On the congruence \(1^m + 2^m + \cdots + m^m\equiv n \pmod {m}\) with \(n\mid m\)

We show that if the congruence above holds and \(n\mid m\) , then the quotient \(Q:=m/n\) satisfies \(\sum _{p\mid Q} \frac{Q}{p}+1 \equiv 0\pmod {Q}...
5 downloads 405 Views 243KB Size