Ci?q~ento A, 101, 795 (1989). (8) A. SCALIA: The nuclear fusion for the reactions 2H(d, n)3He, 2H(d, p)~H at low energy, to be published in Nuovo Cimento A. (4) A. SCALIA:The nuclear fusion for the reaction 3H(d, n)4He at very low energy, to be published in Nuovo Cimento A. (5) A. SCALIA:Nuovo Cimento A, 98, 571 (1987). 953
954
A. SCALIA
In the present paper, by using the extended elastic model II (EEM II) (6.7), the reaction rate at T ~ 300 K is determined for the considered systems by assuming that the distribution of relative velocities between two different sets of particles will be described by Maxwell-Boltzmann distribution. Following the EEM II the fusion cross-section can be written as (1)
zf = ~f[1 - g(y)] = 5-f[1 - g(y)][1 - g, (y)] = ==
G(y)[1 + G(y)][1 - g(y)][1 - gl (Y)]
with
(2) g l ( y ) : e x p [ - ( l -d ~) Y~2. m789
,
y=ES-~sE,
d=E:,
k is the wave number, v is the Coulomb parameter, E is the centre~of-mass energy, EB and Es are two parameters expressed in MeV, which are determined by comparing the experimental values of fusion cross-section with -~f(1.5) (see fig. 1), ~ is the value of y at which 5-f attains the minimum value (see fig. 1), Ymis obtained by using 5-f in the expression of the cross-section factor (1), ~., and ~2 are determined by comparing the experimental values of fusion cross-section with zf(6,7). To determine Ym we consider the solution of the equation (3)
2 1 + 2G(y) d - y - M I (y) 1 + G(y) '
which satisfies the inequality (4)
Ym > 0.19 ;
M1 (y) is defined as
(5)
M1 (y) = [exp [exp [y]]] (exp [y]).
(6) A. SCALIA: The extended elastic model applied to the reaction SHe(a,v)TBe, to be published in Nuovo Cimento A. (~) A. SCALIA:The extended elastic model applied to the reaction 3He(~He,2p) 4He, to be published in Nuovo Cimento A.
THE
REACTION
RATE
AT
T~
300 K
FOR THE
REACTIONS
ETC.
955
We obtain y~ by solving eq. (1)
(6)
_
_
-{-
(d - y)2
_
M1 (y) ]2 1 + 2G(y) G(y) = M~ (y)[1 + f(y)] 1 + G(y) 1 + G(y) _
with
f(y) = exp [y].
(7)
The values of EB, Es, Ym, Em=EB--ymEs, Ym, Em=EB-ymEs, Y~, Y2 are reported in table I. A comparison between the experimental values of fusion cross-section(8) and those obtained by using eqs. (1)-(7) is shown in fig. 1 for the reaction 2H(p, T)3He, for the other reactions see ref. (2,3,6.~9.10). By using eqs. (1)-(7) the cross-section factor can be written as
(8)
d
with M(T) = (8=)1/2(Z1 Z2 e2)2 M1/2 [1~q~3/2 12\ ~xi ]
(9)
'
IT(Y)=d~yG(y)[l +G(y)]exp [
EB -- y E s rt
-~-~ ][l-g(y)][1-gl(y)],
M~2 is the reduced mass of particles i and 2, E is the centre-of-mass energy, K is Boltzmann's constant, T is the temperature. The solution in y of the equation (10)
d-y
+ Es ~=MI(Y)
1 + 2G(y) l+G(y)
g'(y)[1 - gl(Y)] + g{ [1 - g(y)] [1 - g(y)][1 - gl(Y)]
'
(8) G. M. GRIFFITHS and J. B. WARREN: Proc. Phys. Soc. A, 68, 781 (1955); G. M. GRIFFITHS, E. A. LARSON and L. P. ROBERTSON: Can. J. Phys., 40, 402 (1962); G. M. GRIFFITHS, M. LAL and C. D. SCARFE: Can. J. Phys., 41, 724 (1963). (9) A. SCALIA:The nuclearfusion for the reaction 3H(d, p)4He, to be published in Nuovo
Cimento A. (10) A. SCALIA: The extended elastic model II applied to the reaction 2H(~,~)~Li, submitted to Nuovo Cimento A. 61 - II Nuovo Cimento A.
956
A. SCALIA
10-3!
lO~
10-~
10-6
10 -7
,
I
200
,
I
,
&O0
I
,
I
600
800 Ec.m, (keY)
,
I
,
1000
I
,
1200
Fig. 1. - Comparison between the experimental values of fusion cross-section (8) and calculated ones. Full line zf, dashed line ~f.:f, ~f are defined in the text. with
g'(y) = -~yg(y),
(11)
gl(Y) -
gl(y),
gives the value ~ of y at which (12)
[ ~ y I ~ (y)]y= = 0.
In y = ~ it is (13)
dy
]y=~
so that I~ (y) attains in y = ~- a maximum value and the cross-section factor can be rewritten as
(14)
81/2
= M(T) I ~ ( ~ ) / ~ = (KT)~7~( - ~ e)~/i~(E) exp - ~
5 E,
6.085 1.128- 103 1.136.102 4.012.102 24.448 7 1.304 4 7.22.103
2H + 3He 2H + 4He 3He + 3He 3He + 4He 2H + 2H 2H + 3H 1H + 2H
T(K)
308.8 302.4 301.9 293.1 299.1 298.4 298.9 115.9
System
1H + 2H 2H + 2H 2H + 3H 2H + aHe 2H + 4He 3He + aHe 3He + 4He 2H + 2H
TABLE II.
E m (keV)
q
System
TABLE I.
0.053 0.13 0.13 0.48 0.031 0.27 0.15 0.05
E-(eV)
1.071 7 1.0354 0.867 1.030 7 1.764 5 1.085 35 8.448- 10 -1
Y-m
1.88 4.32 5.13 2.04 1.18 9.08 1.75 9.32
=e(b)
10-26
10-69 10-as
i0 -s5 10-139
10-24 10-21
10 -13
12.344 2.163.103 1.691 • 102 7.635.102 --1.041 • 103
E = (keV)
1.36 6.81 6.75 5.59 3.00 2.76 3.02" 6.69'
-E-/KT]
10-' 10 -3 10 -3 10 -9 10 -1 10 -~ 10 -3 10 -3
exp [ -
1.033 71 0.99641 0.829 0.991 7 --8.078
Ym
0.053 0.13 0.13 0.48 0.031 0.27 0.15 0.05
AE-(eV)
182.706 6 28.621 1 - 103 1.379.10 a 9.963- 10 a 196.483 9 41.778 8 8.00.103
EB (keV)
1.12.10 5.68.10 3.43.10 2.45.10
-31 -3° -53 -4
9 . 3 8 . 1 0 -110
3 . 1 9 . 1 0 -32 1 . 8 6 . 1 0 -43 2 . 0 0 . 1 0 -4°
( co >(cm a s- 1)
164.806 6 26.5536.10 a 1.460- l 0 s 9.277.103 225.029 7 37.291 7 8.62- 103
E s (keV)
20 2.5 10 1.8 --0.8
1"2
4.90' 10 -3
1.36" 10 -17
3.75- 10 69 4.48- 109 ? 1 . 1 3 . 1 0 -39
0 . 8 0 " 101
1.27.109 0.37- 10 2
r12 (cm-3 s-1)
9 ? 1.5 5 6 6 2.2
}'1
5O
z
©
>
>
>
t~
aa
958
A. SCALIA
with b E a suitable interval. The reaction r a t e can be obtained from eq. (6): (15)
r12 = (1 + ~12)-1 <~v> NIN2,
N1 and N2 are the n u m b e r densities of particles I and 2, respectively. In table I I are r e p o r t e d the values of E , z(E), e x p [ - E / K T ] , AE, <¢v>, r12 at T - 3 0 0 K . F o r AE we assume t h a t (16)
bE - E.
For N1 and N2 we assume t h a t (17)
N1 - 10 is cm -~ ,
N2 ~ 4.1022 cm -3 .
F r o m table I I it follows t h a t
(18)
r12 (1H + 2H) 1.27.109 r12 (2H + ~H) - 0 . 3 7 . 1 0 -2 - 3.43- 1011 .
W e note t h a t the value of reaction r a t e for the s y s t e m 2H + 4He is v e r y uncertain because the e x p e r i m e n t a l values of fusion cross-section known to the a u t h o r are relative to energies E > E m so t h a t r, cannot be d e t e r m i n e d (10).