2. We c o n s i d e r the f a c t o r g r o u p G' = G , / ( c 4 ) If ~2 = 1, then i t i s e a s y to v e r i f y t h a t the f o l l o w i n g s u b g r o u p s have i n d e x 2:
a r e c h a r a c t e r i s t i c i n G ' a n d i n view of Be, MI = B(G) = I~2, w h i c h i s a c o n t r a d i c t i o n . w r i t e ~2 = 0. In this way, a s a t s o f o r a z = 1, we o b t a i n a c o n t r a d i c t i o n . A 2. ~- = vw. c a s e s . Secondly, t r a r y c a s e for a n a c o n t r a d i c t i o n to
T h i s a l l o w s us to
F i r s t of all, i n t h i s c a s e we m u s t show that a z ~ Z(G), o t h e r w i s e we o b t a i n p r e v i o u s the s u b g r o u p ( ' r ) c a n n o t b e a m a x i m a l c y c l i c s u b g r o u p i n the g r o u p G', s i n c e the c o n a r b i t r a r y s u b g r o u p M of i n d e x 2 i n the g r o u p G, M' ~ G s. U s i n g L e r n m a 4, we o b t a i n the f a c t that d(G') = 3.
Set gl E G% g 2 = T, gl = a~o~~ c.~o2~ ~v, %, ~0 ~f~ 0 (2), y = 0, i ; w h e r e ~ , /3 a r e n o n n e g a t i v e i n t e g e r s . If 7 = t a n d 2fi~0 -= 0(2), t h e n G' = ( ( g l ) s w h i c h c o n t r a d i c t s the c h o i c e of the g r o u p G.
is a (3,3)-group,
If i~ = I a n d 2tiff 0 =-1(2), w h i c h by the c h o i c e of the g r o u p G n e c e s s a r i l y m u s t s a t i s f y the e q u a l i t i e s [a, gl] = a 2 r a n d [ a g , gI] = a2 a n d h e n c e [g, g] =~-. In this c a s e
~' = ( (x X <~> i s a g r o u p of type 9) of L e m m a 9 ( c o n t r a d i c t i o n ) . T h e r e f o r e , I/ = 0. Set g = m i n (a,
~),
g~ ~ a~o2~-~j b~o# -~'.
If y = p, t h e n s i n c e the s u b g r o u p s (a, T, g2 > a n d < a g , ~, g2) by c h o i c e of the g r o u p G c a n n o t b e m e t a c y c l i c , we o b t a i n [a, g2] = a2% [ g2[ = 4, a n d t a g , g2] = a2. H e n c e [g, g2] = T, i . e . , G' i s a g r o u p of type 9) of L e m m a 9, w h i c h i s i m p o s s i b l e . T h e r e f o r e y ~ fi, i . e . , y < fl a n d y = a . S i n c e ~a 2 =
61ZC~~
~
T.
t h e n H ol~ ( c ) = (a27>. S i n c e ( c 4 ><3G, G " [ ~ Z(O), t h e n e 2 =a2% i . e . , trio 2 f i + l - y =a2 r : e2" T h e r e f o r e fi - y + 1 = 1, i . e . , y = fi ( c o n t r a d i c t i o n ) . A s s e r t i o n 5) i s p r o v e d , s i n c e the c a s e x = l i s a n a l o g o u s .
613
Since in 4) v ~ (T }, then from 6) If ( 7} is a maximal Lemma
5) follows:
cyclic subgroup
In the contrary case, M' _ G3, where 4, d(G') < 3 (contradiction).
in G', then G" ~-- Z(G'). M is an arbitrary subgroup
of index 2 in the group G.
7) If G" =(v} X (w}, v E (a}, v ~ (T}, then in G" there exists an element and (T O } is a nonmaximal cyclic subgroup of G'.
Then by
T O such that G" = (v} X (T0)
If (T} is a nonmaximal cyclic subgroup, then the assertion is proved. Let (T} be a maximal subgroup of G'. By assertion 6), G" ~-- Z(G). We consider the factor-group G'/(v). In this group let (7}(v> /iv)/(v) is nonmaximal in G,. Let (~} ~(g), (g>= p2. Consider the subgroup ((a} X (T))(g}, where(v}(g} is the inverse image of the subgroup (g}. It is easy to verify that gP = TelVe2 and e I ~ 0(p). In that case gP will also be the desired element T O . 8) If G" = (v) X (w}, v E (a), then there exists an element T0 as in assertion the first assertion of 5) is valid. torr~
9) If v is an element as in 8), then there exists an element 0(p).
7) and therefore for Y0
g of G' such that v~ (g), g = aSbtc r and
A s s u m e t h a t e a c h e l e m e n t g of G ' f o r w h i c h ( v } _ (g), h a s t h e f o r m g = aSbPt~cPYl. F u r t h e r , if M i i s a s u b g r o u p of i n d e x 2 in G, t h e n G" = ( v } • (~'0} --~ M i ' a n d M i ' i s a m e t a c y c l i e group: M i ' = (ci) ~ (di> a n d [Mi"[ _a n d M i ' = ((ai> • (Ti})(bib. If M i ' -~ T, t h e n in T a l l c y c l i c s u b g r o u p s of o r d e r two a r e c h a r a c t e r i s t i c , a n d T / ( b l 2} -~ D ( c o n t r a d i c t i o n ; [6]). In t h i s c a s e a i = a S i b P t i c P 7 i a n d in v i e w of t h e h y p o t h e s i s , b i = a k i b P l i e P r i , k i ~ 0(p) a c c o r d i n g to a s s e r t i o n 8). F r o m L e m m a 4, G ' = MI'M 2' ( [ e , d]}, if ' ( c , d } = G. T h e r e f o r e , d(G') _< 2 ( c o n t r a d i c t i o n ) . T h i s p r o v e s a s s e r t i o n 9). W e c o n s i d e r t h e s u b g r o u p H = ((h> • (v)) ( g ) , w h e r e ( 7 0 } c ( h } a n d T0 a n d h a r e e l e m e n t s a s in a s s e r t i o n 8), a n d t h e e l e m e n t g i s a s in 9). L e t g = aSbc r . S i n c e t h e c o n g r u e n c e ~0 x ~ - s ( m o d p ) i s s o l v a b l e f o r x, t h e n ~ H and G' : [I . In t h i s c a s e , a s in t h e p r o o f of a s s e r t i o n 5), w e o b t a i n a c o n t r a d i c t i o n e i t h e r to t h e c h o i c e of t h e g r o u p G, o r , b y L e m m a 9, to the u n i q u e n e s s of B(G) in G ' in T h e o r e m B 3. T h e t h e o r e m i s p r o v e d . T h e a u t h o r e x p r e s s e s h i s d e e p g r a t i t u d e to A. I. S t a r o s t i n f o r p o s i n g t h e p r o b l e m , and f o r his h e l p f u l guidance.
LITERATURE i~
2. 3. 4. 5. 6. 7.
614
CITED
N. Blackburn, "On prime-power groups with two generators," Proc. Cambridge Philos. Soc., 54, No. 3 (1958). V. A. Sheriev, "Finite 2-groups with complementary noninvariant subgroups," Sibirsk. Matem. Zh., 8, No. I, 215-232 (1967). ~r Hall, Theory of Groups [Russian translation], IL, Moscow (1962). N. Blackburn, "On a special class of p-groups," Acta Math., i00, Nos. 1-2, 45-92 (1958). Ph. Hall, "A contribution to theory of groups of prime-power order," Proc. London Math. Soc., 36, 29-95 (1933). W. Burnside, "On some properties of groups," Proc. London Math. Soc., ii, 225-245 (1912). L. Redei, "Das 'Schiefe Produkt' in the Gruppentheorie mit anwendungen aus die endlichen nicht kommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu dener nur kommutativen Gruppen gehoren," Comment. Math. Helv., 20, 225-264 (1947).