Semigroup Forum Vol. 26 (1983) 349-373 9 1983 Springer-Verlag New York Inc.
RESEARCH ARTICLE
THE ORDERABILITY
OF R E G U L A R
T6ru Dedicated
60th
Communicated
A semigroup a linear The
order
purpose
ability
for
in T h e o r e m s Let
V(x)
the
D(x)
V(T)
ordered
is to g i v e
if
S
The main
admits
semigroup.
a condition
regular
LEMMA
i.i.
semigroup.
of
S.
inverses
= Uxe T V(x).
First
let
to be o r d e r a b l e
semigroups.
be a r e g u l a r
dered
group,
R. R e i l l y
it a l i n e a r l y
idempotents
the D - c l a s s i.
by N.
this paper
set of all
we w r i t e
birthday
is s a i d
regular
G. L. G l u s k i n
of o r d e r -
result
is g i v e n
A and B.
S
set of all
S
making
of
Sait6
to P r o f e s s o r
on his
SEMIGROUPS
of
S
we g i v e
For of For
x
in
by
For
the
of
by
T ~ S,
we d e n o t e
the e l e m e n t
lemmas
E
we d e n o t e
S.
x e S,
containing elementary
We d e n o t e x e S,
by
x.
linearly
or-
semigroups.
Let x,
S
be a l i n e a r l y
z e S
and
let
x'
ordered
regular
e V(x).
semi-
Then
(x'zx) 2 = x,z2x. PROOF.
We h a v e
First
suppose
either zxx'
zxx'
~ xx'z.
(x'zx) 2 = X ' ( Z X X ' ) Z X =
and
so
x'z(zxx')x
(x'zx) 2 = x ' z 2 x .
we o b t a i n
the
same
~ xx'z
or
xx'z
~ zxx'
Then
~ X'(XX'Z)ZX
= x'z2x
~ x'z(xx'z)x
=
In the c a s e
relation
(x'zx)
where
in a s i m i l a r
way.
2
xx'z
s zxx'
SAITO
LEMMA put
1.2. P =
Also, and
p E P\E < pp'
PROOF.
ordered
{x e S; x ~ x2}.
if p'
In a l i n e a r l y
Let
and
Then
p'
regular V(P)
e V(p),
=
semigroup
S, w__ee
{x E S; x 2 ~ x}.
then
p'
< p'p
< p
< p. p ~ P
and
q E V(p).
We h a v e
either
q ~ p
or p ~ q. If q ~ p, t h e n by [4; L e m m a 6], we h a v e 2 q ~ q. Next suppose p ~ q. T h e n a g a i n by [4; L e m m a 6], 2 we h a v e p ~ p and so p e E. But by [4; C o r o l l a r y of Lemma
I],
we h a v e
E is a s u b s e m i g r o u p q ~ E.
Conversely we can
Thus
let
prove
q2
p'
E V(p).
and
result 2 = p < p
p'
< pp'
< p
Now
and
V(P)
let
P ~ p2.
c V(P).
Then
the
pp'p
~ q
that
{x E S; x 2 ~ x}
of S and
we o b t a i n
by
p c V(q).
Since
a b o v e , we h a v e 2 p' < p' = p'pp'
and
and
we g i v e
the
< p'p
we h a v e and
[2; L e m m a 2
p'
p'
1.3],
similarly
p c P\E
proved
and
Then
q c V(p),
Finally suppose 2 p < p and by
we h a v e
[2; L e m m a
c {x c S; x 2 ~ x}.
< p'.
1.3]
Thus
so
< p.
former
h a l f of our
fundamental
theo-
rem. THEOREM S
A.
If a r e g u l a r
satisfies
i.
S
is o r t h o d o x ,
is a s u b s e m i @ r o u p 2.
if
x
3.
every
semigroup
S
is o r d e r a b l e ,
then
the c o n d i t i o n s : i.e.
the
is a p e r i o d i c g-class
set
E
element
of
o_ff i d e m p o t e n t s
o_ff S
o_ff S;
of
S
is e i t h e r
S,
then
x
i-unipotent
2
= x
3
;
o/_r R - u n i -
potent; 4.
there
P u V(P) and
P n V(P)
x'
c V(x), and 2 that x s P\E
such = ex' 5.
exists a subsemi@roup = S,
and
the
making
x2e
= E,
if
P
x E S,
and
of
S
x'Px ~ P
xe,
x'
such
for
e V(x)
ex
e E
then
E
admits
that
every
x c S
and e e E 2 ex = ex
= xe = x'e;
idempotent
semigroup
it a l i n e a r l y
ordered
idempotent
a linear
order
semigroup
satis-
fying a.
if
then b.
x e S, x'ex
if
x'
~ x'fx
x e P\E,
c V(x), in x'
e,
f E E
and
e ~ f
in
E,
E; e V(x),
e e E
350
and
exe
E E,
then
SAITO
ex'e
~ exx'e
Remark by
i.
Let
[2; L e m m a
x'ex, 2.
x'fx
Let
ex'e
1.3],
x'e
x' V(E)
c
PROOF.
Suppose
group 9
Then
tion
by
i,
P =
{x 9 S;
Lemma
i],
have
V(P)
P
n V(P)
Then = x
we
and, we
x
since
P
Hence
we
exx'e,
f 9 E.
ex'xe
of Lemma
we
have
and
~ x
x'
x' s e
and
< x'e.
~ x.
x'e
Hence
that
e
or
e
c p.
[4; L e m m a
by Lemma
~ x.
By
way
x '2
x '2
(x2x'2x)x
which
~ e(ex')
we
have
we
= x 2.
obtain
we
Hence the
= ex'
ex'
(ex)x
2],
have
~ ex'x = ex'x
ex 2 = ex
~ ex = ex
other and
= ex'
and
= ex'
Hence hand,
so
ex In
x
Then
so
< e. since
so and
x'x
9 E
(x2x') (x'x)
so
x3 =
and
so
x
since
= ex'x
the
in a s i m i l a r
351
and
follows
suppose
and
x2 = x3 = x4
the
it
< x.
x2x'2x
assumption.
On
and
9 V(ex),
a contradiction 9
First
(x2x'2x) 2 = x2x'2x
contradicts
ex
ex 2 =
=
we
contra-
< x'e
Similarly is
of
x'e
i],
1.2,
~ x'e
and
=
[4; L e m m a
x3x'2x
Suppose 2 x 4 Q
S
Hence
< x'.
p 9 P.
~ x'p2x ~
Hence
< e. which
and
x'px
by
we
and
Then
9 E
9 E. xx'
[4;
1.2,
9 E.
Then
ex
< xx',
< e
of
~ x'x
x '2 9 V ( x 2 ) ,
= S
x'Px
xe
x 9 P\E.
and
assume
x
so
by
By
9 V(x)
i.i,
ex,
2 and
By Lemma
x'
Condi-
put
and
=
so
semi-
have
x 2 ~ x}.
= P u Q
and e,
We
S.
by Lemma
9 P
so
3.
x 9 S,
and
we
Condition
of
P u V(P) Let
regular
i],
{x 9 S;
a subsemigroup
and
have
by
and
e E 3 c E.
9 P
so
Then
Then
By way of contradiction, we assume ex' 3 3x, x s e, we have x ~ ex' < x = x x ' x x 2 x , < x ,x. Now we have x 2x, = x ( x x ' )
Hence
E.
e V(fx)
ordered
Q =
x'px
x '2 4 E
e ~ x
9 E.
and
~ p2
is
~ xx'
from
exe
Condition
9 V(x)
Q
= x'
2],
Hence
x 2 4 E,
have
and
a subsemigroup
Hence
x'xx'
x'f
have
n Q = E.
x'
and
Corollary
we
= Q.
we
in
e,
and
a linearly
Theorem
x 4 Q
diction,
we
[4;
is
have
x'
is
~ x 2}
P
since
have
by
= P
have
and
9 V(ex)
c E
S
3.1],
9 P\E,
s exe
_
[4;
(x'px) 2. 2
9 V(x)
9 V(x)
m
Theorem
x'
~ ex'xe
E.
9
V(exe)
[5;
ex'e
x 9 S,
x 9 S,
9
and
~ exe
case way.
9 E.
(x3x'2x)x x 2 9 E,
~ ex' x'
and
s x'x
= ex'. where
so ~ x,
Hence e
< x'
Similarly
SAIYO 2 x e = xe = x'e.
we c a n p r o v e The
idempotent
semigroup linearly dition
< x
and
so
~ exe.
2.
latter
The
B.
of
Let
ex'e
half
1-5
semigroup
PROOF.
Let
S
1-5.
steps.
For dual
DEFINITION x, y e S,
a Lemma
i.
(x'y)
2.
(x'y) 2 e E,
for
some
e P\E
x'
3.
x ' y , y'x
in
E
for
4.
x'y
~ y'y
5.
(yx') 2 e E, some
x'
6.
yx',
xy'
in
E yx'
xx'
~ yy'
define
for
in
S
5 can
B by d i v i d i n g
be
a linearly in
satisfying
by L e m m a
More
a linearly
in C o n d i t i o n makin@
S
the
relation
into a*
S}.
Condi-
several
the m u l t i p l i -
if and o n l y
~ on
S
by:
if a n y o n e of
some
x'
E V(x);
D ( ( x ' y ) 2)
for
is
L-unipotent
D(x'y) x'
E
e V(x)
for
and
for
the
x ' y e P\E
is L - u n i p o t e n t and
y'
and
y'x
is L - u n i p o t e n t ,
y ' x = x'y and
y'
is R - u n i p o t e n t
and
x'
< x'y
e V(y);
some
D ( ( y x ' ) 2)
r V(x)
and
c V(y); yx'
c P\E
e V(x); c E,
some
e E,
E
is s a t i s f i e d :
D(x'y)
in
for
satisfies
a.
in
e E,
some
e E,
which
E V(x);
x'x
7.
We
theorem which
is o r d e r a b l e .
semigroup
a, we d e n o t e
of L e m m a 2.1.
S
and
5b.
P = {x e S; x ~ x 2
Theorem
conditions 2
that
S
< x
as f o l l o w s .
makin@
@iven
on
be a r e g u l a r
x ~ y
following
Then E
Con-
and
and
semigroup
on
order
such
< x'x
fundamental
A.
by the
e e E
~ exe
A is s t a t e d
semigroup
We prove
cative
~ ex'xe
x'
4.
ordered E
we h a v e c l e a r l y
we h a v e
of our
order
to a l i n e a r
ordered
Then
on
we h a v e C o n d i t i o n
in T h e o r e m
idempotent
induced
x' e V ( x ) ,
be a r e g u l a r
a linear
tions
1.2,
Thus
S
precisely,
extended
S.
Theorem
Conditions
ordered
is a l i n e a r l y
x s P\E,
by L e m m a
is the c o n v e r s e
E order
semigroup
~ exx'e
THEOREM
linear
Suppose Then
< xx'
ex'e
the
ordered
5a.
exe E E. x'
subsemigroup
under
T h u s we h a v e C o n d i t i o n
D(yx') x'
e V(x)
D(yx') E
for
is R - u n i p o t e n t and
y'
xy'
some
and
352
xy'
< yx'
E V(y);
is R - u n i p o t e n t , x'
and
e V(x)
= yx' y'
and
E V(y).
SAITO
LEMMA
2.2.
PROOF. c E
The
Let
and,
x r S.
since
By C o n d i t i o n
PROOF. some by
Q
Let
a,
of
Then
S.
for
some so
a e Q,
S,
xx',
x'x
= D(x'x)
L-unipotent
or
by d e f i n i t i o n .
Hence
c V(x'yx) Let
and by
S,
i,
S
[2; L e m m a
T h e n the f o l l o w i n g 2 9 E; 2 (ii) (y'x) 9 E; 2 (iii) (x"y) E E; 2 (iv) (y"x) e E; 2 (V) (yx') e E; 2 (vi) (xy') e E; 2 (vii) (yx") e E; 2 (viii) (xy") c E.
and
so
Q
is
Conversely
P = V(Q). Then
for
Hence
a = axa = a x b x a
let
and
so
c EPE
Finally
a c V(y)
for
1.3],
c V(P)
x',
and
b c V(y)
x E Q = V(P)
x' e V(x).
x, y e S,
= Q
p c V(Q). some
Hence
c V(x'Px)
and
is o r t h o d o x .
c V(P)
Hence
c p.
P = V(Q)
x' e V(x).
a e V(x)
for
c V(y). (i)
in
of
Clearly
b e P. V(Q)
x e S
y e P.
Then
a e V(x)
and
2.4.
is e i t h e r
and
ab e V(yx)
c p3 c p
LEMMA
Then D(xx')
x < x
By C o n d i t i o n
x c V(b)
x'ax
e V(x). we h a v e
= D(x'x)
x e S
b e Q.
1.3],
a subsemigroup
some
x'
we have
every
x, y e P.
[2; L e m m a
let
take
is r e f l e x i v e .
is a s u b s e m i g r o u p
for
a e V(Q).
S
Q = V(P).
2.3.
x ' Q x _c Q
-< on
R x L x'x ,
D(xx')
Hence
We put
We
xx'
3,
R-unipotent.
LEMMA
relation
= Q.
x" 9 V(x)
conditions
are
and
y',
y"
equivalent:
(x'y)
Also
under
these
conditions,
we have
D((x'y) 2) = D((y'x) 2) = O((x"y) 2) = O((y"x) 2) = O((yx') 2) = O((xy') 2) = O((yx") 2) = O ( ( x y " ) 2 ) . PROOF. and Also
We h a v e
(y'x) 2 ~ V ( ( x ' y ) 2 ) ,
(y"x) 2 9 V ( ( x " y ) 2)
and
so
(x"y) 2 ~ V((y'x) 2)
(i)<=>(ii)<=>(iii)<=>(iv).
D((x'y) 2) = D((N'X) 2) = D((x"y) 2) = D ( ( y " x ) 2 ) . 2 (v)<=>(vi)<=>(vii)<=>(viii) and D((yx') )
Similarly
= D((xy') 2) = D((yx") 2) = D ( ( x y " ) 2 ) . Then
(yx') 3 = y(x'y) 2x ' = y ( x ' y ) 4 x ' =
353
Suppose (yx') 5.
(i) holds. Hence
SAI~O by C o n d i t i o n 2 (yx') 9 E. if
(i) and
i (yx') 2 LEMMA and
Thus
2.5.
2 =
(yx')
(i)=>(v)
(v) hold, and
let
(yx')
2,
so
3 =
and
then
(yx')
4
similarly
(x'y) 2 R
and
so
(v)=>(i).
Also
(x'y) 2x ' = x'(yx') 2
D((x'y) 2) = D ( ( y x ' ) 2 ) .
Let
e 9 E
e' 9 V(e).
such
Then
that
D(e)
e'e = e,
i__ss i - u n i p o t e n t ,
ee'
= e'
and
e R e'. PROOF. and
Since
e'ee'
since
set
have
Here
we
for
E
in the
S.
E.
in
E
E* = E/D E and
the p a r t i a l is d e n o t e d
only
if
only
if
e L f of
e R f E.
e R f
For
for
e 9 E,
is
i-unipotent DE(e )
LEM_~
2.6.
and
9 V(z) z'x'z
PROOF.
We
if
e,
f 9 E,
and
e L f
in
S
hold
E,
Suppose and
z'xz
~ z'x'xz have
zz'
in
x 9 PiE, 9 E. s z'xz E E
5b, we h a v e
Then in and
D(e)
of
semilattice
X ~
Y
if and
in
S
if and
either
if
one
D E ( e ) = DE(f ) .
but
the c o n v e r s e
It is c l e a r in
E
S,
that,
then
is R - u n i p o t e n t
DE(e ) in
S,
E. x'
9 V(x), z'x'z
z 9 S,
~ z'xx'z
~ z'xz
E. zz'xzz'
zz'x'zz'
354
the D E-
if and o n l y
that
is i - u n i p o t e n t if
S
n E
in the
semilattice
f 9 E,
implies ~ D(e)
in g e n e r a l .
and
in the
in the
e R f
e,
the
The
is a s e m i -
The
in
for
are
by D E in
semilattice
X, Y 9 E*,
DE(e)
D(e) in
e.
ee'
i,
S.
DE(e )
defined
is R - u n i p o t e n t
by C o n d i t i o n
element
by
naturally
e [ f
not
E
Thus
E,
we h a v e
does
then
in
of
are D E - C l a s s e s
associated
For
e'e,
By C o n d i t i o n
semigroup
for
But,
[4] w h i c h
is d e n o t e d
which
In p a r t i c u l a r ,
and
e 9 E,
inclusion
z'
order by {.
E
= e
e R e'
[3] and
we d e n o t e
the
the
X ^ Y = X.
in
bands
containing
in
e, e', also
the D - e q u i v a l e n c e
idempotent
is c a l l e d
and and
ee'e
i e'.
a subsemigroup
semigroup
e 9 E,
= D(e'),
ee'
discussions.
it f r o m
For
E*
= e'
forms
of r e c t a n g u l a r
semigroup class
The
and
notions
following
idempotents
semigroup
ee'
some
to d i s t i n g u i s h
lattice
i e
D(e)
is i - u n i p o t e n t
remind
D-equivalence order
we h a v e e'e
e = e'e,
the
of
Hence
= D(e')
we
needed
9 V(e),
= e'.
D(e)
9 E,
e'
9 zEz'
~ zz'xx'zz'
c E.
Hence
~ zz'xzz'
SAI~O
in
E and so by Condition 5a, z'x'z = z' (zz'x'zz')z z'xx'z = z'(zz'xx'zz')z < z'xz = z'(zz'xzz')z in E.
Similarly we have
z'x'z < z'x'xz ~ z'xz
in
E.
LEMMA 2.7. Suppose x, y e S, x' e V(x), y' e V(y), (x'y) 2 E E, x'y ~ P\E and D((x'y) 2) i__{si-unipotent. Then (i)
(x'y) 2, (y'x)2(x'y) , (x'y)2(y'x),
(y'x) 2 c E;
(i=~i) (y'x)2 R (x'y)2(y'x) R (y'x)2(x'y) R (x'y) 2 and, particular, (y'x) 2, (x'y)2(y'x), (y'x)2(x'y), (x'y) 2
in
DE((x'y)2) ; (iii) (x'y) (y'x)2(x'y) = (y'x)2(x'y) and (y'x) (x'y)2(y'x) = (x'y) 2(y'x) ; 2 2 2 (i=~v) (y'x) < (x'y)(y'x) < (x'y) (y'x) < (y'x) (x'y) < (y'x) (x'y) < (x'y) 2 in E; (v)
(y'x) 2 < x'x < (x'y) 2(y'x) -< (y'x)2(x'y) < y'y < (x'y) 2 i__nn E; (v~_) y'yx'x = (x'y)2(y'x) and x'xy'y = (y'x)2(x'y); (vii)
yx', xy'
E,
yx' = yx'yy'xx'
xy' = xy'xx'yy'; (viii) xy' < xx' < yx'
and
and
xy' < yy' < yx'
i__nn E;
(ix) xy'xx' = xy' and yx'yy' = yx'. 2 2 PROOF. (i) By assumption (x'y) E E and (y'x) V((x'y) 2) c V(E) c E. By Condition 2, (x'y) 2 = (x'y) 3 and so ((y'x)2(x'y)) 2 = (y'x) 2(x'y) (y'x)2(x'y) = (y'x)3(x'y)
= (y'x)2(x'y). (x'y) 2 (y'x) c E.
Hence
(y'x)2(x'y)
e E
and
similarly (iii) By Lemma 2.5, (x'y) 2 R (y'x) 2 Also we have (x'y) 2 = (x'y)2(y'x) (x'y) R (x'y)2(y'x) and similarly (y'x) 2 R (y'x)2(x'y). (iii) By Condition I, (x'y) (y'x)2(x'y) 2 = ((x'y) (y'x)) ((y'x) (x'y)) c E and by (i) , (y'x) (x'y) c E. Further (y'x)2(x'y) = (y'x) ((x'y) (y'x)2(x'y)) i (x'y)(y'x)2(x'y). But by (ii) and by assumption, D((y'x)2(x'y)) = D((x'y) 2) is i-unipotent. Hence (x'y) (y'x)2(x'y) = (y'x)2(x'y). Similarly we have (y'x) (x'y)2(y'x) = (x'y)2(y'x). (iv)
By (i) we have
(x'y) (x'y)(y'x)
355
= (x'y)2(y'x)
e E.
SAI~O Hence
=
by
(iii) and L e m m a 2.6, (y'x) 2 = (y'x)2(x'y)(y'x) 2 (x'y) (y'x) (x'y) (y'x) = (x'y) (y'x) (y'x)
< (x'y) (y'x) (x'y) (y'x) 2 = (x'y) (y'x) in E. imply which
=
(x'y) (y'x) < (x'y) (x'y) (y'x) 2 But (y'x) = (x'y)(y'x) would
x'y = (x'y) (y'x) (x'y) is a c o n t r a d i c t i o n .
= (y'x)2(x'y)
Also
c E
(x'y) (y'x)
=
by
(i),
(x'y)2(y'x)
would
imply x'y = (x'y) (y'x) (x'y) = (x'y)2(y'x) (x'y) 2 = (x'y) 9 E, w h i c h is a c o n t r a d i c t i o n . Hence we have 2 2 (y'x) < (x'y) (y'x) < (x'y) (y'x) in E. Similarly 2 2 (y'x) (x'y) < (y'x) (x'y) < (x'y) in E. F u r t h e r by (ii) (y'x) (x'y) (y'x) (x'y) = (y'x) (x'y) < (x'y) 2 = (y'x)2(x'y) 2 =
(y'x) (y'x) (x'y) (x'y)
in
E
and so by C o n d i t i o n
have (x'y) (y'x) < (y'x) (x'y) in E. (x'y)2(y'x) = (x'y) 2(y'x) (x'y) (y'x) < (x'y)2(y'x) (y'x) (x'y)
5a, we
Hence
( x , y ) 2 ( y , x ) 2 ( x , y ) = (y'x)2(x'y) 2 2 in E. Thus we o b t a i n (y'x) < (x'y) (y'x) < (x'y) (y'x) 2 2 < (y'x) (x'y) < (y'x) (x'y) < (x'y) in E. 2 2 (v) By (iv) we have (y'x) (x'yy'x) = (y'x) < x'yy'x =
(x'x) (x'yy'x)
=
(x'yy'x)(x'y)
< (x'y)2(y'x) < y'y
< (x'y)
(vi)
By
and 2
(x'yy'x) (x'x)
(y'x)
in 2
=
in
E.
in
E
and
Similarly
so
- - x ' y y ' x < (x'y)2(y'x) 2 (y'x) < x'x
we have
(y'x)2(x'y)
E.
(iii) and (v), we have y'yx'x 2 2 -< (y'y) (x'y) (y'x) = (y'y) (y'x) (x'y) (y'x) 2 2 2 = (y'x) (x'y) (y'x) = (x'y) (y'x) = (x'y) (y'x) (x'x) 2 < y'yx'x in E and so y ' y x ' x = (x'y) (y'x). Similarly we have (vii)
x'xy'y By L e m m a
tion i,
xy' = xx'xy'yy'
9 E.
Also
have
yx'
(viii)
= (y'x)2(x'y). 2 2.4, (xy') e E
xy' 9 E
By
and by
= x(y'x)
2
(x'y)y'
(vi) and C o n d i 2 = (xy') (xx'yy')
= (xy')2xx'yy ' = xy'xx'yy'. and
yx'
Similarly
= yx'yy'xx'.
(v) and (ii), x ' ( x y ' ) x = x'(xy') 2 2 2 2 = x'x(y'x) <- ((x'y) (y'x)) (y'x) = (y'x) < x'x = x'(xx')x E.
Hence
Similarly (ix) On
By
(vii),
< (x'y) 2(y'x)
= x'(yx'yy'xx')x
by C o n d i t i o n
5a,
we have
< yy'
(vii)
the other
and
hand
xy'
(viii), by
we
(vii)
xy'
< xx'
< yx' xy'
and 356
=
in
(viii),
x
= x'(yx')x
< yx'
(xy')
2
in
in
E.
E. 2
< xy'xx' xy'xx'yy'
in = xy'
E.
SAI~O
< yy'
= yy'yy'
Hence
xy'xx'
so
xy'
LEMMA x'y
e E,
(i)
x'y
(iv) (a) y'y
if
x'x
yy'
e E
~ yx'
yy'
in
by C o n d i t i o n = y'x
=
(y'x)
and
= xy'
in
E
and
= yx'yy'.
e V(x),
y'
x'y
c V(y),
= y'x.
= yy'xx'
then
~ yy'
in
E,
Then
~ yx'
First
~ xx'
y'y
in
= y'x
~ y'x
= x'y
E.
either xx'
= x' ( x x ' ) x
s x'y
i_~n E;
suppose
= y'(xx')y
e E;
x'x
then
5, w e h a v e
x'x
E.
= D(xy');
E,
~ xy'
~ xy'
in
yx'
and
yx'
in
~ xx'
E. 5a 2
x'
= D(yx')
S yy'
By Condition
~ xx'
have
< yy'
= y'yx'x;
= D(y'x)
yy'
and
PROOF.
we
is L - u n i p o t e n t
xx'
if
xy'xx'
y e S,
= x'xy'y
xx'
and
(b)
x,
= xx'yy'
D(x'y)
so
Similarly
D(x'y) = y'x
and
(xy'xx') 2 ~ xy'xx'yy'
Suppose
xy'
(iii)
=
E
= xy'xx'.
2.8.
(ii)
in
xx' ~ yy'
~ x' ( y y ' ) x
~ y'(yy')y
~ yy'
or
in
E. Then 2 (x'y) = x'y
=
= y'y
in
E.
Also
x'xy'y
~
(x'y) (y'y)
= x'y
=
(x'x) (x'y)
~ x'xy'y
and
y'yx'x
~
(y'y) (y'x)
= y'x
=
(y'x) (x'x)
~ y'yx'x
in
and
so
x'y
= y'x
= x(x'xy'y)y' E.
Further
= D(xy')
is
yy'xx'
LEMMA
by L e m m a
2.4,
i-unipotent
yy'
2.9.
e E
and
only
i_ff x ' y
and,
First
since
x'y
= x'x
x'x
= y'y.
D(yx')
D(x'x)
LEMMA S
PROOF.
Then
9
Then Since
x'x
=
r
yx'
x ~ y
(xy')y
we
x,
Then
x'x
E.
The
y'
way.
e V(y),
x = y
if
L x = y i y'y
suppose
we x'y
have
xy',
Hence
by L e m m a
(yx'xy')y
y e S,
s P in
=
in
L-unipotent,
Conversely 2.8,
= xx'xx'
in a s i m i l a r
c V(x),
Then is
xx'
= xx'yy'xx'
= y'y.
L-unipotent.
Suppose x'y
x'
x = y.
by Lemma
= x(y'y)
2.10.
and
= D(x'y)
is
= yy'
treated
= yy'xx'
= D(yx')
2.5,
i__{s L - u n i p o t e n t.
= y'x.
= D(x'y)
be
xy'
yx'
= D(y'x)
by L e m m a
y c S,
= y'x
suppose
= y'y
x = x(x'x)
in
D(x'y)
D(x'y)
~ yy'yy'
can x,
Moreover
similarly
( x x ' y y ' ) (yy'xx')
= xy'
Suppose
x'y
PI~0OF.
=
~ xx'
and
and
and
= xy'yx'
= xx'yy'
where
= y'yx'x.
e E
= yx'
xx'yy'yy' case
= x'xy'y
= xx'yy'
E
x'
yx'
have = y'x
and
e E
and
2.5,
= yy'yy'y
e V(x)
and
= y.
x ~ y
"
S,
357
any
one
of C o n d i t i o n s
1-7
SAITO
in D e f i n i t i o n 2.1 is s a t i s f i e d . 2 C a s e : (x"y) ~ PiE for some x" Take and
y'
c V(y).
2.3,
(x'y) 2 e PiE.
we have
diction,
we a s s u m e
(x'y)2x'x (x'y)2x'x (x'y) 3 =
e PE
c P
for
Take
y'
y'x
by L e m m a
= D((x"y) 2) yx'
by L e m m a
c x'Qx
c Q.
(x'y)2x'x
(x'y) 2 =
2.4,
by L e m m a
By w a y of c o n t r a 2.3, But
e P n Q = E.
((x'y)2x'x)2x'y
=
Hence
(x'y) 5.
(x'y) 3 =
Hence
(x'y) 4
Hence
is s
Then
c V(Q)
y'x
= P.
x'y
we h a v e is
Then
and
= Q
and
yx'
so
e P.
and
x" 9 V(x).
and
2.4,
x ' y E P.
D((x"y) 2)
some
4 E
so by L e m m a
is a c o n t r a d i c t i o n .
e V(y).
x'y 9 V(y'x)
have
so
2, we h a v e which
so
e Q.
=
and
(x'y) 2 4 Q
c x'Q2x
and
(x"y) 2 9 E,
x " y 9 PiE
so
yx'
(x'y) 2 x ' x x ' y
by C o n d i t i o n 2 (x'y) 9 E, Case:
and
= x'(yx')2x
= p
Hence
x'y 4 Q
~ V(x).
(y'x) 2 e V ( ( x " y ) 2) c V(P)
(x'y) 2 e V ( ( y ' x ) 2) c V(Q)
we h a v e
c V(x"y)
Also, and
4 E (x'y)
2
i-unipotent.
since
so E
c V(P)
= Q
x " y 4 E,
x ' y e PiE. and
Hence
and we
Further
D((x'y) 2)
by L e m m a
2.7,
we h a v e
c E c p.
Case:
x"y,
y'x
< x"y
for
some We
y'x
9 E,
in
E
have
9 V(yx') and
y'x = x " y and
y'
x ' y E V(y'x) yx'
c V(QiE)
4 P.
x 9 V(x")
and
x"y
in
c PiE.
have
yx' The
LEMMA
remaining
yx',
y' y'x,
9 p n Q = E. = D(y'x)
The
Suppose
9 V(x),
x'y,
and
either
< y'y
in
E
e V(y).
But
By w a y of c o n t r a d i c -
yx'
r QiE
by L e m m a
and
2.4,
is [ - u n i p o t e n t . and
so
xy'
(xy') 2 9 E
Further
so by L e m m a
2.7,
which
is a c o n t r a d i c t i o n .
cases
can
we have
Hence
we
9 P.
2.11.
PROOF.
x"x
c E c p.
y 9 V(y') E,
and
Then
D((xy') 2) = D(x"y)
< y'x
is i - u n i p o t e n t
D(x"y)
or
x" E V(x)
t i o n we a s s u m e
x'
Then
relation
< o__nn S
x, y s S,
x < y
c V(y).
Then
xy'
and
Also
= D(xy').
9 P
by L e m m a First
be t r e a t e d
i_ss a n t i s ~ m m e t r i c . and
by L e m m a so
x'y,
2.4,
suppose
358
similarly.
y -< x 2.10,
yx',
D(x'y) D(x'y)
in
S
and
we h a v e
y'x,
xy'
= D(yx') is not
R-uni-
SAITO potent.
Then
Definition y'y
and
Lemma
2.9,
not
2.1,
~ x'x
we h a v e
L-unipotent,
Lemma
2.5,
x ~ y
in
E.
have in
E.
y'y
~ x'x
if
in
LEMMA
2.12.
either
and
E.
Hence
and
also
x'x = y ' y
In the c a s e w h e r e x = y
in a s i m i l a r
way.
x'y
x ' y = y'x.
R y'x
and
so
x'x
~ y'y
E,
then
~ yy' E.
in Hence
since
y ~ x x'x
in
= y'y
x, y c S yx'
and
~ P\E.
have
we h a v e by L e m m a
~ V(x)
2.9,
in
we
that S.
First suppose x ' y ~ P\E. T h e n by C o n d i t i o n 4, we 2 2 2 (x'y) c P. If e i t h e r (x'y) ~ P\E or (x'y) ~ E t h e n we h a v e
by d e f i n i t i o n .
N o w we c o n s i d e r
the c a s e w h e r e
and
is R - u n i p o t e n t .
D ( ( x ' y ) 2)
since
x ~ V(x') that
xy',
Lemma
2.4,
x ~ y
in
implies
S
2.13.
y ~ x
in
in
For
take
4, we h a v e
x, y ~ S,
x'
have
x ~ y
then
y'x
in
Similarly
E.
yx'
S ~ E
Then
from Lemma
is R - u n i p o t e n t
w__ee hav___~ee i t h e r
yx'
~ V(x)
and
~ P\E
or
or
yx'
y'
Also and
by
so
c P\E
x ~ y
or yx'
~ V(y).
o__rr
~ Q\E
~ P\E,
or
then
S.
If e i t h e r
x'y ~ Q \ E
or
xy'
and
suppose by L e m m a 3,
Suppose
x'y,
yx'
2.4, D(x'y) D(x'y)
~ E.
D(x'y)
so
Then
x'y,
or
x ' y ~ E. ~ E.
If
2.12,
we
yx'
c Q\E,
in
S.
y'x,
yx',
= D(y'x)
L-unipotent
is L - u n i p o t e n t .
359
yx'
y ~ x
= D(yx')
is e i t h e r
or
by L e m m a
in
~ P\E
By C o n d i t i o n
x'y ~ Q\E
c P\E
By C o n d i t i o n potent.
< yx'
(x'y)
E V(y).
it f o l l o w s
xy'
x ' y E P\E
x ' y c P\E
and
and
y'
in 2
S.
either
either
Finally
c E
= D ( ( x ' y ) 2)
take
x ~ y
S.
We
either
yx'
We
y ~ V(y'),
by d e f i n i t i o n .
x ~ y
PROOF.
and
D(yx')
LEMMA
E
we
~ y'y
such
x ~ y
is L - u n i p o t e n t ,
Also
2.8,
and
x'
~ yy'
x'x
S,
Then
By Since
xx'
by L e m m a
we a l w a y s
Hence
or
or
is
Final-
R-unipotent.
either
so by
D(x'y)
D ( ( x ' y ) 2)
2.7*
x'x and
and
Suppose
x'y E P\E
y'x = x'y
and by
is L - u n i p o t e n t
in
Similarly,
x = y.
have
xx'
is L - u n i p o t e n t
E.
have
we h a v e
~ y'y
have
PROOF.
we
we h a v e
But x'x
have in
x = y.
D(x'y)
S,
= D(y'x)
we m u s t
y'y
ly s u p p o s e
in
D(x'y)
xy'
= D(xy').
or R - u n i -
By C o n d i t i o n
5,
SAI~O
we
have
either
y'x
< x'y
we h a v e
or
in
E.
Also
If
y'x
< x'y
in
E,
x'x
then
If
x'y
< y'x
in
E,
then
x'y
~ y'y
or
y ~ x
in
S
x'y = y'x
and
~ y'y
in
E,
~ x'x
in
if
x'y = y'x
The case treated
y'y
D(x'y)
in a s i m i l a r
LEMMA
2.14.
Then
fe = ge
PROOF.
Let
f
and
^ DE(g)
f
or
then E,
f, g E E
g
in
E.
~ DE(e)
and
Hence
in
that
f ~ ge
and
or By
in
s g
such
and
so
fe = ge
in
ef = eg.
2.15.
PROOF.
so
by
either
y ~ x
and S.
be
DE(fg).
E.
But
E
and
= DE(f)
which
in
so by
lies
^ DE(g)
contradicts
E.
or
in
would
[3; L e m m a whence
suppose
e ~ ge
E
the
e < g
First
2], we h a v e
f s ge
e 4],
4]
s g imply
DE(fg)
DE(fg )
In the r e m a i n i n g
e,
f 9 E,
suppose
e ~ ef
x 9 S
e ~ f
~ f
in
E
~ x'fx
in
E.
= x'e(fxx')x
= x'(xx'e)2fx
= x'exx'efx
x'exx'fx
cases
we o b t a i n
similarly. and
x'
9 V(x).
Then
= x'efx.
~ x'efx
= x'efx.
the 2.16.
same Let
in and
E.
Then
x,
Hence = x'efx
x'exx'fx
in a s i m i l a r and
5a,
~ x'efxx'fx
= x'(xx'e)fx
~ x'exx'fx
z 9 S
[3; L e m m a
so by C o n d i t i o n
In the c a s e w h e r e
equality
by
in
E
f ~ e
and
so
in
E, we
way.
z' 9 V ( z ) .
Then
(z'xz) 2 = z,x2z. PROOF.
S in
can
that
[3; L e m m a
e < f ~ g
g ~ f < e
= x'e(fxx')2x
LEMMA
in
that DE(efg ) ~
DE(fg)
[3; L e m m a
ef = eg Let
First
we h a v e
obtain
i-
w h i c h is a c o n t r a d i c t i o n . Hence ge < f ~ g 2 ~ fe ~ ge in E. Hence fe = ge and
and
x'exx'fx
x'ex
then
is If
ge = ge
similarly
LEMMA
x ~ y
we a s s u m e
= DE(f ) A DE(g ) ~ DE(ge ) ~ DE(e), = DE(efg)
= D(x'y)
is R - u n i p o t e n t
Then
we h a v e
E.
e ~ eg ~ g
E.
ef = eg.
f ~ g < e
e < f S g
in
by d e f i n i t i o n .
D(y'x)
= DE(e ) A DE(f ) ^ DE(g ) = DE(efg), assumption.
~ x'x S
way.
e,
and
y'x = x'y
by d e f i n i t i o n .
= D(yx')
By w a y of c o n t r a d i c t i o n
between DE(f)
and
where
in
since
we h a v e
or
y'y
x s y
unipotent,
x'x
< y'x
We
take
x'
9 V(x).
First 360
suppose
x'zz'x
2]
SAI~O
< x'xzz'x'x <
E.
(x'x)zz'(x'x)
we
have
ma
3],
and =
in
and
x'zz'x we
so
case
z,x2z
=
x'zz'x
where
x'xzz'xx'
=
=
=
D(x'xzz'x'x) z,x2z
=
LEMMA
2.17.
Then
ex
2 that 2
= ex
=
x
4,
we
2.18.
Then
xz
PROOF.
in
and
obtain
suppose Since
we
since
have
In
zz'xx' = xzz'x'
and
so
the
case
Hence
z'x2z
R-unipotent,
x'
proof
S,
any
take and
xz
y'
so
Also
since if
y,
e V(x)
one
such in
only
where
we
obtain
and
e,
xe,
ex
c E.
some
r V(y)
and
r P.
x' z' If
in
S
by Lemma
we
have
zz'x'y
c PiE, e PiE
we
that
and
that
= x'xe.
x ~ y
i__nn S.
xz
1-7
~ yz.
Since
in D e f i n i t i o n
E V(x). e V(z). z'x'yz
2.12.
We
have
e PiE, If
zz'x'y,
D(z'x'yz)
361
Hence
= ex 2 = ex'x
= xx'e
( z z ' x ' y ) 2, have
= x'2e.
= ex'
Conditions
for
x2e
S.
show
2.4,
x'y
ex
= x'e
z c S
of
and
so
xe
s zy
we
z'x'yz
~ yz
by Lemma
and
have
zx
the
then
Hence
x,
satisfied. 2 (x'y) c PiE
We
have
can
In
way.
e x 2 = e x '2
we
Let
~ yz In
~ y
PiE
we
= xzz'x'.
zz'xz
is
r PiE,
have
Similarly
LEMMA
Case:
so
D(x'xzz'x'x)
(z'xz) 2.
= e x '2 = e x 2 = e x ' x
= exx'
is
and
[3; L e m -
(z'xz) 2.
E,
= xx'zz'xx'
a similar 2
=
Finally
then
=
= D(xx'zz'xx') in
in
If
zz'xx'
z'xzz'xz
z'xzz'xz
= xx'zz'xx',
= zz'xx'xz
Let
=
i-unipotent,
have
(z'xz) 2
Condition
2.1
E by
= ex' = e x x ' = e x ' x and xe = x'e = xx'e = x'xe. 2 Since x e PiE, it f o l l o w s f r o m C o n d i t i o n s 4 and 4 x c PiE. Also by Condition 4, w e h a v e e x = ex' 2 2 2 and x e = x ' e = x e. Hence ex , x e e E and by
PROOF.
x
in
Hence
(x'zz'x)zz'(xzz'x')
xx'zz'xx'
R xzz'x'
is we
(z'x) (xz)
=
way.
= D(xx'zz'xx').
( x z z ' x ' ) (xz)
exx'
Then
L xzz'x'x
L xx'zz'xx',
E.
< x'zz'x
in a s i m i l a r
= D(xx'zz'xx')
xz
( x z z ' x ' ) (xz)
= x'xzz'x'x.
D(x'xzz'x'x)
in
(z'x) ( x ' z z ' x ) ( x z z ' x ' ) (xz)
(z'xz) 2
x'xzz'x'x
= x'zz'x
< x'(xzz'x')x
< xzz'x'
(x'zz'x) (xzz'x') =
(z'x) ( x ' z z ' x ) z z '
the
(x'x)x'zz'x(x'x)
x'zz'x
< zz'
have
z'x2z
Then
x'y
then
z'x'yz
we
e E,
( x ' y z z ' ) 2 e E. x'yzz' is
e P.
L-unipotent,
SAI~O
then
by L e m m a
2.7,
z'y'xz
< z'x'yz
tion.
If
then
E
in
we a s s u m e
that
x'yy'x
=
e E,
(x'yy'x) (zz'x'y)
= D E ( ( x ' y y ' x ) (x'x)). x'xzz'
= x'yy'xzz'
Hence
x'xzz'
by L e m m a Hence
r E
Hence
x'y =
Also
we h a v e
and
(xzz'y')yx'
yx'(xzz'y')
=
2.14,
D(zz'x'y)
in
S.
by L e m m a 2.9*,
suppose
2.8*,
we h a v e z'x'
E E.
so
xzz'x'
= y(x'xzz')y'
= y(y'yzz')y'
= yzz'y'
x'y
e P\E We
for
take
and
so
(yx') 2 ~ P\E. c E
by C o n d i t i o n = xzz'y' = yx'(xzz'y')
= yzz'x'.
Hence
D((x'y) 2) x'
e V(y)
is
i-unipotent
and
E V(x). and
z' E V(z).
By L e m m a
2.4,
9
we have
(y'x)"
we
S.
some y'
xzz'y', = z'y'.
= y(x'xzz')y' Hence
= xy'(xzz'y')
in
D(zz'x'y)
element
and
yx'(xzz'y')
so
Then
((x,y)2x,x)2x'y.
= x(y'xzz')y'
s yz
= y'xx'yzz'
Next
we h a v e
and
we h a v e = y'xx'yzz'.
is i - u n i p o t e n t .
(x'y) 5 =
E E,
Hence
is i - u n i p o t e n t .
is not a p e r i o d i c
= xy'(xzz'y')
(x'y) 2 e E,
would
= z'(x'yzz')z
= x(x'xzz')y'
xz
by
= z'(y'yzz')z
= D(zz'x'y)
= x(zz'y'y)x'
have
Then
DE(x'yy'x)
= x'yzz'
(x'y) 2x'x c P\E
xzz'y'
Case:
e E.
y'yzz'
= z'(y'xzz')z
(x,y) 3 #
x'(yx')2x
by L e m m a
= y'xzz'
by L e m m a
2,
we
in w h a t
= x'yy'xzz'
= z'(x'xzz')z
s yz Then
((x,y) 2 x , x ) x , y
in
e P\E,
is a c o n t r a d i c t i o n .
similarly
suppose
xz
and
By C o n d i t i o n
Hence
z'y'xz
is R - u n i p o t e n t . yzz'x'
which
D(z'x'yz)
we have
~ yz
Thus
x'yzz'
= y'xzz'
and
xz
x'yzz' way.
= DE(ZZ'x'yy'x ) ~
and
z'x'xz
First
e E
D(yzz'x')
we have
where
by d e f i n i -
x'y = x ' y y ' x x ' y
= x'yy'xzz'
2.4,
S
is R - u n i p o t e n t ,
2.4,
Hence
zz'x'y,
so
D E ( ( Z Z ' ) (x'yy'x) (x'x))
Also
in
and
(x'yy'x) (zz'x'yy'x) (x'yy'x)
=
and
E E
DE(ZZ'x'yy'x ) = DE(x'yy'x )
and
= z'y'yz.
by L e m m a
x'yzz'
= x'yy'xzz'x'yy'x
= z'x'yz
xz ~ yz D(z'x'yz)
in a s i m i l a r
z'x'yz,
But
z'x'yz
xzz'y' , yzz'x'
and
S
we h a v e
= y'xx'yzz'.
= y'yzz'.
so
and
In the c a s e
~ yz
2.17,
imply
and
is R - u n i p o t e n t .
xz
follows Lemma
z'y'xz,
we h a v e
in
by d e f i n i t i o n .
obtain
E
e P\E
2.7*,
< yzz'x'
= D(z'x'yz) S
in
zz'x'y
by L e m m a
xzz'y'
we have
c E.
Also
we h a v e 362
z'x'yz
e P
and
by
4,
SAIqD Lemma
2.16,
V(E) have
(z'x'yz) 2 = z ' ( x ' y ) 2 z
~ E.
If
xz ~ yz
r E.
Then
(y'x)
2
z'x'yz
e P\E,
S.
In what
in
z'y'xz
< x'x < y'y
z'y'xz
e V(E)
either
=
= z'x'xz
E.
< z'x'yz
= z'y'yz.
then we have
in
Hence
xz ~ yz
E
~ z'x'xz
if
in
or
by L e m m a
2.16,
~ z'y'yz
E.
Hence we have
z'y'xz
D(z'x'yz)
S
we
z'x'yz
2.7, we have
Hence
in
2.12,
we assume
By L e m m a
(z'x'yz) 2 = z'x'yz
z'y'xz
(z'y'xz) 2
then by L e m m a
in
= (z'y'xz) 2 = z'(y.'x)2z
z'(x'y)2z
and
follows
c E.
< (x'y)
r E
= z'x'yz
is [-unipotent,
by d e f i n i t i o n .
Next suppose
D(z'x'yz) is not i - u n i p o t e n t . By L e m m a 2.7, we have (y'x)2 R (x'y) 2 and so (y'x)2(x'y) 2 = (x'y) 2 and 2 2 2 (x'y) (y'x) = (y'x) Hence by L e m m a s 2.16 and 2.15, z'x'yz = (z'x'yz) 2 = z ' ( x ' y ) 2 z = z ' ( y ' x ) 2 ( x ' y ) 2 z = z,(y,x)2zz,(x,y)2z
=
(z,x,yz)2(z,x,yz) 2
= (z'y'xz) (z'x'yz)
and s i m i l a r l y
z'y'xz
= (z'x'yz) (z'y'xz)
and so
R z'x'yz.
D(z'x'yz)
is R - u n i p o t e n t ,
so
= z'x'yz
zlylxz
2.9*,
we have
z'x'
z'y'xz we have
z'y'xz
= z'x'xz
= z'y'yz.
= z'y'.
Also
and also
y'xzz'
2.16,
r E.
Hence
by L e m m a
= z'x'yz
Hence
by L e m m a
x'yzz' , yzz'x' , zz 'x'y e E
But since by L e m m a
2.8*,
zz'y'x,
x'yzz'
and
xzz'y',
= x'yzz'x'yzz'
= x,yzz,(zz,x,yzz,) 2 = x,yzz,zz,(x,y)2zz , = (x'yzz') (x'y)2zz '
Hence
DE(X'yzz')
^ DE((x'y) 2) ^ DE(ZZ' ) ~ D E ( ( x ' y ) 2 ) . is i - u n i p o t e n t potent,
and
we have
D(x'yzz')
= DE(X'yzz') But since
= D(z'x'yz)
DE(X'yzz' ) # DE((x'y) 2)
DE((X'X) (x'y)2(x'yzz'))
D((x'y) 2)
is not
i-uni-
and so
= DE((x'y) 2(x'yzz'))
= DE((x'y) 2)
^ DE(X'yzz' ) = DE(X'yzz' ) < DE((x'y) 2) = DE((X'X) (x'y)2). Hence
by L e m m a
2.14,
= (x'y)2(x'yzz
')
= (y'x)2zz '.
Also
DE(x'yzz' ) ~ Lemma
2.14,
= y'xzz'. have
= x'yzz' = y'yzz'.
=
(x'x) (x'yzz')
and s i m i l a r l y
y'xzz'
DE((x'y) 2) = D E ( ( Y ' X ) 2 ( x ' y ) 2) x'yzz'
But since =
x'yzz'
D E ( ( N ' X ) 2 ( x ' y ) 2 z z ') = D E ( ( x ' y ) 2 z z ')
we have
y'xzz'
we have
= (x'y)2zz '
=
(y'x) 2 < x'x < y'y < (x'y) 2,
(y'x) 2zz ' ~ x'xzz'
= y'xzz' Further
and so by
(x'y)2zz ' = (y'x)2zz '
and so by L e m m a
x'yzz'
s (x'y)2zz '
= y'xzz'
= x'xzz'
2.7, we have
363
we
~ y'yzz'
xy',
yx'
c E
SAIYO
and
xy'
< yx'
= xy'xzz'y' E
and
xzz'y'
yx'
take
we have < x'y
unipotent and
z'x'xz by L e m m a
~ z'x'yz,
D(z'x'yz)
D(z'x'yz)
(xzz'y') 2 e E But
z'x'yz
< z'y'xz e Q
and
2.12,
suppose
have
y'x
xzz'y'
z'y'xz
Next
z'x' y'x
< y'y
in in
in
S
Then
= z'x'yz
by L e m m a
~ yz
in
S.
in
=
E.
t h e n we have
in w h a t
fol-
yzz'x'
e E.
By L e m m a
2.15,
S
we
have
z'x'yz
5a, we have = D(z'x'yz)
xzz'y'
xx'
E.
Also
= xzz'y'
z'x'xz 2.9*,
< yy'
= xx'xzz'y'
in
is
by d e f i n i t i o n .
by L e m m a
we h a v e
364
we
< z'x'yz
T h e n we h a v e
Hence
xzz'x'
2.7*,
z'y'xz
= z'y'xz
D(yzz'x') in
= yzz'x'
then
(z'x'yz) 2 R z ' x ' y z z ' x ' x z
= z'x'yz.
Hence
Hence
e P\E,
and
by C o n d i t i o n
s yz
2.7*,
imply
Thus
is R - u n i p o t e n t
= z'x'yz.
2.4,
is R - u n i p o -
would
yzz'x'
Since
xz
t z'x'yz.
is a c o n t r a d i c t i o n .
z'x'xzz'y'xz
E.
= yzz'y'
c P\E
and and
by d e f i n i t i o n .
If
Hence
E
z'y'xz
z'y'xz in
is R - u n i p o t e n t ,
By L e m m a E.
z'y'xz
~ z'x'yz
so by L e m m a
E.
z'y'xz
in
= y'x
e P.
z'x'yz
Hence
= z'y'xz
yy'yzz'y' = yzz'x',
and
we h a v e
= z'y'.
xz
Also
< yzz'x'
suppose
which
is R-
= z'y'xzz'x'yz
then
< z'x'yz
D(z'x'yz)
R-unipotent,
= z'y'yz
E,
yzz'x'
< y'y
s E,
Hence
xzz'y'
D(z'x'yz)
= z'x'yzz'x'xz
y'x
2.7*,
y'xx'y
z'x'yz
xz ~ yz
2.7*,
= x'xy'x
since
~ z'y'yz
in
= z'x'yzz'x'xz.
we have
= z'y'xx'yz
so
and
= D((yx') 2)
is R - u n i p o t e n t .
so
= z'x'xzz'y'xz. and
2.5",
By L e m m a
< x'y
z'y'xz
we h a v e
lows we a s s u m e
is R-
and
D ( ( x z z ' y ' ) 2) = D ( z ' x ' y z )
by L e m m a
First
< x'x
= D(y'x)
z'y'xz,
and
and
xzz'y'
by L e m m a
z' c V ( z ) .
is t - u n i p o t e n t ,
Suppose
in
by d e f i n i t i o n .
= z'x'yzz'y'xz.
= z'y'yz
= D(z'x'yz)
S
Hence
z'y'xz
= z'x'xz
tent.
y'x
so by L e m m a
z'x'yz
= yzz'x'
= xzz'y'
is R - u n i p o t e n t
and
D(x'y)
= x'y.
similarly If
Also
2.15,
xzz'x'
x' e V(x).
x'y E E,
and
x'yy'x
D((yx') 2)
some
E.
in
= xx'xzz'y'
= yzz'y'
D(yzz'x')
xz ~ yz
y' e V(y)
y'x, in
= yy'yzz'y'
Since
(yx') 2 e E, for
xzz'y'
then
we h a v e
e P\E We
Hence
= yzz'x',
= yzz'y'.
unipotent, Case:
E.
~ yx'xzz'y'
if
= yzz'x'
in
we h a v e and
~ yy'xzz'y' if
xzz'y'
= yzz'x'
SAI~O
= yzz'y'.
Since
we h a v e Case:
D(yzz'x')
xz ~ yz
in
S
x'y , y 'x 9 E,
< x'y
in We
by L e m m a Hence
E
for
take 2.5,
some
2.15,
z'y'xz
= z'x'yzz'y'xz
y'xx'x
= y'x
y'xx'y
and
E.
by C o n d i t i o n
Hence
E,
we have
~ z'x'yz
D(z'x'yz)
Thus
is not
L-unipotent.
since
z'x'yz
= z'y'xz
R z'y'xz,
~ z'y'yz
in
= D(z'x'yz)
is not
L-unipotent,
we h a v e
have
x'xzz'
= x'yzz'
since
we have xzz'y' =
and
= D E ( ( y ' y ) (y'x)) = y'yzz'
Hence
(xy') 2 = yy'xy'
E.
Also
Case:
yx',
< yx'
in We
= xx'xzz'x'
= xy'
Also
9 E,
D(yx')
in
some
S
yx'xy'
= yx'.
E
so
E.
Since
yx'
D((x'y) 2) = D(yx')
z'x'
we have
= D(x'y)
and
= D(x'y)
is
2.14,
we
x'xzz'
= z'x'yz = z'y'
Since
(xy') 2 i yy'xy' is i - u n i p o t e n t ,
= yy'
in
E.
Hence
= x(y'x)2zz'x ' = yzz'x'
= yzz'y'
is R - u n i p o t e n t
and
by d e f i n i t i o n . is R - u n i p o t e n t
x' c V(x)
z' 9 V(z).
and
= z'y'yz
= D(z'x'yz)
xy'
in
S
= D(z'y'xz)
by L e m m a
= xy'xzz'x'
in
for
in
D(z'x'yz)
~ z'x'yz
similarly
= yy'yzz'x'
~ yz
and
= yx'xy' < yy'
D(yzz'x')
E
~ yz
if
DE(Y'X)
we have
~ y(y'y)y'
xz
take
xz
Hence
we a s s u m e
and
z'x'xz
2.9*,
(xy')2xzz'x ' ~ yy'xzz'x'
in
~ z'x'yz, E.
D(y'x)
and
D((xy') 2) = D(y'x)
so we h a v e
in
is R - u n i p o t e n t
= DE(Y'XZZ') X
by L e m m a
= xzz'x'
< y'y
D(y'xzz')
yy'(xy') 2 = y(y'x)2y ' = yy'xy', and
< x'y
y'x
in
z'x'xz
Since
Since
D E ( ( Y ' X ) (x'x) (zz'))
= y'xzz'
and
we h a v e
and
= y'x
and z'y'xz
follows
i-unipotent
= y'yzz'.
= z'y'xz
x'yy'x
< x'y
Also
= y'x.
R z'x'yz.
D(z'x'yz)
E.
= D E ( ( y ' y ) (y'x) (zz')) = DE((Y'X)(x'x))
z'y'xz
x'yy'x
then we have
Then
9 E.
= z'y'xzz'x'yz
~ z'y'yz
in w h a t
9 V(y).
z'y'xz
and
and
z'y'xz
y'
y'x
z'x'yz
5a, we have
and
and
= x'y
x'x
is i - u n i p o t e n t ,
by d e f i n i t i o n .
and
z'x'yz,
so
< x'y = y ' x x ' y
in
L-unipotent
Then
we h a v e
= x'yy'y
z'x'xz
is
x' 9 V(x)
we have
is R - u n i p o t e n t ,
by d e f i n i t i o n .
D(x'y)
z' 9 V(z).
by L e m m a
= D(z'x'yz)
By L e m m a Hence xx'
2.5*, xx'xy'
< yx'
9 E,
and
and
we have
is R - u n i p o t e n t 365
and
xy'
y' 9 V(y). we h a v e = xy'
xy'yx'
< yx'
similarly xy' 2 (x'y) 9 E. and
since
SAI~O
(x'y)
2
R
(x'y)x'x,
= x'(yx')2x y'y
=
in
PiE,
E.
2.7*,
tradiction. z'x'yz S.
Hence
x'y
then
Suppose that
would
< xy'
e P
and
e E
imply
(x'y)2(y'x) 2 =
z'x'yz
and
similarly
t z'y'xz. z'x'yz
and
E E
D(z'x'yz)
so
Hence
= z'y'xz
=
xz ~ yz
and
in
true,
then
from Lemma < z'x'xz
that
a contradiction. P\E,
then
yzz'x'
we have
x'yzz',
zz'x'y
< yzz'x'
in what Then
E
E.
xzz'y',
and
D(y'xzz') have
xzz'y'
since xz
we a s s u m e
in
and
c E
= D(z'y'xz)
y'xzz'
S
= y'xzz'y'x
which
e P.
If
~ yz
in
Since
S. x'y
x'yzz'
we have
=
Now e P, e PiE
xzz'y' is R-
zz'x'y
also
is
yzz'x'
= D(z'x'yz)
and
Thus E E.
y'xzz'y'x
(y'xzz') (zz'x'y)
R y'xzz'y'x
R y'xzz'x'y.
Now we
and
Since
is R - u n i p o t e n t ,
= y'xzz'x'y. 366
E,
x'yzz',
= y'xzz'y'xzz'
= D(z'x'yz)
e QiE
it f o l l o w s
by d e f i n i t i o n .
y'xzz'x'y
(y'xzz') (zz'x'y) (y'xzz')
e E,
D ( ( x z z ' y ' ) 2)
if either 2.7*,
yzz'x',
zz'y'x
e E
y'xzz'
But
xz e E.
D(yzz'x')
~ yz
z'x'yz
yzz'x'
in
yzz'x'
we have
c P.
E
(z'x'yz) 2 = z'x'yz
< x'x
2.12,
by L e m m a
in
z'x'yz
if
since
Then
then
y'xzz',
Moreover =
we have
zz'x'y
(y'xzz') (zz'y'x)
y'xzz'
Hence
we have
follows
= 2
(x'y)
(z'x'yz) 2
Suppose
But
and
=
we have
~ z'y'yz
is R - u n i p o t e n t ,
z'(x'y)2z
e E.
c P\E, in
unipotent,
~ PiE
Hence
by L e m m a
suppose
z'x'yz
Since
(xzz'y') 2 E E.
xzz'y'
E.
so
~ z'(x'y)2z
by d e f i n i t i o n .
= D(z'x'yz)
2.7* in
and
is R - u n i p o t e n t .
(yzz'x') 2,
= D((yzz'x') 2)
or
S
z'x'yz
2 = z'x'yzz'y'xz
is i - u n i p o t e n t ,
z'x'xz
in
from L e m m a
we have
(z'y'xz) 2 = z ' ( y ' x ) 2 z
D(z'x'yz)
we have were
= z'y'xzz'x'yz
If
~ yz
(y'x)2(x'y) 2
(z'x'yz)2(z'y'xz)
z'y'xz
so
is i - u n i p o t e n t .
it f o l l o w s
since
= z'y'xz.
= z'x'yz and
But
xz
and
is a c o n -
e P.
we have
D(z'x'yz)
(x'y) 2
y'x
which
(y'x) 2. H e n c e by L e m m a s 2.16 and 2.15, (z,x,yz) 2 = z , ( x , y ) 2 z = z,(x,y) 2 ( y , x ) 2 z =
that
E,
so
and
(y'x) 2
is R - u n i p o t e n t in
2.12,
and
~ x'yx'x
similarly
= D(yx')
(x'y) 2 E E
= z'(x'y)2zz'(y'x)2z
=
and
yx'
by L e m m a
z'x'yz
(y'x) 2,
x'x = x ' x x ' x
(x'y) 2
x'y e QiE
we have
e P\E,
have
2.5* = =
Now
=
D((y'x) 2) = D(xy')
by L e m m a
We
we have
(x'y) 2x'x
show
we that
SAITO
xzz'y'
~ yy'xzz'y'
in
E.
y'x 4 E.
We have
^ DE(XX')
= DE(yy'xx').
would
imply
Hence
have
y'x
~ x'y
= y'x
and
Hence
y'x = y'y
so
= yx'xy' = yy'
= yx'
~ xx'
tion.
Hence
=
E.
in
E.
=
=
in
(y'x) (zz') (x'y)
in
E,
whence
in
E.
Moreover
yy'xzz'x'
unipotent, = yzz'x'yy' xzz'y'
xzz'y'
and
we s h o w
E
and y'xzz'
xzz'y'
we have and
yy'xzz'x'
y'xzz'
= yzz'x',
=
E, =
E.
then
(y'x)2zz ' < y'xzz' 5, y'xzz'
(y'y) (y'xzz')
and
in
(y'x)2zz ' ~ y'yzz'
by C o n d i t i o n
yzz'x'
since
< zz'
~ y'yzz' R yzz'x'yy'
D(yy'xzz'x')
= D(z'x'yz)
= xzz'y'xx',
is R-
yzz'x'
= yy'xzz'x'yy'.
Hence
= y(y'xzz'y'x)x'
= y ( y ' x z z ' ) (zz'x'y)y'
= yzz'x'yy' then
~ y'yzz' (y'x)2zz '
= y'xzz'
y'xzz'
=
= xx'xzz'y'
we h a v e
in
yx'
the a s s u m p -
that E,
s yy'xzz'y'xx'
= yy'xzz'x'yy'
Hence
xzz'y'
= D(yzz'x')
xzz'y'
E.
y'y
so
R xzz'y'xx',
R yy'xzz'x'yy'
= D(xzz'y')
in
Hence so
= xy'.
and
in
y'xx'y
~ y'y
contradicts
(y'x) (y'xzz')
y ( y ' y z z ' ) (zz'x'y)y' if
E
then
we have
= xzz'y'xx'
= yy'xzz'x'
xx'
(y'x)2zz ' < y'xzz'
(y'x) (y'xzz') (x'y)
and we
= y(y'yx'xy'y)y'
(y'x)2y'xzz ' ~ y'yy'xzz'
in
and
= y'x
= DE(y'y)
in
we have
x'x = x'y.
which
Next
2.5*,
~ y'xx'y
= yy'yy'
< yy'
(y'x)2zz ' = y ' x z z ' ,
= D(y'xzz')
By L e m m a
(y'x) 2 ~ y'y
(y'x) 3zz ' =
If
= y'y
E,
If
We
~ y'yy'y
similarly
E.
Since
e E.
By w a y of c o n t r a d i c t i o n
similarly
in
xx'
yy'xzz'y' in
and
= xy'
y'x
y'x = y ' x y ' y E.
yy'
xzz'y'
= D(yx')
= DE(Y'X)
Hence
we h a v e
= D(xy')
E.
and
= DE(X'y)
is a c o n t r a d i c -
D(y'x)
in
in
2.14,
since
y'y = y ' y y ' y
= y'yx'xy'y.
which
N e x t we s u p p o s e
and
~ xx'
c E,
DE(XZZ'y'yy'xx' ) = DE(XZZ'y' )
so by L e m m a
we have
x'x
yy'
DE(X'X)
y'x = y ( y y ' x x ' ) x
= yy'xzz'y'.
is R - u n i p o t e n t , similarly assume
so
R y'xy'y
DE(yy' )
DE(XZZ'y' ) = DE(yy'xx' )
= y'xzz'y'x
and
= xx'xzz'y'
we s u p p o s e
(yy'xx') (xzz'y') (yy'xx')
we h a v e
DE(yy'xx')
But
=
and
= y(yy'xzz'y'xx')x tion.
first
DE(XZZ'y' ) = DE(XX'XZZ'y'yy' ) ~
yy'xx'
= yy'xzz'y'xx'
In fact,
xzz'x'
= yzz'x'
in
E.
= xzz'x'xzz'x'
xzz'(x'y)2zz'x ' = x(zz'x'yzz')2x ' = xzz'x'yzz'x' 367
Also
SAITO
= xzz'x'xzz'y'
= xzz'y I = yzz'x'
= yzz'y'xzz'y'
= y(zz'y'xzz')2y
yzz'yy'zz'y'
= yzz'y'
= yzz'y'yzz'x'
' = yzz'(y'x)2zz'y
in
E.
Hence
'
xz ~ yz
in
S
by d e f i n i t i o n . Case: x'x
x ' y 9 E,
~ y'y
D(x'y)
in
E
We t a k e = z'x'yz
i-unipotent,
some
z' 9 V ( z ) .
and
D(z'x'yz)
for
is
z'x'xz
x' 9 V(x) We have
~ z'y'yz
is i - u n i p o t e n t ,
tent.
2.8,
By Lemma
xy'yx' Lemma
we h a v e
= yx'
2.8*,
D(xzz'y') have
and
we h a v e
E.
Hence = xzz'y'
yy'yzz'x' xzz'y'
and
= yzz'x'
in
by
= xx'xx'
in
E.
By
since we
= yzz'x'xzz'y'
similarly
yzz'x'
~ yzz'y'
= xzz'y'yzz'x'
E.
Thus
~ yzz'y'
Also
xx'
and
yzz'x'
S
= xzz'x'xzz'x'
~ xy'yzz'y'yzz'x'
~ yzz'x'
9 E. so
9 E
in
is R - u n i p o -
is R - u n i p o t e n t ,
and
xzz'y'
z'y'xz if
xz ~ yz
~ yy'
yzz'x'
xzz'x'
A l s o we h a v e
= xx'xzz'y'yzz'x'
xy'
and
9 V(y).
9 E,
Hence
yx' and
= D(z'x'yz)
= xzz'y'yzz'x'
2.5*.
xzz'y'yzz'x' in
xy',
xzz'y',
y'
D(z'x'yz)
= xy'yx'
similarly
= D(z'y'xz)
xzz'y'
by L e m m a
we h a v e yx'
E.
then we have
N e x t we s u p p o s e
2.5,
and
z'x'yz
in
by d e f i n i t i o n .
Lemma
y'x = x'y
in
E
= xy'yzz'x' we h a v e and
so
xzz'x' xz
~ yz
in
S
by d e f i n i t i o n . Case: xx'
yx'
9 E,
~ yy' We
x ' y 9 E, = xx'yy'
D(yx')
in
E
take
z'
Lemma
2.15,
we h a v e
x'x = x'xx'x E.
= z'y'xz
and
so
so
2.15, yzz'x'
and
z'y'xz
in
Next
and
E.
2.8*,
xy' 9 E.
Hence
we h a v e
D(z'x'yz)
368
Hence
and Also y'x
by
z'x'yz we h a v e ~ y'y Then
~ z'x'yz xz
~ yz
in
S
is R - u n i p o t e n t .
= z'y'yx'xz
= yzz'y'yzz'x'xzz'x
By L e m m a
is i - u n i p o t e n t . z'x'xz
z'y'xz
y'x, = yx'
= x'y.
similarly
and
9 V(y).
we h a v e
z'x'yz x'yy'x
= yx' y'
and
so
suppose
we h a v e
and
i z'x'yz.
and
D(z'x'yz)
= z'x'yz
xy'
= z'y'xzz'x'yz
= x'y
suppose
~ z'y'yz
z'y'xz,
z'ytxz
and
z'y'xz
by d e f i n i t i o n . By L e m m a
By L e m m a
x'y = x'xy'y
= y'x
~ x'yy'x
First
x' 9 V(x)
Hence
y'xx'y
= z'x'yzz'y'xz
have
e V(z).
= yy'xx'.
we h a v e
in
some
y'x = y'yx'x,
2.5*,
we
for
is R - u n i p o t e n t ,
= z'y'yzz'x'xz
I = yzz'y'xzz'x'
9 E
SAITO
and
similarly
= xx'xzz'x' larly
xzz'y' ~ xx'yzz'x'
xzz'y'
ment
in
the
is
R-unipotent
9 V(x)
and
Hence
have
= D(z'x'yz)
is
LEMMA
Let
only
i_ff
PROOF.
e
efe
in
fe E.
f 9 E,
we
D(ef)
have
= efe Hence
is =
fe. in
we
efe
have
e
suppose then
by
the
and
so
by Lemma
in
S
e
is a c o n t r a d i c t i o n . D(ef)
is
LEMMA
2.20.
For
and
x 9 Q
i__nn S
9 E,
some
x'
in
xzz'x'
D(yzz'x')
xz
s yz
~ f
in
Then
e
have
e e V(e)
~ f
in E
S. if
in
S.
and
only
~ f =
E, f2
definition. in we
E
have
have
e =
f,
E.
The
case
only
x2 ~ x
f which
in a s i m i l a r
if a n d if
in
e2 = e
f < e
in
treated
f
since
e s f
above,
we
s f
x e P
if a n d
If
2.11,
be
x c S,
by
proved
e
can
if
S
and
Then
Also
in
result
Hence
R-unipotent
Hence E.
~ f
were e
xy'
for
or
Since
have
argu-
~ yzz'x'
i-unipotent.
~ ef 2 = ef
Conversely true,
E
simi-
same
yx',
in
xzz'y'
E.
we
f 9 E.
Case:
< yzz'x'
in
and the
i__nn S. e,
we
of
in
< yx'
xzz'y'
xzz'x'
= yzz'x'
obtain
~ yzz'y'
Suppose
[ fe,
then
have
Further
part
we
either
e,
we
xy'
R-unipotent,
~ f
Since
9 V(f).
E.
and
9 V(y),
= xzz'y'
2.19.
in
corresponding
y'
we
yzz'x'
Also
~ yy'yzz'x'
~ yzz'y'
D(yx')
E.
as
9 E.
where
way.
if
x
~ x
2
i__nn S.
PROOF.
We take x' 9 V ( x ) . First suppose x 9 P. If 2 x 9 E, then we have clearly x ~ x in S. We have x 2 x , = x(xx') 9 P and x' x 2 = ( x ' x ) x 9 P. If e i t h e r 2 , x 2 x x 9 PiE or x' 9 PiE, t h e n by L e m m a 2 . 1 2 , w e h a v e 2 x ~ x in S. Now suppose x 9 P\E and x 2 x ', x , x 2 9 E. First x'xx
suppose
x'(xx')x then
we
Hence
Similarly Now
x
D ( x 2 x ') and we
is
is
can
conversely
from
in
= x'2x ~ x2
we
i-unipotent.
follows
s x'x 2
x'x
have
= D ( x 2 x ')
it
= x'x
have
we
where
S.
D ( x 2 x ')
= x ' x 2 9 e,
E.
= x'x 2
in
S
by
R-unipotent, obtain
prove
that
suppose
if x
369
Also and
2.6 if
so
since
that
x'2x x'x
have in
x 9 Q, 2 ~ x in
S
x'2x
= x ' x 2,
= x ' 2 x 2.
definition. we
x s x2
Then
Lemma
In
the
D ( x ' x 2)
case
= D ( x 2)
in
a similar 2 then x ~ x S.
If
x
< x
way. in 2
SAI~/O
in x
c
can
S,
then
by
P.
Also
if
prove
LEMMA S.
that
2.21.
Then
and
ex
exe
Since 2 ~ e =
in
S.
On
S.
xe
the
E P
Hence
then
~ x,
e P
s e
e
in
in
other and
by
by
in
by S.
have
we
Lemma
2.20,
Hence
we
and
have =
we
in 2
x
have xe
~
(xe) 2
~ e
have
e
xe
= x
e x 2
in
= x
~ ex 2 ~ e = e
xe
E P
xe
have
so we
s e
xe
x
and
xe
and
x
E,
Hence
x
have
that
in
2.18.
we
we
such
have
2.20,
~ e,
hand
we
4 Q
Similarly
c Q.
s xe
Lemma
x
c P.
s e
since
xe
since
ex
hand,
we
Also
x
Lemma
2.11,
in
have
E E
e E E
S,
S
S,
2.19.
other 2 ~ x e
x
we x
then
and
~ e
xe
the
x2 x
result,
x 2,
by Lemma
Since
xe
if
Let
so
have
above
x =
x e , e x c E, x e s e, 2 ex . Also we have x
=
PROOF.
the
2
in
S.
and
xexe
~ xe
e E, 2
we
(xe) and
in
xe
c E.
E
by
Lemma
~ xe 2 ~ x
in
S.
e.
By
e
and
so
way
of
On
con-
tradiction we assume xe < x in S. Then we have xe 2 2 x e ~ x in S. On the other hand since x ~ e in S, 2 2 we have x ~ xe in S. Hence we have x = xe < x in =
S,
which
x
~ xe
a
similar
contradicts in
S.
The
S.
2.22. Then
and
ex
LEMMA
so
Lemma in
We
By
Lemma
2.20, and e
in
and
Case:
S
we so
P\E, so
we
assume 2 (x'y) e
By
by
Lemma
for
ex
can
2.20.
Hence
be
proved
that
e
in
x
prove
c Q
and
way
of
relation
take
x'yy'z,
S
can
x, y ,
S.
zy'yx'
lows
The
Suppose in
E V(z). and
we Let
2.23.
z
e P
e E
E
such
x e , e x c E, e ~ xe, e ~ ex in 2 ex . Also we have xe s x and
=
PROOF.
x
way.
Similarly LEMMA
that assertion
2.10,
have by
is S
we
such
have If
we
have
x
< z
in
zy'yx'
x
~ V(y)
x'y,
y'z,
=
=
x
=
x
in
and
and yx',
e S.
Thus
y
z' zy'
c P
then
by
< x'yy'zx'yy'z
< z
zy'yx'
S.
s y
e PiE,
x'yy'z
have
zy'yx'xy'yx'
x'yy'z,
that y'
x'yy'z
x'yy'xx'yy'z 2.18,
xe ~ x
in 2
transitive.
e V(x),
e P.
Lemma
then we
z e x'
zy'yx'
~
E, ex
~ x
in
S.
If
< zy'yx'zy'yx' in
what
fol-
~ E.
P\E. contradiction
we
370
assume
y'z
~ x'y
in
S.
SAITO
Since
y ~ z
S
by L e m m a
=
and
in
hand
(x'y)2y'z
~
=
(x'y)
4 E.
= x'yy'y
x'y = x'yy'y
we h a v e
since
y'z in
(x'y) 4
( x ' y ) 2 = ( x ' y ) 3, 2
have
(x'y) 3 ~
(x'y) (x'yy'z)
(x'y) 3
(x'y) 3y'z =
we
2.21,
(x'y)2(x'yy'z)
the o t h e r
=
S,
=
~ x'y
S. and
in
Hence
S,
we h a v e
we
in
S,
On
we h a v e (x'y)2y'z
2, we h a v e
the
< y'z
S.
assumption in
S.
Since
x'y
f r o m L e m m a 2.21 2 = x'yy'z(x'y) 2 But in S and s i n c e (x'y) 4 E 2 2 and x ' y y ' z x ' y 9 E, we h a v e x'yy'x(x'y) = (x'y) 2 < x'yy'zx'y = x'yy'z(x'y) in S. H e n c e by L e m m a 2.18, that
s x'yy'z
x'y
in
(x'y) 3 =
by C o n d i t i o n
in
(x'y) 3y'z
(x'y)2y'z
which contradicts
Hence
~ x'yy'z
it f o l l o w s
x'yy'zx'y 9 E and 2 (x'y) ~ x'yy'zx'y
have
x < z
in
x'yy'zx'y
S.
We c a n o b t a i n x < z in S 2 2 (y'z) 9 PiE, C a s e : (yx') 9 PiE
similarly
in Case: 2 Case: (zy')
and
9 PiE. Case:
(x'y) We
x'yy'x
and x ' y e P\E. 2 3 x ' y y ' x x ' y = x'y < (x'y) = (x'y) and so 2 (x'y) in S. A l s o we h a v e x'y = x ' y y ' y 2 in S. Since x ' y < (x'y) in S, we h a v e 2 (x'y) y'z in S. O n the o t h e r h a n d we h a v e
<
~
(x'y)2y'z in =
S.
=
and Case:
x'yy'z
~
=
~
(x'yy'z) (x'yy'z)
(x'y)2y'z
< x'yy'z
in
S.
Hence
x'y,
y'z,
by L e m m a
yx',
2.10,
9 Q.
Since
Hence
by L e m m a
x'z other
so
we h a v e
= x'yy'z (x'y) 2
Hence in
by L e m m a
E
x < z
and in
so S.
We can o b t a i n x < z in S s i m i l a r l y in Case: 2 2 9 E and y'z c PiE, C a s e : (yx') e E and yx' 9 PiE 2 Case: (zy') 9 E and zy' e PiE. zy'
9 E.
By w a y of c o n t r a d i c t i o n Then
and
(x'y) 2y'z = x ' y y ' z in S. 2 x ' y y ' x < (x'y) ~ x'yy'z
we h a v e
x'yy'x
(y'z)
(x'y) (x'yy'z)
Hence
(x'y)2y'y
2.19,
e E
have
x'yy'z x'yy'z
2
in hand
y ~ z
S.
2.22,
since
we h a v e in
Hence
we a s s u m e xz',
S,
we
x ~ y
have
in
z'x c P
we h a v e x'yx'z
x'yx'zz'x S,
371
z < x and
x'y
~ x'z
e E
and
~ x'zz'x we h a v e
in
S.
zx', in
x'z S.
x'yx'z
in
S.
On
x'x
~ x'y
the and
SAITO
so
x'zz'x
have =
=
(x'x) (x'zz'x)
x'zz'x
= x'yx'zz'x
(x'yx'zz'x)(x'z)
e E.
First
x ~ y, x'y
~ x'z,
in
S
and
and y'x
= x'z
and
xz'
in
y'x
we h a v e
2.5,
and
and
= zz'
so and
so
Then
D(yy')
x ~ z
in
original
= D(y)
~ x'z
~ y'x ~ x'x
= D(y'y)
is
~ zz'
~ xz'
= xz'z
= D(y'y)
in
Hence and
zz'
E.
Hence
= zz'z
= z,
D(y'y)
is R-
is R - u n i p o t e n t
in a s i m i l a r
way.
Hence
S.
2.2,
2.11,
2.13,
2.18,
2.19,
2.20 a n d
2.23
B.
Acknowledgement. to the
yz'
Next s u p p o s e
a contradiction
y'z
x'x = x'y
y ' y = z'z.
~ zz'
x = xx'x
~ x'y,
y'y = y'x = x'yy'x
s yz',
~ yz'
~ x'y
zx'
Since
s y'z,
D(y'x)
similarly xz'
xz'
we h a v e
x'x
Hence
Hence
Theorem
thanks
x'x
E.
by L e m m a
Now L e m m a s prove
y'y
= y ' y = y'z.
and we c a n o b t a i n we h a v e
in
H e n c e we
(x'zz'x) (x'z)
we h a v e
we h a v e
is a c o n t r a d i c t i o n .
unipotent.
S,
s y'y,
~ y'x
we h a v e
S.
Similarly
and
S
= yz'
which
x'z =
y'x
Also
in
is L - u n i p o t e n t . in
2.19,
~ y'z
= x'y = x'x
x ' x = z'z. xz'
~ x'x,
so
e E.
D(y'y) z < x
by L e m m a
s y'y
L-unipotent = x'yy'y
and
x'z
and
= x'yx'z
suppose
y s z
~ x'yx'zz'x
I would
referee
version
of
for
his
like
to e x p r e s s
suggestions
this p a p e r .
372
given
my h e a r t y for
the
SAITO
REFERENCES i. Clifford, A. H. and G. B. Preston, The algebraic theory of semigroups I, Amer. Math. Soc. 1961. 2. Reilly, N. R. and H. S. Scheiblich, Congruences o nn regular semigroups, Pacific J. Math.
23(1967),
349-360.
3. SaitS, T. Ordered idempotent semigroups, J. Math. Soc. Japan 14(1962),
150-169.
4. SaitS, T. Regular elements in an ordered semigroup, Pacific J. Math. 13(1963),
263-295.
5. Sait6, T. Ordered regular proper semigroups, J. Algebra 8(1968), 450-477. 6. Sait6, T. The orderability of idempotent semigroups, Semigroup Forum 7(1974),
264-285.
Department of Mathematics Nippon Institute of Technology Miyashiro,
Saitama
Japan
Received 20, November 1981 and, in final form, October 26, 1982.
373