CARTAN
OF
SUBALGEBRAS
W n AND
SIMPLE
LIE
p-ALGEBRAS
Sn S.
P.
UDC 512.9,519.46
Demushkin
C l a s s e s of C a r t a n subalgebras of simple n c n c l a s s i c a l Wn and Sn Lie p - a l g e b r a s over an a l g e b r a i c a l l y closed field k of c h a r a c t e r i s t i c p are d e t e r m i n e d up to conjugacies. All Cartan subalgebras of these algebras are Abelian. w 1.
Introduction
A s u b a l g e b r a H of a Lie algebra G is called a C a f t a n subalgebra if !) H is nilpotent, 2) the n o r m a l i z e r of H in G coincides with H. F o r a finite-dimensional algebra G over an infinite field k, t h e r e is always a C a f t a n subalgebra ( T h e o r e m 1, Chapter III of [1]). It is known that any two Cartan subalgebras of a finitedimensional Lie algebra G over an algebraically closed field of c h a r a c t e r i s t i c z e r o are adjoint ( T h e o r e m 3, Chapter IX of [1]). M o r e o v e r for simple algebras G of this type, the C a f t a n subalgebras are Abelian ( P r o position IV, Chapter IV of [1])o The same r e m a r k applies to the case in which the b a s e field is of c h a r a c t e r i s t i c p but the Lie algebra is of c l a s s i c a l type [2]. We will also prove that, for simple Wn and Sn Lie p - a l g e b r a s of n o n c l a s s i c a l type o v e r an a l g e b r a i c a l ly closed field k of c h a r a c t e r i s t i c p, the situation is not completely the same as in the p r e c e d i n g c a s e s : C a r t a n subalgebras a r e Abelian but the n u m b e r of conjugacy c l a s s e s of C a r t a n subalgebras is not equal to one. w 2.
Maximal
Tori
Let G be a simple Lie p-algebra over an algebraically closed field k of characteristic p and let H be a Cartan subalgebra. A torus in G is a commutative subalgebra T for which the p-mapping is one-to-one. In a torus T there is a basis (al,... , an) such that nip = aio The elements a = aP will be called toroidal elements.
LEMMA 1.
The toroidal elements of a C a f t a n s u b a l g e b r a H are in the c e n t e r of H. 2
P r o o f . L e t a P = a EH. i . e . , a is in the c e n t e r of H.
Then [a, h] =[aP, h ] = [ a p , h ] = . .
Hence the set of toroidal elements in H g e n e r a t e s a t o r u s .
.=0foranyh
E HsinceHisnilpotent,
We denote this t o r u s by the symbol T (H).
LEMMA 2. Some power of an element h E H belongs to T (H). P r o o f . Since H is nilpotent, some power h y of h is in the c e n t e r of H, which is the d i r e c t sum of T (H) and a subalgebra whose p(~-map is the zero element. Raising h v to the power p~, we find that hVP ~ E T (H). LEMMA 3. The c e n t r a l i z e r of T (H) in G coincides with H. P r o o f . We h a v e H c _ C(T(H)). L e t g E C(T(H)). T h e n g ( a d h ) k = 0 f o r h E Handksuchthat(adh) k E T (H) (from Lemma 2). But elements g possessing this property belong to H (Proposition I, Chapter Ill [1]). LE MMA
4. The torus T (H) is maximal
in G.
Translated from Sibirskii Matematicheskii Original article submitted June 11, 1969.
1970.
Zhurnal,
Vol. Ii, No. 2, pp. 310-325,
March-April~
i
L..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
233
P r o o f . L e t T (H) cA_- T, w h e r e T i s the m a x i m a l t o r u s . T h e n T b e l o n g s to C (T (H)) s i n c e T i s a c o m m u t a t i v e s u b a l g e b r a , i . e . , T ~ H. But T i s g e n e r a t e d b y t o r o i d a l e l e m e n t s , i . e . , T = T (H). L E M M A 5. The C a f t a n s u b a l g e b r a s H t and H2T a r e a d j o i n t i f and o n l y i f t h e i r t o r i T (HI) and T (H2) are adjoint. P r o o f . L e t H 1 = I-I2T, w h e r e T i s an a u t o m o r p h i s m of G.
T h e n T (Hi.) = T (H2) T.
If T (Ht) = T (It2) T,
then
H~ = C(T(H~)) = C(T(H~) ~) -= ( C T ( H ~ ) ) ~ = H ~ "~. We c o n c l u d e f r o m t h e p r e c e d i n g t h a t t h e c l a s s i f i c a t i o n of C a r t a n s u b a l g e b r a s in s i m p l e L i e a l g e b r a s G i s e q u i v a l e n t to t h e c l a s s i f i c a t i o n o f m a x i m a l t o r i in G. We c o n s i d e r the p r o b l e m in t h i s f o r m u l a t i o n b e low. COROLLARY. it i s n i l p o t e n t .
w 3.
The
Algebra
T h e c e n t r a l i z e r of the m a x i m a l t o r u s in G i s a C a f t a n s u b a l g e b r a in G if and o n l y i f
W n
Let O = k[xl,... , x n] be the ring of polynomials over a field of characteristic p such that xi p = 0, and let W n be the Lie derivation algebra of the ring O. The algebra W n is realized in the form of operators fi0/Oxi, where fi E Q, and is a simple Lie p-algebra of dimension np n. Multiplication in W n is defined by the relation
i,k
T h e a u t o m o r p h i s m s of W n a r e t h e t r a n s f o r m a t i o n s ~ x i = ~ o i ( x t , . . . , x-n) , q ~ i ( O , . . . , O) = O, w h e r e t h e l i n e a r p a r t of g0i ( x l , . . . , x n) i s n o n d e g e n e r a t e , a n d 9 o p e r a t e s on D = E r i o / O x i a c c o r d i n g to t h e r u l e
z O~xk \ ~ i,h
where f~ =f(~-lx1,...
, ~ - l x n) f o r f E 0 [3].
In W n t h e r e is t h e u n i q u e f i l t r a t i o n
z~ = {Y,/?lOxjld~g/j LEMMA Proof.
6. All toroidal elements Let
(~,
>i
+
:',l (i = -
:, o, I ....
).
of G not belonging to ~f0 are adjoint.
]~O/Ox~)p= ~fiO/Oxi(~.%fo.
Thenfv(0,...,
0) ~ 0 for somev
=l,...,n.
Ifv ~I,
then application of the automorphism 9 xl=x,,
Cx~---z~,
4)xi=x~
(i4=t,v),
yields
axi ) a/axh
w h e r e fv ~ (0, . . 9 , O) = fu ( 0 , . . .
, O) ~ O, i . e . ,
we m a y a s s u m e f r o m the b e g i n n i n g t h a t f l ( O , . . .
W e now c o n s t r u c t the a u t o m o r p h i s m ~ x 1 = ~ x l , ~ x i = x i (i ~ 1):
( E f ~ O / O x ~ ) ~ =[~ r a a / O x , + E ]
~r O/Ox,.
i=/=t
S e t t i n g c~ = 1 / f ~ ( O , . . .
234
, 0), we m a y a s s u m e t h a t fl(O, . . . , O) = 1.
, O) ~ O.
We a l s o c o n s t r u c t the a u t o m o r p h i s m ~ x I = xl, ~ x i = x i + ~ i x l (i ~ 1)o We h a v e 9
(2
o
="
2,ox ,
A.,,J (f~ + Icl ai)a/axi.
s i~/=i
i~P-i
S e t t i n g ~ i = - f i (0, " " " , 0), we m a y a s s u m e t h a t f i ( 0 , . . .
, 0) = 5il.
To r e d u c e e l e m e n t s o u t s i d e ~ 0 to a s i m p l e r f o r m , we s e t ~x i = x i + 99i, w h e r e ,~i a r e f o r m s of the s a m e d e g r e e ~ - 2. We h a v e
H e n c e a n y e l e m e n t o u t s i d e ~ 0 is a d j o i n t to the e l e m e n t D = a/ax~ + x~ -~
where r
~k [x2,...
2 ~a/ax.
, xn].
We now c a l c u l a t e the p - t h p o w e r of a n e l e m e n t D of this f o r m .
Dx~--~t§
p-t
We h a v e
~,
D~xi = (p -- i) x~ -~ r . . . . . D"x~ ~ - ( p - - t ) . . . ( p - - v + i)xV~-" r
(2~>v~>p--i)
and D~'xt = (p
-
-
l) 1(t + xt p-I r
r --
-
-
(t + z~ -i ~ ) r
( H e r e we a s s u m e t h a t p -~ 3.) Similarly D2xi ~ ( p - - t)x~v - 2 r . . . . . D~z~ = ( p -- ~)... (p - - ~ + i)x~v-*~p~(2 > I .
>i p -
i)
and DPxi~(p--t)!(t-{-xt
p-I
~ i ) ~ p i ~ - ~ - - ( t - b x ~-i ~ ) ~ ,
i.e., Dv __--- - (t + xi~-t~pi) 2
~,O/Oz~.
It f o l l o w s that f o r a t o r o i d a l e l e m e n t we h a v e
p-t i.e.,
r
=-1,
r
v-i %E ~a/axi,
= 0 (i ~ 1).
H e n c e all t o r o i d a l e l e m e n t s o u t s i d e ~f0 a r e a d j o i n t to the e l e m e n t (1 - x~l - l) O / 8 x 1 and so b e l o n g to one c l a s s , and the l e m m a i s p r o v e d . R e m a r k . The e l e m e n t ~e0 is a l s o a t o r o i d a l e l e m e n t o u t s i d e (1 + xl) 8 / 8x 1. T H E O R E M 1. In the a l g e b r a Wn t h e r e a r e n + 1 c l a s s e s of m a x i m a l t o r i of d i m e n s i o n n . t i v e s of t h e s e c l a s s e s a r e
Representa-
r r = {(i + x,) a / az, . . . . . (1 + xr) a~ axr, zr+,a / axr+, . . . . . x~a / axe}
(r = O, t . . . . . n).
235
Proof.
Plainly T
is a torus.
We
will prove
that it is maximal.
To do this we find its centralizer.
r
Let
[Ef~O/Ox~,
(i
+xl)O/Ox~]----O,
i.e.,
fi--(l+x~)O--ifi----O, oxt
T h i s m e a n s t h a t f 1 = (1 + x l ) f l w i t h O f ~ / O x 1 = O. Similarly,
Oln
f.-- x ~ - - = O ,
Oxn
let [ E]~O/Oxi, x~cVbxn]-=O ,
i.e.,
Oh --0 ( ~ n ) .
Oxn
T h e n fn = X n f n with O f n / 0 X n = 0, and s o C (Tr) = T r . On t h e o t h e r h a n d t h e r a n k of t h e m a t r i x fij ( 0 , . . .
, 0) of s o m e s e t of e l e m e n t s
Di = E ]i'~O/c~x~i s
v a r i a n t u n d e r a u t o m o r p h i s m s of the a l g e b r a Wn, and f o r e v e r y t o r u s T r t h i s r a n k i s r . a r e not a d j o i n t .
in-
H e n c e the t o r i T r
C O R O L L A R Y 1. In t h e a l g e b r a W n t h e r e a r e at l e a s t n + 1 c l a s s e s of C a r t a n s u b a l g e b r a s . We
now prove that any maximal
First let T~0 is an automorphism
torus T in W n is adjoint to one of the tori T r.
and let the basis (Di,...
,Dp) inTbe
chosen
so that DiP =D i. We prove that there
in W n for which the basis of the torus T takes the form
D~ ~ E u~jxj~/~xj
Since Di,... , Dy commuSe with one another the matrices for the linear parts of DI, . . . , Dp commute with one another, and we can conshnaet an autornorphism in W n such that the linear parts of Di,... Dp become diagonal. Let
,
D~= E a~ixjO/c~x~§ D{, w h e r e D ( fi ~.~ (~t > i ) . C o n s t r u c t i n g t h e a u t o m o r p h i s m ~ x i = x i + q~i' w h e r e t h e q~i a r e a r b i t r a r y d e g r e e t~ + 1, we o b t a i n
xj - - - - 5~j~j) ~xj
#/Oxk § D~'.
( c o n g r u e n c e s a r e m o d u l o ~e~+x ). Let
D( ~-- E,q)~jO/ax~rood s where
the r
are forms
To reduce
of degree/z
D i modulo
~+,
+ I.
to the form
E
a~jxja/#xj, it is
l oqc~ VJT;;x (for all i and k).
Since k i s f i x e d h e r e , we a s s u m e t h a t k = 1. EaO
C o n s i d e r this relation for i = i:
236
\
(xj Oqoi
o%-7- 6ij t) +,.
necessary
0 Hence
= o.
and sufficient that
f o r m s of
Oxi H e n c e r n c o n t a i n s no m o n o m i a l s x a t . . .
xnan f o r w h i c h - - 6~) =/= O.
Za~
and we
may
assume
that ~li contains
only monomials
x al. . . x n
ai~(a~- 61;)= 0.
for which
values of ~i (which do not alter eli) also contain only these monomialso Now x I (we calculate terms of degree ~t + i): for D1x I we have terms r of degree are
~-~
w h e r e D~ = Z Let ~
~_~
0
0
...
=
~D~l
-~ a~
~li-]-
~,
~,a. . . . . n X t l . . . X n . We h a v e
Z
a~ja~ = a~
and so we
must
have
[~;i + ....
~'a i . . . a n
0, o r
ai~a~- a~ = 0 (i = i,...
not alter Di, . . . , D s modulo
~ - - ~] ~ . . . . . .
~ = 0,
s + l ~ 0. C o n s i d e r w h i c h m o n o m i a l s o c c u r in r s + l . It f o l l o w s f r o m [Ds, D s + l ] = 0 t h a t r s +1 c a n c o n t a i n o n l y t h e m o n o m i a l s • x for , s).
~+l.
But these Hence
and t h e o t h e r t e r m s do not o c c u r in r
are just the permissible
el, s +i contains
Z H e n c e if D 1 , . . .
+
eli =0.
Let r = 0,... , r = 0, r t h e c o n d i t i o n s [D1, Ds + t ] = 0 , . . . , whichZ
~-~
apply the condition Di p = D 1 to # + i, for D!Px I these terms
a~x~O/Ox~.
But in our case
i.e.,
p-i
Permissible
no terms
transformations x a~. . .
do
for which
(~s+l, j aj - - qs+~, s+~ =fi=0,
s + 1 s i n c e DPs + 1 = Ds + t.
, D v E~0, t h e y c a n b e e x p r e s s e d s i m u l t a n e o u s l y in t h e f o r m Z
But t h e e l e m e n t s x j 0 / a x j this case
for ~i which
e~:xjO/Ozj.
= ( x j 0 / ~ x j ) P c e n t r a l i z e T and a r e t o r o i d a l , and s o x j a / 0 •
E T.
Hence
in
T = { x 9 / Oxj; i = i . . . . . n} ---- To. Now
let ~r~
~0
that D~ ~ ~0 9 Lemma have
and let the basis of T consist of the toroidai 6 and the remark following it imply that we
C (D 0 = { (1
elements. Suppose that D i = D p E T but may assume that D I = (I + xl}0/ax i. We
@ x~)]~O/Ox~-}- Z]iO/Ox~}, i~%2
where 0fj/0x i =0.
LetD
E C(Di) and l e t
237
D = DP =
( l ~-
D =
(t +
xi)l,O/Oxi q- s
We have
where
D'P
= D'.
Let
D' @ ~0.
Then
there
xl)flO [c)xl -}- D ~,
is an automorphism
in W n leaving
D I invariant
while
D takes
the form
D= Now constructing
the automorphism
(i + x,)kO / Ox, + (l + x~)O l Ox~.
6 x 1 = x 1 + (1 + x , ) r
~ x i = x i (i = 2 , . . . ,
n), w h e r e
aq~/Ox 1 - - 0 , d e g
-> 2, w e o b t a i n Dl ~ :
D ~ ~--~(J. -[- xl)flO/Oxt &p
DI,
+ (t + .~) (i + x~) ~
O/Ox~ + (l + x~)O/Ox~
= (t § x~)f(O/Ox~ + ( 1-4- x2) O/Ox2, where using
f I, =fl +(l +x2)O,(o/0x2. It follows that fl canbe assumed the condition DP = D we find that r = 0, k an integer. Let D 1 = (I + x0O/0xl,
be toroidal.
This
implies
. . . ,Dm
= (i + Xm)O/ax
m
to take the
and let the element
formfi=X+•
~, X Ek.
D centralize
DI, . . . , D m
Now
and
that rn
D = ~, ('1.47 xl)/i O]Oxl + - ~"L I~ O]Ox~, w h e r e fj E k [ x m + * , .
9 9 ,x n].
Let
D' =
,~, /iO/Oxd~ &. i-.>.mq-1
Then since D 'p = D' and the trm~sformation reduced
t o t h e f o r m (1 + x m + i) 8 / 0 x m .
fi (i ~ m) Now
p-i
take the form consider
ki q- x,~+i~,
the case
k i E k, and the condition
and all the remaining
D' is
Ox i = x i + ~ai (i -< m + 1), w e f i n d t h a t
D p = D implies
that r
= 0, and k i integers.
in which
D, =
implies
of X m + ,, 9 9 9 , x n d o n o t a l t e r t h e f o r m of D, t h e e l e m e n t
Applying the automorphisms
elements
~- xi)c9 10xl . . . . .
(1
of t h e t o r u s
a r e i n s 0.
D~- =
(1 q-
xr)O / Oxr,
L e t D tiC ( D 1 , . . .
, D r ) , D E s 0.
The first condition
that
D=
(t ~7 xl)/,O]Oxl ~ . . . + (l -}- xr)/rO/OXr-/
~, /jO/Oxi, O/~[Oxj=O ( ] = 1 . . . . . r). j~r+:
The representation
of D i n t h e f o r m D' + D", w h e r e D" =
~
[~OlOxj, p o s s e s s e s
the same properties:
j>r+l
i) D P = D = > D " P = D " ; Hence the set of parts of D" also forms affecting only x r + I, 9 9 9 , Xn and leaving torus
2)
[D,C]=O:=>-[D",C"] = 0 .
a torus in Wn_ r over xl, . . . , x r invariant,
k[xr + i," 9 9 , Xn]. By using the automorphism we can reduce an element D of the maximal
to the form r
D=~, * As
238
in Russian
original
- Consultants
(i +x~)/jO/Oxj+
Bureau.
~, c~jx~O/a j.
Now c o n s t r u c t t h e a u t o m o r p h i s m @xj = x i + (1 + x~)qoj, w h e r e d e g ~o~ --- 2, Coj d e p e n d s only on Xr + ~ , 9 . . >x n, w h i c h l e a v e s D 1 , . . . , D r i n v a r i a n t . T h i s a u t o m o r p h ~ s m r e d u c e s D to a f o r m s u c h t h a t fj (j ~ r) c o n t a i n s o n l y m o n o m i a l s x a l . . , xnn f o r w h i c h E a j a j = 0. Now u s i n g t h e c o n d i t i o n DP = D we f i n d t h a t fj = 0. By c o n t i n u i n g t h i s p r o c e s s we o b t a i n the p r o o f of the t h e o r e m . 9
~
COROLLARY 2. In the algebra algebras are of dimension n.
w 4.
The The
Algebra algebra
S
J
W n there
.
J
are exactly
n + 1 classes
of Cartan
subalgebras.
All these
( n > 2)
n
S n (n > 2) is defined
to be the second
commutative
algebra
n+~ ~ f~O/Ox~ of
of all derivations
i~i
, X n + i ] w i t h d i v f = y~Of~/Oxi = O. A s a v e c t o r s p a c e , Sn i s s p a n n e d b y t h e d e r i v a t i o n s
the r i n g k [ x ~ , . . .
D~, j {~} ---~(c?u I Oxj) 01 oz~ - (Ou I axe) a I oxs, u 6 k [x: . . . . . z,,+:]. and h a s d i m e n s i o n n (pn + 1 _ 1). T h e a l g e b r a S n i s s i m p l e and i s a p - a l g e b r a , and it i s n a t u r a l to i n t r o d u c e i n i t f i l t r a t i o n with r e s p e c t to the d e g r e e of t h e e l e m e n t u. T h e a u t o m o r p h i s m s of Sn a r e a l l t r a n s f o r m a t i o n s x i - - @ x i f o r w h i c h t h e d e t e r m i n a n t of the m a t r i x (0 @(xi)/Sxj) i s c o n s t a n t and d i f f e r e n t f r o m z e r o . L E M M A 7. T h e t r a n s f o r m a t i o n @xi = x i + ~oi, w h e r e t h e ~ i a r e f o r m s of d e g r e e ~ <-- 2, e x t e n d s to an a u t o m o r p h i s m of S n i f and only if d i v q0 = 0. P r o o f . L e t @xi = x i + ~ o i + r wheredegr ~ u + 1 , be a n a u t o m o r p h i s m o f S n . T h e n i t S ( x i + (Pi + r ) / S x iu = 1. C a l c u l a t i n g m o d u l o of t h e f o r m s of d e g r e e Ur, we o b t a i n d i v qo = 0. Now l e t d i v go = 0. W e p r o v e t h a ( t h e r e a r e ~i (deg r ~ v + 1) s u c h t h a t ll0(xi + qo~ + r = 1. L e t the r b e c h o s e n s o t h a t US(x~ + goi + r ~- 1 r o o d ~ nlU'(u ' ~ u, nl i s the i d e a l i n k [ x ~ , . . ~. , X n + l ] generate~d b y x l , . . . , ~%t+~)" T h e n forx i+go i+r
+pi, wheredegpi
~
u' + 2 , we h a v e
II~(x~ + m~+ r + p~) IOx~lf ~- II~(x~ + ~ + , , ) l~x~ + ~p~/Ox~ll II0(x~ -t- mi + r Since
ficient to prove of degree and s o
ui"
~n + i
O~ I
all elements
x i , . . . , Xn+
I
, except
that II0(x i + gai + r We
must
show
To obtain -
-
(xl...Xn+1)
~
r~ ~+, =
LEMMA Proof.
O,
p-I,
contain
that [I8ai/Oxjl[ does
it is necessary
"
elements
"
'
"
(x I.
r-el
"
fi' = fi + 8~i/Sxi"
'
"
.....
Assume
that a i is a monomia[
We
n + l
it is suf-
have
a, = x~ i~ .
x ~i,'~
"
2Fi,~+i--~:p--~,
i.e.,
~ril
0.
of S n outside but
r 0 are adjoint. (~ :~r
Since
in this ease,
linear part of the automorphism W n is arbitrary but nondegenerat% fi(0'" . . ,0) =0 (i =2,... , n+ 1). Applying the automorphism the new values div f =0that
of the divergence,
Xn + i)p - t
~rliM1~p--~
that
fiO/Oxi----- f~O/Oxi ~S~,
are in the image
(x I. . . Xn+i) p-~.
not contain
2
which implies that llrijN :
8. All toroidal Let
(x I. . . Xn+l) p-I
cannot
9
+ div p rood m"'+'.
Let fl = x~.P-lfi
+ gi, where
as in the case
of ~xi, the
we may assume that fl (0, . . . , 0) = i, ~x i =x i + gPi, deg ~Pi ~ 2, we obtain gi does
not contain
x p-i.
It follows
from
os i x,+ 7~.-
i . e. div]~O,
divg~xi
p-2-
fi.
239
Setting Xl
Or~/Ox~= O, we have 9c!
_ _ __ i'( ~gi~xi x p--~f~) dx~
0
0
Og~ div*=--(gt--t)--~x~dXt+divF'-~--(gi--i)+
+ div F = 1 - - gl (0, x2. . . . . x.+~) + xiV-1 f i + div r . S i n c e g~ (0, x 2 , . . . elements
, x n + 1) d o e s n o t c o n t a i n (x 2. . . X n + l) p - 1 [ t h i s f o l l o w s f r o m t h e r e p r e s e n t a t i o n
o f t h e f o r m D i j (u)], F c a n b e c h o s e n s o t h a t d i v F = g l ( 0 , x 2 , . . .
t i o n o f Sn b y e l e m e n t s
o f t h e f o r m D i j (u) i m p l i e s
,Xn+l) -
1.
of S n b y
But the representa-
that
n+t auj j=2
Hence,
setting xj
Jo Oxj we have n+t
div q~= div ~ - - xi
P--t
).a..2 . j=2
i.e.,
the automorphisms
Ou = z~-' f, - x:-~7, = o, Oxj
@xj = xj + q~j a r e p e r m i s s i b l e .
T h e n e w v a l u e s o f fi' a r e a s f o l l o w s :
h ' = x3-17t + gt(O, x 2 . . . . .
xn+O,
xj
o
(ir
6tx'j
i. e. ,
w h e r e 71, 9 9 9 , T n + l , There
g2, 9 9 9 , g n + 1 a r e i n d e p e n d e n t
is an element
o f x 1.
D with fi = x f - t d i v g + l + 71,
fj =
div f =- O, Application (j ~ 1). L e t
of the automorphism
U s i n g t h e c o n d i t i o n D p = D, w e o b t a i n f j
apply the transformation
div y = O.
Ox 1 = x l , Oxj = xj - x l T j (j ~ 1) s h o w s t h a t w e m a y a s s u m e 7 j = 0
f~=x~-idivg+l+yl,
Now
xlV-tfj + x~ -z g~ + y~(j =# i ) ,
= 0 (j = 2 , . . .
fj=x~ -- ifj+x~ p--2 gj , n + 1).
with la~j j=2
240
(] =/= 1).
[this is possible since the representation of S n in the form (x 2. . . Xn+i)P-I ]. We find that D has the form
of derivations
Dij (u)shows that7~ does not contain
n~ki
(~ + x~ -~ div ~) a/ax~+ ~-~ ~
~9/ax~.
~2
C a l c u l a t i n g D p = D a s a p p l i e d to x l , we o b t a i n d i v g = - 1 . ~2 = x p - l ( g 2 +x2), ~0j = x p-2gj- (j ~ i , 2) we h a v e
Now a p p l y i n g t h e t r a n s f o r m a t i o n w i t h ~ l = 0,
p--2
D ~ ( i - - x~~-~) 8/Ox~ - - x~
x~O/Ox:.
and t h e I e m m a i s p r o v e d . W e g i v e a n o t h e r p r o o f of L e m m a 8. L e t D @~f0 b e t o r o i d a l and ~ Sn. Sn i s i m b e d d e d , s u c h t h a t
L e m m a 6 i m p l i e s t h a t t h e r e i s an a u t o m o r p h i s m
5 of W n + l, in w h i c h
D +-i = (i § x O a / Ox~ - - x~+~a / az~+~,
i.e., ((i + xl)a/0x I - Xn+10/DXn+1) that ((I +x1)a/0x I- Xn+10/Dxn+1)
r E S n. Hence to prove @ E S n implies @ EC(DI) DI
=
Lemma 8 it is necessary G(Sn) , where
and sufficient to prove
(t d- xj ) O / Ozl - - x~+,0/ Oz~+~.
H e r e C d e n o t e s t h e c e n t r a l i z e r and G (Sn) d e n o t e s t h e g r o u p of a n t o m o r p h i s m s of t h e a l g e b r a Sn. S i n c e t h e l i n e a r p a r t of an a u t o m o r p h i s m of Sn i s a r b i t r a r y b u t n o n d e g e n e r a t e , we m a y a s s u m e t h a t .+xi = x i + ~i, w h e r e d e g ~Pi ~ 2. T h e c o n d i t i o n D~ + ~ Sn i m p l i e s t h a t d i v D~ r = O, i . e . , f o r f o r m s of l o w e r d e g r e e we h a v e ~ div ~ / 0 x ~ = 0, o r div q i s i n d e p e n d e n t of x t. On t h e o t h e r hand t h e c e n t r a l i z e r of D~ c o n s i s t s of a u t o m o r p h i s m s +x i = x i + r where
*i = Z A~(l q-xi)j+i x~+~, Xnq-i~
'~ = 2 ,
oj
(l + x0 x.+~
Hence
a vr
A (j +
+
It is thus sufficient that the system
+
of equations
q: divr
Remark.
~
U/~j
+
j
or that the system
(m) OBo Ox~= = div %
(Aj+:B:)(]+I)+)'~--~-~
be solvable.
n ~D(rn)
+:
div ~ be solvable,
A o § Bo §
m==2
j
--~0
(]=t ..... p--i).
OXra
But t h i s s y s t e m i s c l e a r l y a l w a y s s o l v a b l e . The e l e m e n t (1 + x I ) 0 / 0 x 1 - x 2 O / 0 x 2 E Sn i s t o r o i d a l .
THEOREM 2. There are n + I classes of maximal tives Of these classes can be taken to be Qr =
tori of dimension
n in the algebra S n-
Representa-
{ ( i § z~) a / az~ - x=+~a / ax~+, ..... (I + z,) a / axr -- x~+:a / az~+~, 32r+1~ / ~Xr+l - - Xn~-I8 /OXn+l . . . . .
x~O/
ax,~ - - x,~+~a / ox~+,}
(1"= o, 1 . . . . . n).
241
Proof.
The e l e m e n t s g e n e r a t i n g Q r a r e t o r o i d a l and c o m m u t e with one a n o t h e r .
D --~ ~, f~O/Ox~~ C(Q~). It
We find C (Qr).
Let
follows f r o m the r e l a t i o n
that li =
Aj.(t + x,)J+l x.+i,
Jr-.,
],+i=2Bi(l
,+i,
(m)
w h e r e Aj, Bj, BI m) 6 k [ x 2 , . . .
, Xn].
.....
.),
T h e condition
[ 2 S,O/Ox,, x,+~O/Ox~+,--x,+~O/Ox,~+,]=O i m p l i e s that
I,.-~-) ~j x~+ixr,+t j B i(m)' 6 k [ x l , . . . w h e r e Aj' B.'
(rn=i ..... r--i,
, Xr, x r + 2 , . 9 9 , Xn].
w h e r e Xij 6 k , I I = ( l + x l ) . . . ( l + x
r + i . . . . . n),
Hence the condition D E C (Qr) i m p l i e s t h a t
r) x r + t . . . x n + t .
W e n o w p r o v e t h a t the t o r u s Q r is m a x i m a l . Let D 6C (Qr) and let DP = D. T h e e l e m e n t D h a s the f o r m indicated above, and we m a y a s s u m e that hi0 = 0, c a l c u l a t i n g the c o r r e s p o n d i n g l i n e a r c o m b i n a t i o n of e l e m e n t s of the t o r u s Q r f r o m D. U s i n g the r e l a t i o n d i v D = 0, we have
~ . ~ ( ] + 1 ) + ~ 2 ; ( S + i) + . . . + ~.+,.J(i + i) = 0, and we c o n c l u d e that Xlj +k~j + . . . + h n + l , j = 0, s i n c e in all s u m s f o r fl, 9 9 9 , f n + t the s u m m a t i o n with r e s p e c t to j is only to j = p - 2, as follows f r o m the r e p r e s e n t a t i o n in the f o r m of l i n e a r c o m b i n a t i o n s of the e l e m e n t s Dij(u). The e l e m e n t D thus has the f o r m D = ~X~;HJ ( (4 +
xt) O/Ox~ x~,+,O/Ox~+~)~- E -
-
~jHJ(
(i -~ x~)O/Oz~-- xn+iO/Oxn+,)
All t h e s e s u m s c o m m u t e with one a n o t h e r and so it is sufficient to p r o v e that the e l e m e n t
j=l
is not t o r o i d a l . Only one t e r m hljlIJ0((1 + x i ) a / a x 1 - X n + t a / a X n + l ) (i ~ ] 0 ~ p - - 2) of this s u m need be i n v e s t i g a t e d . But it is e a s i l y s e e n that the p - t h p o w e r of this e l e m e n t is equal to 0. H e n c e Q r is the m a x i m a l t o r n s r e d u c i n g to the Abelian C a f t a n s u b a l g e b r a of d i m e n s i o n n(p - 1).
242
C O R O L L A R Y 1. T h e r e a r e at l e a s t n + 1 c l a s s e s of A b e l i a n C a r t a n s u b a l g e b r a s of d i m e n s i o n n ( p - 1) in the a l g e b r a S n ( n > 2). W e now p r o v e t h a t any m a x i m a l t o r u s Q in Sn i s a d j o i n t to s o m e t o r u s Qr" F i r s t l e t (2 ~ ~e0. Since in t h i s c a s e , a s in the c a s e of Wn, t h e l i n e a r p a r t of a p e r m i s s i b l e a u t o m o r p h i s m 9 i s a r b i t r a r y , we m a y a s s u m e t h a t t h e e l e m e n t s D 1 , . . . , D u of Q a r e of t h e f o r m
Di = ~
tti~x~O/Oxj 3c D(,
where
D ( ~ c~o.
We now apply the reasoning we used for Wn, ~4th the additional condition (imposed the automorphisms) concerning the vanishing of the divergence. Let Q ~_ S% and let D i = DiP ~ Q, but @ ~fo . Then by virtue of Lemma D I is adjoint to the element (I + xl)0/0x I - Xn+iO/0Xn+ I. The centralizer
{ 2Aj(t
of this element
both on the terms
8 and the subsequent
Di~ m~d
remark,
is the set
+ xt)i+~ x~+lO/Oxl @ Z
B~(i ~- xl)jxn+lO/Ox~+i + L-4 Bij
x,~+iO/~x~}.
i~2
The a u t o m o r p h i s m s ~xj = xj + qj a l s o c e n t r a l i z e D b w h e r e qi=
i -~ x~)i+l Z~zTi,
~,q)i(t
q~+~
-----2 r
•
~'~ (m)
q,.
?,~j
9~i) Xn+h ~.,~
(t+xd
J+~
. ,i
3 Xn+t
(we a s s u m e t h a t a l l s u m s r e p r e s e n t e l e m e n t s w h o s e l o w e r d e g r e e s a r e g r e a t e r t h a n o r e q u a l to 2). A c o n d i t i o n f o r t h i s a u t o m o r p h i s m to b e l o n g to Sn i s t h a t the d i v e r g e n c e v a n i s h f o r the l o w e s t t e r m s , and in t h e present case this condition is n
Forj
~ (i)
+ t)-4- z._.zOX~ Oxi = o
(pj(j+ '1)+r
for all
j.
(I)
=p-lwehave ~
(i)
atop-1 __ Ox~
O.
i=2
For the last condition to be satisfied it is sufficient that 3:7 0
X2, p-i ---- -- ] B2, ~-I dx2 + B2 p-1 (0, x3 . . . . x,~)x2 0
if Bi, p _ t d o e s not c o n t a i n x~2- i.
New v a l u e s f o r Bi, p _ ~ a r e (~----3. . . . . n),
B~, p - l = 0
B2.~-~=B2,~_I(O, x3 . . . . . x~,).
H e n c e the Bi, p _ i r e d u c e to t h e f o r m p--I
Bi, p-, = x2 w h e r e 7 i s i n d e p e n d e n t of x 2.
--
B~, p-1
(~ = 3 . . . . . n),
P--I
B2, p-i = x2
--
B2, p-1 -}- ~1,
F o r j ~ p - 1, c o n d i t i o n (1) i m p l i e s t h a t we m a y t a k e
243
(o 0
and t h e r j a r e o b t a i n e d f r o m (1) if n e i t h e r Bi~ n o r A,~ c o n t a i n x~22t r a n s f o r m a t i o n s show t h a t
i.
It f o l l o w s t h a t if D
s
permissible
n
+
_ ~(l+ ~p - , r)~, B
x ,) ~x~+~O/O~§ ~+'
§247247
~-~ ~ ( ~ + x l )
§
.
~x~+,O/Ox~ ~
~-~
~ ~+1
w h e r e T i s i n d e p e n d e n t of x 2. (The r e p r e s e n t a t i o n of Bj f o l l o w s f r o m t h e c o n d i t i o n d i v D = 0.) s u m e t h a t 7 = 0 b y a p p l y i n g , if n e c e s s a r y , t h e t r a n s f o r m a t i o n
agx2=x2
(i§
--
-1 Xn+1 ~1
Cxi = xi -~ ~< (i § ~ j
\ p--i
We m a y a s -
X2, p--i
x~+i,
where
2
a(p~
/=3
[this i s p o s s i b l e s i n c e T d o e s not c o n t a i n (x 3. . . Xn) p - 1]. -
j
Now c a l c u l a t i n g DPx 2 = Dx 2 we o b t a i n ~ , B2j(l § x~) J x~+, ~---- - i . D ~ x~ -1 p--2
--
-~- (~
F A5 (t +
xi) j+l x~+lO/Ox:
XJ-~I (~
-
-
X2
Hence
p--2
~ ~j
) ~/OX2 ~- XP2- t
j§
j J i~3
The condition div D = 0 implies
~ i.e.,
F 0=-1,
Fj =0(j
=1,...,p-2).
x2
§
Fj(] § t) (t + x~) j X nJ§ The elementD
2 j (t § x:) 3+1x~+l O/Oxl § x2
~-- O ~
r e d u c e s to
8j (i § zl) 5z;+l O/Ox~+:
p -: 2 B I j ( t - _ ~ X l ) j Xn+OIO/X~i_I(_X2TO)I-O/X2__X2J
p--2 X n + l O / O X n + l .
i=3
Now calculatingD p as applied toxl, x3,... ,Xn+1, we find thatAj =0, Bj =0, Bij =0, i.e., D ~ (t -- x2P-i ) O/~x2 -- x2P-2x~+l~/Ox~+l. We t h u s find t h a t a l l t o r o i d a i e l e m e n t s o u t s i d e ~f0 h a v i n g fl ( 0 , . . . , 0) =0 and c e n t r a l i z i n g D 1 a r e a d j o i n t . An e l e m e n t of t h i s t y p e i s (1 + x 2 ) 0 / 0 x 2 - x n + 1 0 / 0 x n + ~. T h e p r o o f of t h e t h e o r e m i s o b t a i n e d b y c o n t i n u i n g
this process.
244
In conclusion I wish to thank A. I. Kostrikin for his valuable advice~
LITERATURE 1.
2. 3. 4.
CITED
N. Jacobson, Lie Algebras, Interscience Publishers, New York (1962). G. B. Seligman, "On Lie algebras of prime characteristic," Memoirs of the Amer. Math. Soc., No. 19. A~ Rudakov, "Automorphisms of infinite-dimensional simple Lie p-algebras," Izv. Akad. Nauk SSSR, Seriya Matem., 33, No.4, 748-764 (1969). A. i. Kostrikin and I. R. Shafarevich, "Graded Lie algebras of finite characteristic, ~ Izv. Akad. Nauk SSSR, Seriya Matem., 33, No.2, 251-322 (1969).
245